Counting Abelian Orbifolds

Amihay Hanany Domenico Orlando Susanne Reffert Rak-Kyeong Seong

• How many orbifolds of C³ ?

- How many orbifolds of C³ ?
- Class of backgrounds in string theory

- How many orbifolds of C³ ?
- Class of backgrounds in string theory
- Class of finite theories in 3+1 dimensions with a cubic superpotential

- How many orbifolds of C³ ?
- Class of backgrounds in string theory
- Class of finite theories in 3+1 dimensions with a cubic superpotential
- Brane Tilings with hexagonal tiles

Motivation

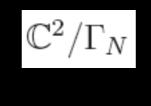
Motivation

• M2 branes probing CY4

Motivation

- M2 branes probing CY4
- How Many Abelian CY4?

Simple orbifolds one per each N



 $\Gamma_N = \mathbb{Z}_N$

$$\begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \mapsto \omega^{(a_1,a_2)} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} z_1 \ e^{\frac{i2\pi a_1}{N}} \\ z_2 \ e^{\frac{i2\pi a_2}{N}} \end{pmatrix}$$

 $a_1 + a_2 = 0 \pmod{N}$

Higher dimensions more than I per N

 \mathbb{C}^3/Γ_N

 $n_1 n_2 = N$

 $\Gamma_N = \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$

$$\omega^{(\{a_i\},\{b_i\})} : \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} \mapsto \omega^{(\{a_i\},\{b_i\})} \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = \begin{pmatrix} z_1 \ e^{i2\pi(\frac{a_1}{n_1} + \frac{b_1}{n_2})} \\ z_2 \ e^{i2\pi(\frac{a_2}{n_1} + \frac{b_2}{n_2})} \\ z_3 \ e^{i2\pi(\frac{a_3}{n_1} + \frac{b_3}{n_2})} \end{pmatrix}$$

action ambiguity

action ambiguity

For D=3, N=5, (1,1,3) is the same as (2,2,1) and the same as (3,3,4), same as (4,4,2)

action ambiguity

- For D=3, N=5, (1,1,3) is the same as (2,2,1) and the same as (3,3,4), same as (4,4,2)
- Count these solutions only once

• Are all orbifold actions of the form

- Are all orbifold actions of the form
- (|,a,-|-a)?

- Are all orbifold actions of the form
- (|,a,-|-a)?
- First case it is not: N=30 with orbifold action (2,3,25)

Product groups higher dimensions

$$\mathbb{C}^4/\Gamma_N$$

$$\Gamma_N = \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \mathbb{Z}_{n_3} \subset SU(4)$$

$$\mathbb{C}^D/\Gamma_N$$

$$\Gamma_N = \bigotimes_{j=1}^{D-1} \mathbb{Z}_{n_j} \subset SU(D)$$

$$N = \prod_{j=1}^{D-1} n_j$$

Tuesday, October 12, 2010

Results orbifold actions

0.D. /m							
\mathbb{C}^D/Γ_N							
		D					
		2	3	4	5	6	7
	1	1	1	1	1	1	1
	2	1	1	2	2	3	3
	3	1	2	3	4	6	7
	4	1	3	7	10	17	23
	5	1	2	5	8	13	19
	6	1	3	10	19	40	65
	7	1	3	7	13	27	46
	8	1	5	20	45	106	
	9	1	4	14	33	72	
	10	1	4	18	47	127	
	11	1	3	11	30	79	
	12	1	8	41	129	391	
	13	1	4	15	43	129	
	14	1	5	28	96	321	
	15	1	6	31	108		
	16	1	9	58	224		
	17	1	4	21	78		
	18	1	8	60	264		
	19	1	5	25	102		
	20	1	10	77	357		
	21	1	8	49	226		
	22	1	7	54	277		
	23	1	5	33	163		
	24	1	15	144	813		
N	25	1	7	50	260		
11	26	1	8	72	425		
	27	1	9	75	436		
	28	1	13	123	780		
	29	1	6	49	297		
	30	1	14	158	1092		
	31	1	7	55			

How to Compute these numbers?

Toric diagrams - lattice triangles of area N

- Toric diagrams lattice triangles of area N
- Brane Tilings hexagonal tilings; N hex.

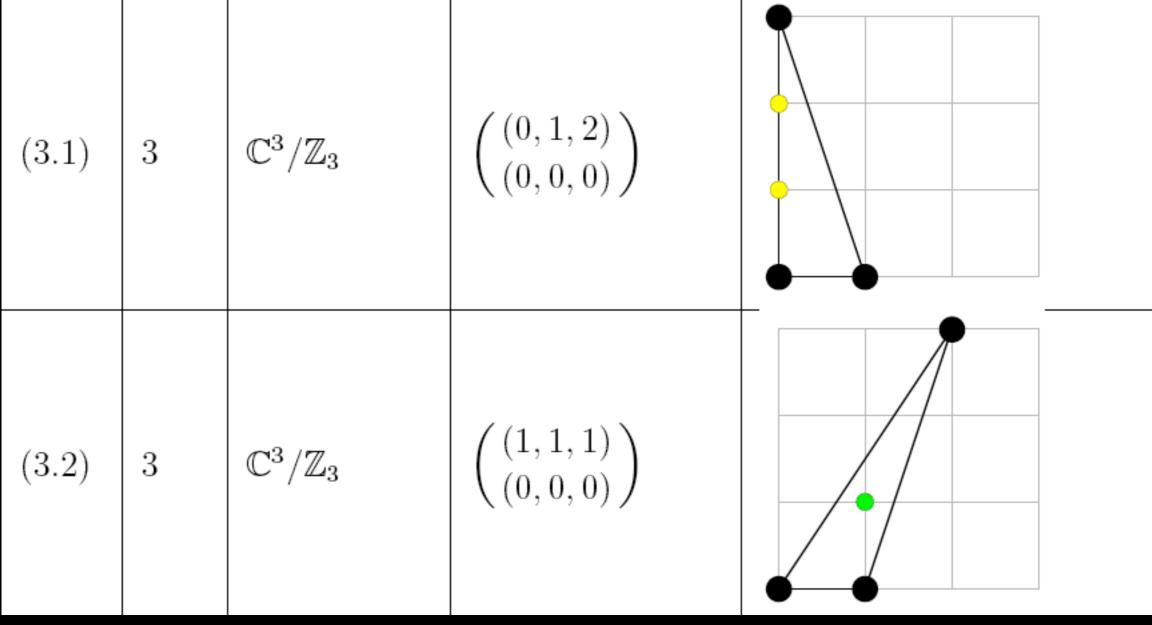
- Toric diagrams lattice triangles of area N
- Brane Tilings hexagonal tilings; N hex.
- Hexagonal sub-lattices of index N

