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Introduction

® How many orbifolds of C3?
® Class of backgrounds in string theory

® (lass of finite theories in 3+ | dimensions
with a cubic superpotential

® Brane Tilings with hexagonal tiles
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Motivation

® M2 branes probing CY4
® How Many Abelian CY4?




Simple orbifolds
one per each N

ay +as = 0 (mod N)
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Righer dimensions
more than | per N

5
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action ambiguity

® For D=3, N=5, (1,1,3) is the same as (2,2,1)
and the same as (3,3,4), same as (4,4,2)

® Count these solutions only once
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D=3 Orbifolds

® Are all orbifold actions of the form

® (l,a,-1-3)?




D=3 Orbifolds

® Are all orbifold actions of the form
® (l,a,-1-a)!

® First case it is not;: N=30 with orbifold
action (2,3,25)




Product groups
higher dimensions
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Results
orbifold actions
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How to Compute
these nhumbers!?
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Similar problems

® TJoric diagrams - lattice triangles of area N
® Brane Tilings - hexagonal tilings; N hex.
® Hexagonal sub-lattices of index N

® |attice tetrahedra of volume N

® |attice simplices of hyper-volume N




Look at Toric Diagrams




More than | in higher
dimensions




notation ambiguity in
higher dimensions




Product groups




Two dimensions




Two dimensions

® One way to construct lines of length N
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Count toric diagrams
precisely once?

® Use Hermite Normal Form

® For a toric diagram with k vertices vjact
with a matrix M v

® M upper diagonal matrix with integer
entries further restricted

® detM =N

® ForD=3: N=n;n; Mn<n




Hermite Normal Form
on 3 vertices

The unit area triangle has corner points

vy = (0.0) . va =(1,0) . vg =(0,1)

|18
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Hermite Normal Forms
(HNF)

® Used for Hecke Operators to construct
generic sublattices in various dimensions

® in 2 dimensions (D=3): N fold mapping of
torus

® 2d sub-lattices of index N
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Symmetries

® |n the absence of symmetries for the toric
diagram, we are done

® Abelian orbifolds: specify HNF

® However, some toric diagrams are
symmetric under a finite discrete group

® Makes some HNF’s equivalent
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Symmetries

® |n the absence of symmetries for the toric
diagram, we are done

® Abelian orbifolds: specify HNF

® However, some toric diagrams are
symmetric under a finite discrete group

® Makes some HNF’s equivalent

® Use Polya Enumeration Theorem!

20
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Symmetries

brane tiling

geometry

pA
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Burnside’s Lemma
Polya Enumeration

Lemma. Let G be a group of permutations of the set X. The number N (G) of orbits of G is given
by the average over G of the sizes of the fixed sets:

Y, fe(n);  fe(n)=|{xeXu|glx)=x}

7€G

22
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Cycle Index

X X3

P
F

3
3
/ \ (12)

1

1

(123)

3 1

Table 2: Cycle index for the symmetric group S;. Zg,

23
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Cycle Index
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4 different sequences
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4 different sequences

® TJoric diagrams with area N - HNF’s
® Subset invariant under reflections

® Subset invariant under rotations

® ingeuvalent orbifolds:

® Average according the Cycle Index

25




Examples
reflection; no rotation

(0,1,1) )
(0,0,0)
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Examples
Reflection; Rotation

(1.1, 1) )
(0,0,0)
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No reflection
No rotation

b

(1,2.3) )
(0,0,0)




Example
No reflection; Rotation

(1,2, 4) )
(0,0.0)

12+10+12—
6 2 37

29




The hexagonal
sequences

f ¥ ll 2
f, 1 0 0

Table 3: Number of sublattices of index n for the hexagonal lattice, classitied by the cy-

cles of the symmetric group S;. According to the cycle index decomposition, f= =

%,

30
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Example; HNF’s




number of generic 2d
sublattices

o(n)=>) d

d|n




number of generic 2d

sublattices
o(n)=>) d
d|n

® This problem is well known and involves
the divisor function




number of generic 2d
sublattices

o(n)=>) d

d|n
® This problem is well known and involves
the divisor function

o [,3,4,7,6,12,8,15,13..