- Toric diagrams lattice triangles of area N
- Brane Tilings hexagonal tilings; N hex.
- Hexagonal sub-lattices of index N
- lattice tetrahedra of volume N

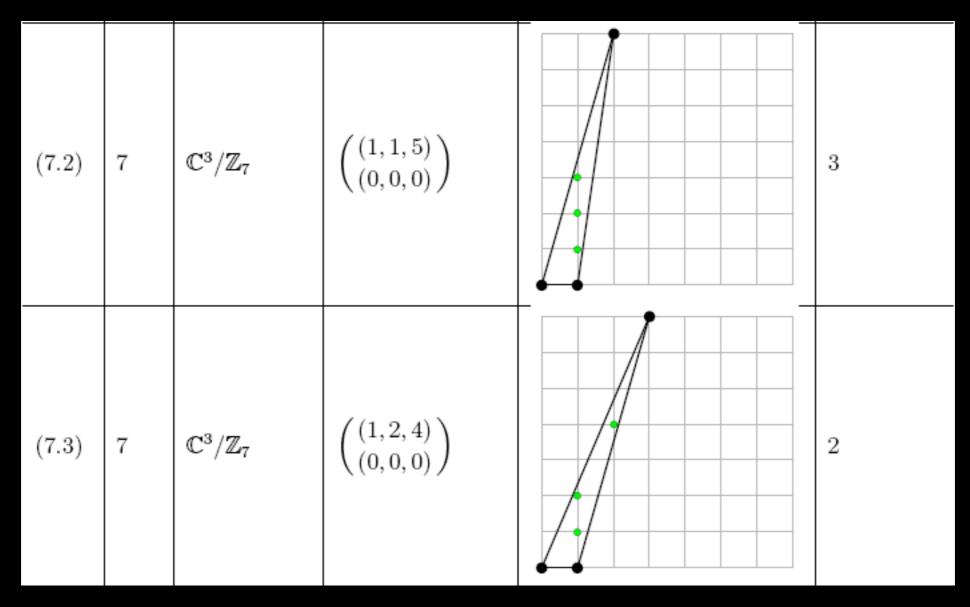
- Toric diagrams lattice triangles of area N
- Brane Tilings hexagonal tilings; N hex.
- Hexagonal sub-lattices of index N
- lattice tetrahedra of volume N
- lattice simplices of hyper-volume N

Look at Toric Diagrams

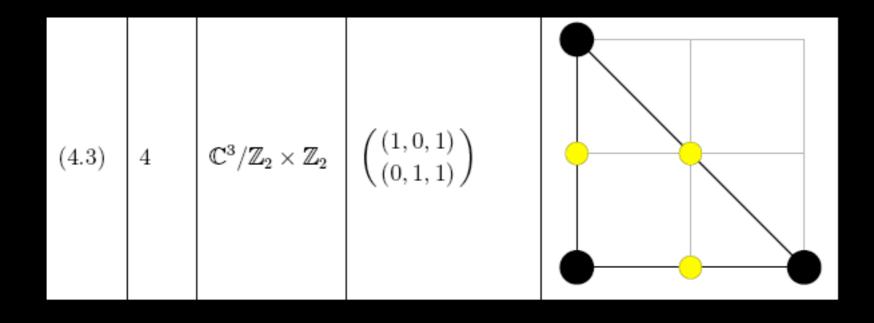
More than I in higher dimensions



notation ambiguity in higher dimensions



Product groups



Two dimensions

Two dimensions

One way to construct lines of length N

Count toric diagrams precisely once?

Count toric diagrams precisely once?

• Use Hermite Normal Form

Count toric diagrams precisely once?

- Use Hermite Normal Form
- For a toric diagram with k vertices v_i act with a matrix M v_i

Count toric diagrams precisely once?

- Use Hermite Normal Form
- For a toric diagram with k vertices v_i act with a matrix M v_i
- M upper diagonal matrix with integer entries further restricted

Count toric diagrams precisely once?

- Use Hermite Normal Form
- For a toric diagram with k vertices v_i act with a matrix M v_i
- M upper diagonal matrix with integer entries further restricted
- det M = N

Count toric diagrams precisely once?

- Use Hermite Normal Form
- For a toric diagram with k vertices v_i act with a matrix M v_i
- M upper diagonal matrix with integer entries further restricted
- det M = N
- For D=3: N = $n_1 n_2$; M₁₂ < n_2

Hermite Normal Form on 3 vertices

The unit area triangle has corner points

$$v_1 = (0,0)$$
, $v_2 = (1,0)$, $v_3 = (0,1)$

$$M = \begin{pmatrix} n_1 & c \\ 0 & n_2 \end{pmatrix}$$

 $D(N) = \{\{v_1, v_2, v_3\} = \{(0, 0), (n_1, 0), (c, n_2)\} \mid N = n_1 n_2, \ 0 \le c \le n_2 - 1, \ c \in \mathbb{Z}\}$

 Used for Hecke Operators to construct generic sublattices in various dimensions

- Used for Hecke Operators to construct generic sublattices in various dimensions
- in 2 dimensions (D=3): N fold mapping of torus

- Used for Hecke Operators to construct generic sublattices in various dimensions
- in 2 dimensions (D=3): N fold mapping of torus
- 2d sub-lattices of index N

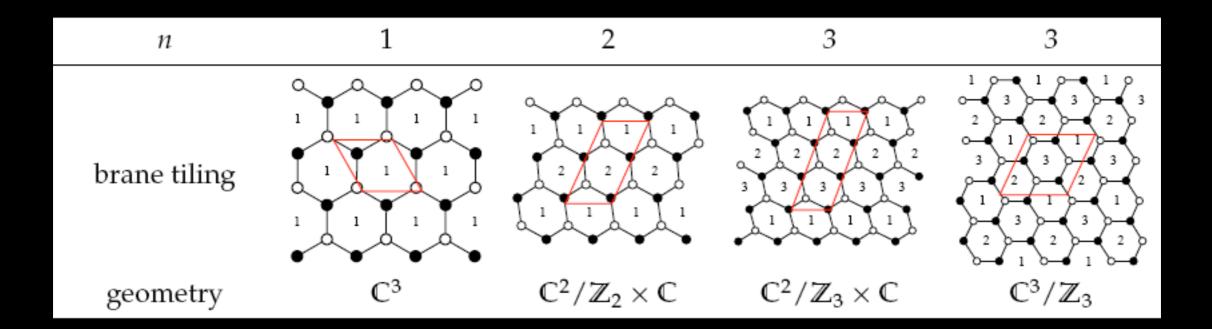
In the absence of symmetries for the toric diagram, we are done

- In the absence of symmetries for the toric diagram, we are done
- Abelian orbifolds: specify HNF

- In the absence of symmetries for the toric diagram, we are done
- Abelian orbifolds: specify HNF
- However, some toric diagrams are symmetric under a finite discrete group

- In the absence of symmetries for the toric diagram, we are done
- Abelian orbifolds: specify HNF
- However, some toric diagrams are symmetric under a finite discrete group
- Makes some HNF's equivalent

- In the absence of symmetries for the toric diagram, we are done
- Abelian orbifolds: specify HNF
- However, some toric diagrams are symmetric under a finite discrete group
- Makes some HNF's equivalent
- Use Polya Enumeration Theorem!



Burnside's Lemma Polya Enumeration

Lemma. Let G be a group of permutations of the set X. The number N(G) of orbits of G is given by the average over G of the sizes of the fixed sets:

$$N(G) = \frac{1}{|G|} \sum_{g \in G} |F_g| ; \qquad F_g = \{ x \in X \mid g(x) = x \} .$$
(3.7)

$$f^{L}(G) = \frac{1}{|G|} \sum_{g \in G} f^{L}_{g}(n); \qquad f^{L}_{g}(n) = |\{x \in X_{n} \mid g(x) = x\}|$$

Cycle Index

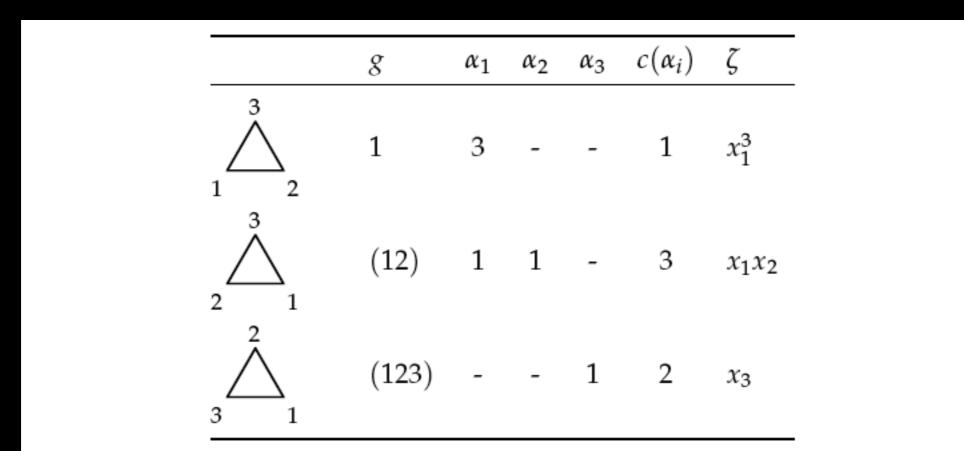


Table 2: Cycle index for the symmetric group S_3 . $Z_{S_3} = \frac{1}{6} (x_1^3 + 3x_1x_2 + 2x_3)$.