Scatter Plot
Triangle Toric Diagrams

400

. A . .
Figure 1: Scatter plot of the sequence - for a hexagonal lattice. Prime numbers are empha-
sized in red. The two lines correspond ton /6 and e"n loglogn /6.
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growth
3+1d theories
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growth
3+1d theories
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growth
3+1d theories

® Divisor function

® Order of group of symmetries




growth
3+1d theories

® Divisor function

® Order of group of symmetries

® G=S3, |G|=6 for D=3




Results
computer code

[ S I = R Ry R R I
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[S4 I
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Multiplicative
sequences

Definition. A sequence f is multiplicative if

f(nm) = f(n)f(m), when(n,m)=1,

where (n, m) denotes the greatest common divisor between n and m.

36
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Dirichlet Convolution

Definition. The Dirichlet convolution of two sequences f and g is the sequence h defined by

o | A 1
fn)=(g*xh)(n)=Y g(m)h(—),
: H% m

where the notation m|n means that the sum runs over all the divisors m of n.
Let f, g and /i be such that

The power series for h reads:

o Ty o ik
ZZ |m|f:|mhf Z Z (m) h(k)t

n=1m|n k=1m=1

37
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generic 2d toric
diagrams - HNF’s

Example (A). In the case of the bipartite hexagonal lattice we find:

1. The sequence fr =1{1,3,4,7,6,12,8,15,... } corresponds to the identity pernuitation 11 and
wf l - - *

it is given by Equation (3.10) with d = 2. It can also be written as the convolution
f5 =uxN, (5.10)

" -tl

where

N(n)={1,23,...}. (5.11)

38
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reflection invariant

2. The sequence fyx, = {1,1,2,3,2,2,2,5,... } can be written as the convolution of a periodic

sequence of period 4 and the unit:

. =41,0,1,210,1,21,... } xu.

Txyxa

39
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rotation invariant

3. The last sequence ff =4{1,0,1,1,0,0,2,0,... } also has the form of the convolution of the
unity with a periodic sequence of period 3:

f5=1{1,-101,-1,0,1,-10,... } %u. (5.14)

40
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Dirichlet Series

1. the formal power series (partition function)

F(t)=)_ f(n)t";
n=1

2. the Dirichlet series

4]
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Useful for Multiplicative
Sequences

42




Multiplicative
Sequences

43




Partition Functions
Hexagonal Tilings

. A I . .
1. The sequence f 3 is decomposed as 3 = u* N, hence the corresponding power seri
Xy X3 €
erated by

, — 1+t
T . 4k -
G_ﬁ‘(” _;21“ (1=t (1-13) L

and the Dirichlet series reads

™, .
F(s) = §(s)5(s = 1).
2. The sequence fﬁ_fz = {1,-1,0,2 } % u*u gives

1+
(1—1)(1+1t2)

a(s) = (1-27 4 212) g(s)2.

1,

G-ﬁfz (” —

i .
3. The sequence fy, = x32 * U gives

(1+41) (1— 1)

Gy (t) = —F—7

—1,
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Hexagonal Tilings
partition functions
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Hexagonal Tilings
partition functions

|

SRRAC e S Y E S
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Hexagonal Tilings
partition functions

|

SRRAC e S Y E S
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Hexagonal Tilings
partition functions

L+ f(t) = :

(1 —t)(1+1¢2)(1 —t3)




Hexagonal Tilings
partition functions

L+ f(t) = :

(1 —2)(1+t2)(1 —1t3)




Convolution preserves
multiplicativity; is
additive on primes

46




Use basic sequences
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The Dirichlet character x;,, of modulo £ and index m is defined under the con-

ditions

Xkm [ 1 :' =1

Xk,m ': ( :' X k,m '::.-“ + k :'

\k.m [” ] \k.m [ b :' — Xk.m '::.-“-' b 1

Xkm(a) =0 if ged(k,a) #1

48
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The Dirichlet characters up to modulo 10

X1,1 — u

2.1 — {J-

\3.1 — {J- L.