Cycle Index

$$Z_{S_D} = \frac{1}{D} \sum_{r=1}^{D} x_r Z_{S_{D-r}} . \qquad (4.12)$$

D	Orbifold	Cycle Index
1	\mathbb{C}	$Z_{S_1} = x_1$
2	\mathbb{C}^2/Γ_N	$Z_{S_2} = \frac{1}{2} \left(x_1^2 + x_2 \right)$
3	\mathbb{C}^3/Γ_N	$Z_{S_3} = \frac{1}{6} \left(x_1^3 + 3x_1 x_2 + 2x_3 \right)$
4	\mathbb{C}^4/Γ_N	$Z_{S_4} = \frac{1}{24} \left(x_1^4 + 6x_1^2x_2 + 3x_2^2 + 8x_1x_3 + 6x_4 \right)$
5	\mathbb{C}^5/Γ_N	$Z_{S_5} = \frac{1}{120} \left(x_1^5 + 10x_1^3x_2 + 15x_1x_2^2 + 20x_1^2x_3 + 20x_2x_3 + 30x_1x_4 + 24x_5 \right)$
6	\mathbb{C}^6/Γ_N	$Z_{S_6} = \frac{1}{720} (x_1^6 + 15x_1^4x_2 + 45x_1^2x_2^2 + 15x_2^3 + 40x_1^3x_3 + 120x_1x_2x_3 + 40x_3^2 + 90x_1^2x_4 + 90x_2x_4 + 144x_1x_5 + 120x_6)$
7	\mathbb{C}^7/Γ_N	$Z_{S_7} = \frac{1}{5040} (x_1^7 + 21x_1^5x_2 + 105x_1^3x_2^2 + 105x_1x_2^3 + 70x_1^4x_3 + 420x_1^2x_2x_3 + 210x_2^2x_3 + 280x_1x_3^2 + 210x_1^3x_4 + 630x_1x_2x_4 + 420x_3x_4 + 504x_1^2x_5 + 504x_2x_5 + 840x_1x_6 + 720x_7)$

• Toric diagrams with area N - HNF's

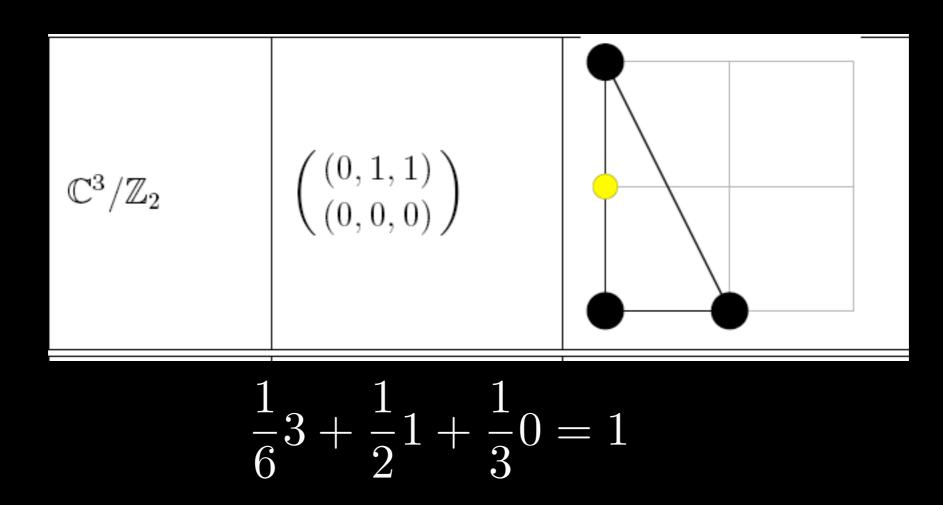
- Toric diagrams with area N HNF's
- Subset invariant under reflections

- Toric diagrams with area N HNF's
- Subset invariant under reflections
- Subset invariant under rotations

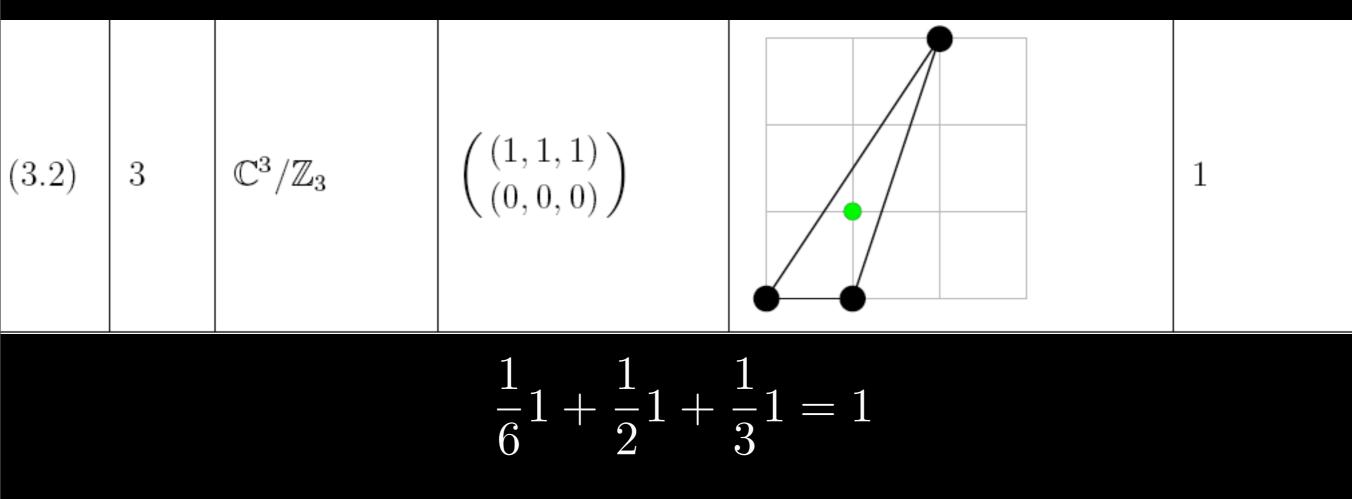
- Toric diagrams with area N HNF's
- Subset invariant under reflections
- Subset invariant under rotations
- inquivalent orbifolds:

- Toric diagrams with area N HNF's
- Subset invariant under reflections
- Subset invariant under rotations
- inquivalent orbifolds:
- Average according the Cycle Index

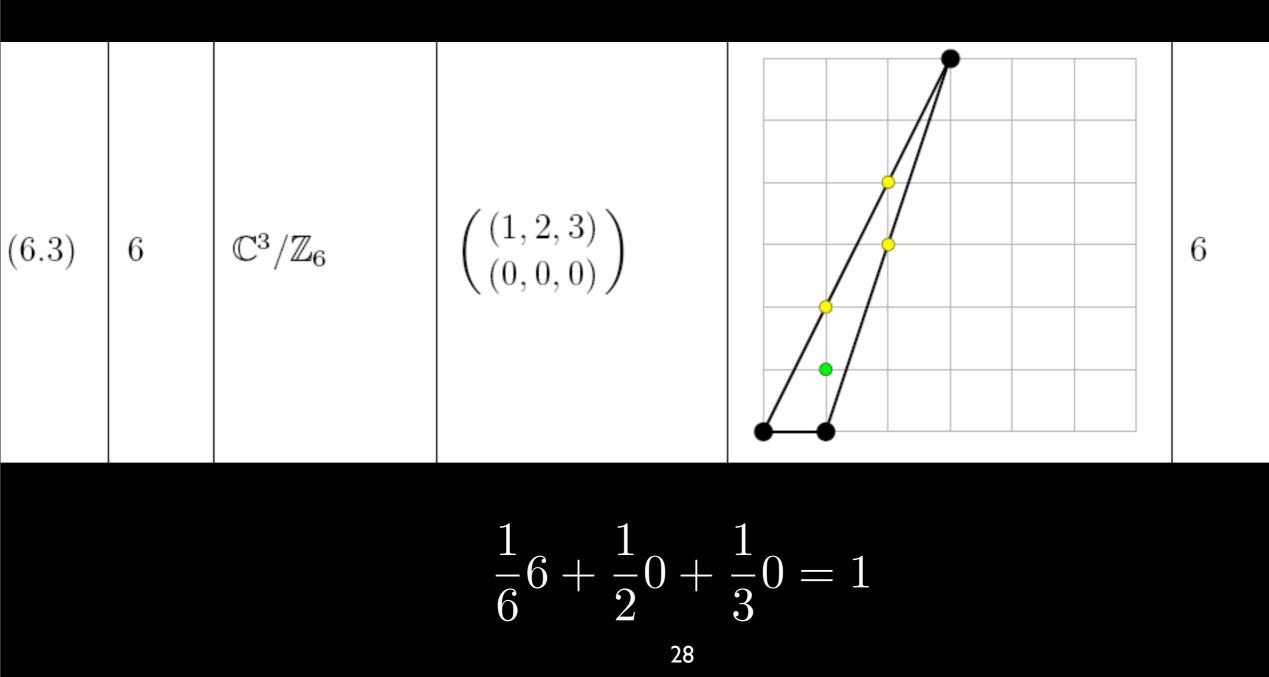
Examples reflection; no rotation



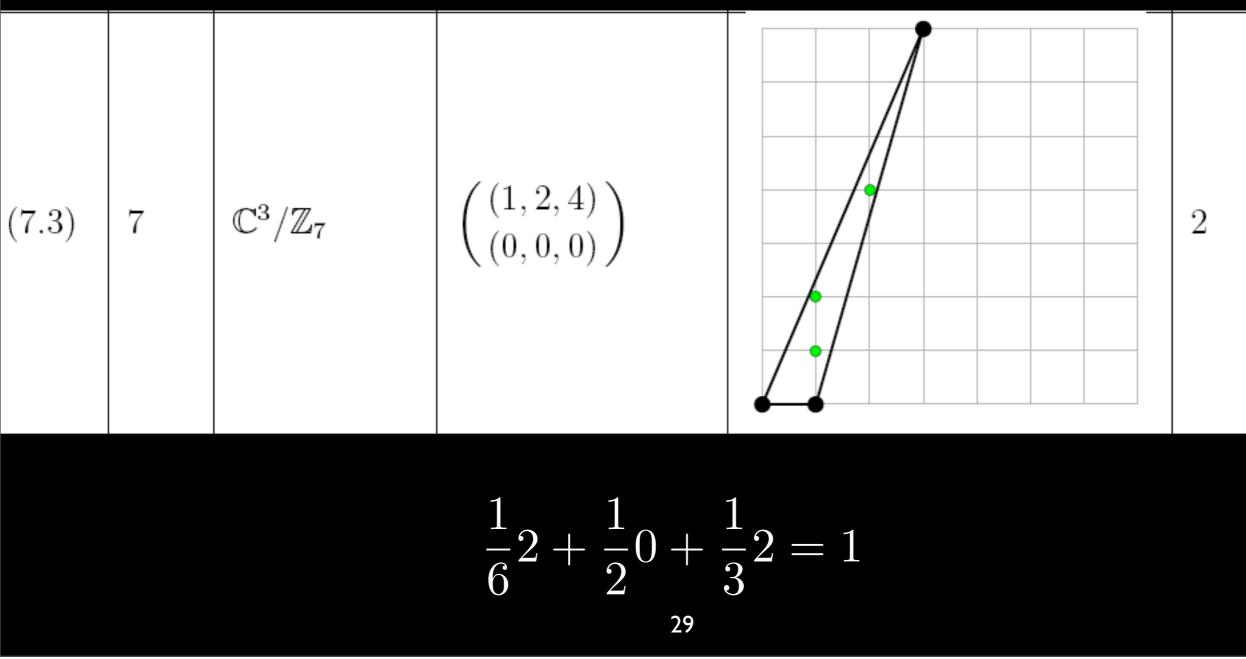
Examples Reflection; Rotation



No reflection No rotation



Example No reflection; Rotation



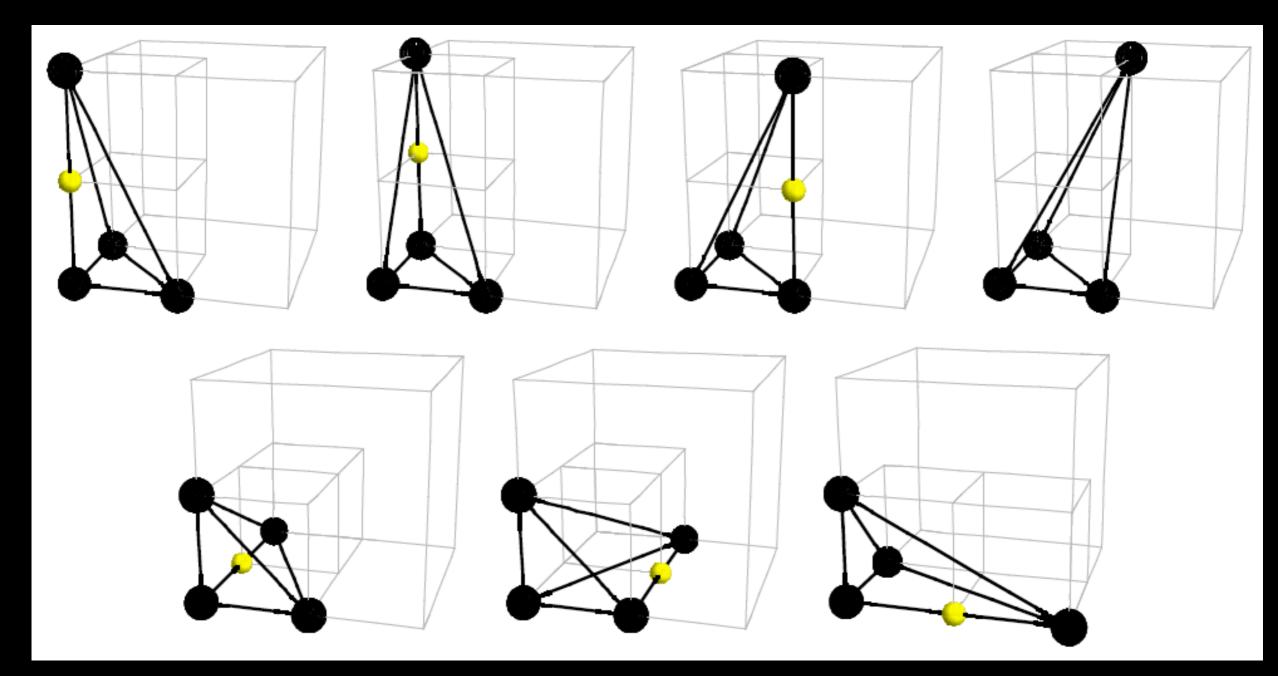
Tuesday, October 12, 2010

The hexagonal sequences

п	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$f_{x_1^3}^{\Delta}$	1	3	4	7	6	12	8	15	13	18	12	28	14	24	24	31
$ \begin{array}{c} f_{x_1 x_2}^{\Delta} \\ f_{x_1 x_2}^{\Delta} \\ f_{x_3}^{\Delta} \end{array} $	1	1	2	3	2	2	2	5	3	2	2	6	2	2	4	7
$f_{x_3}^{\Delta}$	1	0	1	1	0	0	2	0	1	0	0	1	2	0	0	1
f^{Δ}	1	1	2	3	2	3	3	5	4	4	3	8	4	5	6	9

Table 3: Number of sublattices of index *n* for the hexagonal lattice, classified by the cycles of the symmetric group S_3 . According to the cycle index decomposition, $f^{\Delta} = \frac{1}{6} \left(f_{x_1^3}^{\Delta} + 3f_{x_1x_2}^{\Delta} + 2f_{x_3}^{\Delta} \right)$.

Example; HNF's D=4, N=2



number of generic 2d sublattices

$$\sigma(n) = \sum_{d|n} d$$

number of generic 2d sublattices

$$\sigma(n) = \sum_{d|n} d$$

• This problem is well known and involves the divisor function

number of generic 2d sublattices

$$\sigma(n) = \sum_{d|n} d$$

- This problem is well known and involves the divisor function
- 1,3,4,7,6,12,8,15,13..