\3.2 — {J-
)'x%hl — {J-

42 = {J-“
X5,1 — {J- L.

'}2_{]—

-_'h::"r T {J-
\54 — {J-

6.1 — {1
1&2:{1
X7.1 = {1

X7.2 = {l

0,0,0,1,0...
0,0,0,—1.(

lllll

/ 2 2
—W, W, W,

2

X7.3 — {lw LW, —W, —;u".

74 — {J-
X7.6 — {1_-

1. —1.1.—1.—1.0

2

—Ww, —Ww, W

vro = {L.w?, —w,
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\8.1 = {1
182:{1
183:{1
1&4:{1
X9.1 = {1
1922{1
1932{1
1942{1

Vo5 = {1,

9.6 = {1

used m this work are

0,1,0, 1. U.l.U_.,,,
0,1,0,—1.0,—1,(
0,—1,0,1.( —l |
0,—1,0,—1.0.1,( }
1.0,1,1,0.1. l .}
w,(],;:.:z.—u-‘z_.ll. —w, —1,(
w0, —w, —w, 0, w? 1,0

~1.0,1,—-1.0.1,—1,0, ...




C* sequences

N |1 2 3 7 9 10

ot | 1 7 1: : 57 130 217
G2z, | 1 3 5 7 0 18 21

g2 | 1 3 5 7 0 18 21
Jeqzs | 1 1 1 1 3 4 1

Je, |1 1 1 3 1 2 3
gP=% |1 2 3 5 7 14 18

N |11 12 13 15 17 19 20

g | 133 455 18 40: 307 381 1085
Gu2py | 13 55 15 35 19 21 77

gp2 | 13 55 15 35 19 21 77
ryza | 2 3 1 1 3 2

Gy 3 3 3 3 1 0
gP=* | 11 | 15 3 2) 25 77
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C° sequences

C® /Ty

el = =
= =

H= 00

SNs ]

—
-]

1
1
1
1
1
1
1
1

B = = W =] k

2
|
1
3
J_r"

6000 6240
406 448 095
: 06 251
49
11

—
L—
—
-]

o =
B R

b b
i K

RS-

-2
]

264
28
62000
2494
S04
80

16000
812
128
40

19 N N=le @
2 .
]

=]
im T o Y W
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[3 if p=2

lp+2 ifp#2

(3 ifp=1 mod3
B ] 1 ifp=0,2 mod3

mod 3

mod 3

[3 ifyp mod 4 = S e o a
. . X [ L 1110 r_1 o
1

mod 4

ip) =
vy ]

52
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— 1 mod3
mod 3

mod 3

mod 3

mod 4
3 mod 4

1!
|

mod 5

2.3.4 modb5

53
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Series Convolutions

£ N
«u*{l,—1,0,2]

TS

uk Uk Nox N2« {1, —1.0.8}

ok uk Nox N (f— 3t% 4+ 148* — 12¢° + 16t1°)

ukuk N*yzo+{1.0,-1,0.0,0,0,0,9}

Uk Uk U % Y32 % |J_ —1.0.2 l L 4 J_ O, —1.0.0.0,0.0, ."r=-
Uk U Uk ygok (F— 2t —|— T

U * Xr

L

)

2
¥

A 15

Table 6: Summary of series convolutions for orbifolds of C=, C%, C* and C°.

54
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enerating Functions

Generating Functions for C*. As presented in [28], the generating function for

the symmetry series of C* are

g?=t) = 21 (.r-:‘rfi \E) + 0gp3p,(T) + 2052 (1) + 3Gz 25 () + Og2, (T) )

with gpe = S o0, faa(th).

A=
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Summary

® Counting Abelian Orbifolds of CP
® Reveal a rich structure

® Methods from Crystalography

® Number Theory

® Good for orbifolds of any toric diagram, in
any dimension
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Summary
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Summary

® (Can study statistical aspects of such
backgrounds with the explicit generating
functions
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Summary

® (Can study statistical aspects of such
backgrounds with the explicit generating
functions

® Growth like nP-%/|G]| for large n

57
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Thank you!
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