Scatter Plot Triangle Toric Diagrams

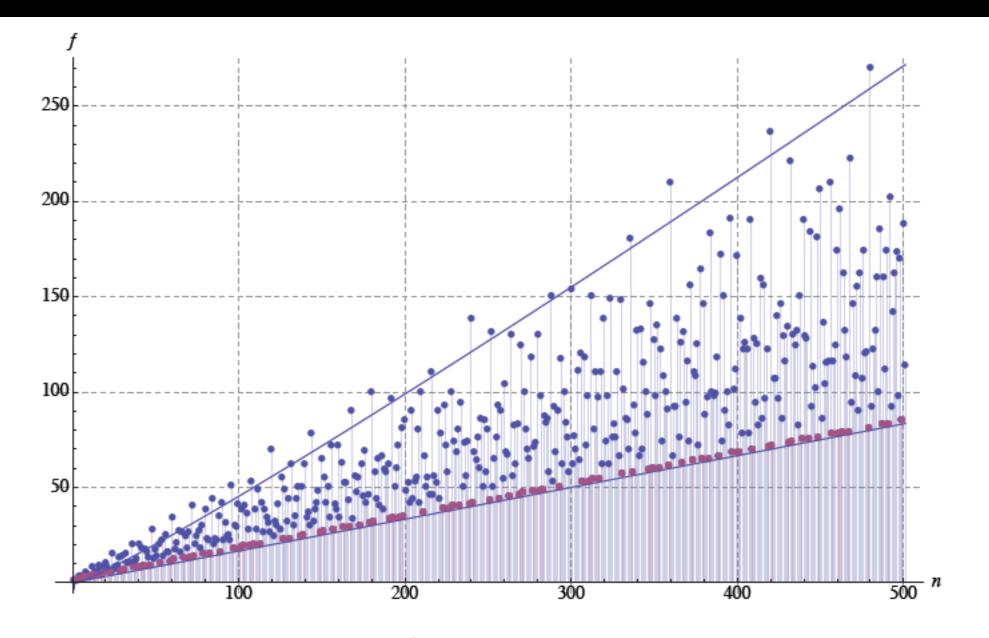


Figure 1: Scatter plot of the sequence f^{Δ} for a hexagonal lattice. Prime numbers are emphasized in red. The two lines correspond to n/6 and $e^{\gamma}n \log \log n/6$.

Tuesday, October 12, 2010

growth 3+Id theories

growth 3+Id theories

$$f(n) \sim \frac{\sigma(n)}{|G|}, \quad \text{for } n \gg 1$$

growth 3+Id theories

$$f(n) \sim \frac{\sigma(n)}{|G|}, \quad \text{for } n \gg 1$$

growth 3+Id theories

- Divisor function
- Order of group of symmetries

$$f(n) \sim \frac{\sigma(n)}{|G|}, \quad \text{for } n \gg 1$$

growth 3+Id theories

- Divisor function
- Order of group of symmetries
- $G=S_3$, |G|=6 for D=3

$$f(n) \sim \frac{\sigma(n)}{|G|}, \quad \text{for } n \gg 1$$

Results

computer code

				e D in				
				\mathbb{C}^D/Γ_N				
	D							
		2	3	4	5	6	7	
	1	1	1	1	1	1	1	
	2	1	1	2	2	3	3	
	3	1	2	2 3	4	6	7	
	4	1	3	7	10	17	23	
	5	1	2	5	8	13	19	
	6	1	3	10	19	40	65	
	7	1	3	7	13	27	46	
	8	1	5	20	45	106		
	9	1	4	14	33	72		
	10	1	4	18	47	127		
	11	1	3	11	30	79		
	12	1	8	41	129	391		
	13	1	4	15	43	129		
	14	1	5	28	96	321		
	15	1	6	31	108			
	16	1	9	58	224			
	17	1	4	21	78			
	18	1	8	60	264			
	19	1	5	25	102			
	20	1	10	77	357			
	21	1	8	49	226			
	22	1	7	54	277			
	23	1	5	33	163			
	24	1	15	144	813			
Ν	25	1	7	50	260			
11	26	1	8	72	425			
	27	1	9	75	436			
	28	1	13	123	780			
	29	1	6	49	297			
	30	1	14	158	1092			
	31	1	7	55				

Multiplicative sequences

Definition. A sequence *f* is multiplicative if

$$f(nm) = f(n)f(m)$$
, when $(n,m) = 1$,

where (n, m) denotes the greatest common divisor between n and m.

Dirichlet Convolution

Definition. The Dirichlet convolution of two sequences f and g is the sequence h defined by

$$f(n) = (g * h)(n) = \sum_{m|n} g(m) h(\frac{n}{m}),$$

where the notation m|n means that the sum runs over all the divisors m of n.

Let *f*, *g* and *h* be such that

$$f = g * h.$$

The power series for *h* reads:

$$F(t) = \sum_{n=1}^{\infty} f(n)n^n = \sum_{n=1}^{\infty} \sum_{m|n} g(m)h(\frac{n}{m})t^n = \sum_{k=1}^{\infty} \sum_{m=1}^{\infty} g(m)h(k)t^{mk}$$

generic 2d toric diagrams - HNF's

Example (\triangle). In the case of the bipartite hexagonal lattice we find:

1. The sequence $f_{x_1^3}^{\Delta} = \{1, 3, 4, 7, 6, 12, 8, 15, ...\}$ corresponds to the identity permutation x_1^3 and it is given by Equation (3.10) with d = 2. It can also be written as the convolution

$$f_{x_1^3}^{\Delta} = \mathbf{u} * \mathbf{N}$$
, (5.10)

where

$$N(n) = \{1, 2, 3, \dots\}.$$
(5.11)

$$u(n) = \{1, 1, 1, \dots\}$$

reflection invariant

2. The sequence $f_{x_1x_2}^{\Delta} = \{1, 1, 2, 3, 2, 2, 2, 5, ...\}$ can be written as the convolution of a periodic sequence of period 4 and the unit:

$$f_{x_1x_2}^{\triangle} = \{1, 0, 1, 2, 1, 0, 1, 2, 1, \dots\} * \mathbf{u} .$$
 (5.12)

rotation invariant

3. The last sequence $f_{x_3}^{\Delta} = \{1, 0, 1, 1, 0, 0, 2, 0, ...\}$ also has the form of the convolution of the unity with a periodic sequence of period 3:

$$f_{x_3}^{\triangle} = \{1, -1, 0, 1, -1, 0, 1, -1, 0, \dots\} * \mathbf{u} .$$
(5.14)

Dirichlet Series

1. the formal power series (partition function)

$$F(t) = \sum_{n=1}^{\infty} f(n)t^n;$$

2. the Dirichlet series

$$F(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s}.$$

Useful for Multiplicative Sequences

Multiplicative Sequences

$$F(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s} = \prod_{p} \left(1 + \frac{f(p)}{p^s} + \frac{f(p^2)}{p^{2s}} + \dots \right)$$

Partition Functions Hexagonal Tilings

1. The sequence $f_{x_1^3}^{\Delta}$ is decomposed as $f_{x_1^3}^{\Delta} = u * N$, hence the corresponding power serierated by

$$G_{x_1^3}^{\Delta}(t) = \sum_{k=1}^{\infty} k \, t^k = \frac{1+t^3}{(1-t) \, (1-t^2)} - 1 \,,$$

and the Dirichlet series reads

$$F_{x_1^3}^{\Delta}(s) = \zeta(s)\zeta(s-1) \,.$$

2. The sequence $f_{x_1x_2}^{\Delta} = \{1, -1, 0, 2\} * u * u gives$

$$G_{x_1x_2}^{\Delta}(t) = \frac{1+t^3}{(1-t)(1+t^2)} - 1,$$

$$F_{x_1x_2}^{\Delta}(s) = \left(1 - 2^{-s} + 2^{1-2s}\right)\zeta(s)^2.$$

3. The sequence $f_{x_3}^{\Delta} = \chi_{3,2} * u$ gives

$$G_{x_3}^{\Delta}(t) = \frac{(1+t)(1-t^2)}{1-t^3} - 1,$$

Tuesday, October 12, 2010

$$1 + f(t) = \frac{1}{(1 - t)(1 + t^2)(1 - t^3)}$$

$$1 + f(t) = \frac{1}{(1 - t)(1 + t^2)(1 - t^3)}$$
$$g(t) = \sum_{k=1}^{\infty} f(t^k)$$

$$1 + f(t) = \frac{1}{(1-t)(1+t^2)(1-t^3)}$$

$$g(t) = \sum_{k=1}^{\infty} f(t^k)$$

$$\sum_{n=1}^{\infty} \left(\frac{n}{6} + \frac{1}{2} \left(\cos\left(\frac{n\pi}{2}\right) + 1 \right) + \frac{2\sin\left(\frac{2n\pi}{3}\right)}{3\sqrt{3}} \right) t^n$$

$$1 + f(t) = \frac{1}{(1-t)(1+t^2)(1-t^3)}$$

$$g(t) = \sum_{k=1}^{\infty} f(t^k)$$

$$\sum_{n=1}^{\infty} \left(\frac{n}{6} + \frac{1}{2} \left(\cos \left(\frac{n\pi}{2} \right) + 1 \right) + \frac{2 \sin \left(\frac{2n\pi}{3} \right)}{3\sqrt{3}} \right) t^n$$

$$F^{\Delta}(s) = \frac{\zeta(s)}{6} \left(\zeta(s-1) + 3\left(1 - 2^{-s} + 2^{1-2s}\right) \zeta(s) + 2L(s, \chi_{3,2}) \right)$$

Convolution preserves multiplicativity; is additive on primes

Use basic sequences

The Dirichlet character $\chi_{k,m}$ of modulo k and index m is defined under the conditions

$$\chi_{k,m}(1) = 1$$

$$\chi_{k,m}(a) = \chi_{k,m}(a+k)$$

$$\chi_{k,m}(a)\chi_{k,m}(b) = \chi_{k,m}(ab)$$

$$\chi_{k,m}(a) = 0 \quad \text{if } \gcd(k,a) \neq 1 \quad . \tag{4.7}$$

The Dirichlet characters up to modulo 10 used in this work are

$$\begin{split} \chi_{1,1} &= \mathsf{u} \\ \chi_{2,1} &= \{1, 0, \dots\} \\ \chi_{3,1} &= \{1, 1, 0, \dots\} \\ \chi_{3,2} &= \{1, -1, 0, \dots\} \\ \chi_{4,1} &= \{1, 0, 1, 0, \dots\} \\ \chi_{4,2} &= \{1, 0, -1, 0, \dots\} \\ \chi_{5,1} &= \{1, 1, 1, 1, 0, \dots\} \\ \chi_{5,2} &= \{1, i, -i, -1, 0, \dots\} \\ \chi_{5,3} &= \{1, -1, -1, 1, 0, \dots\} \\ \chi_{5,4} &= \{1, -i, i, -1, 0, \dots\} \\ \chi_{6,1} &= \{1, 0, 0, 0, 1, 0, \dots\} \\ \chi_{6,2} &= \{1, 0, 0, 0, -1, 0, \dots\} \\ \chi_{7,1} &= \{1, 1, 1, 1, 1, 1, 0, \dots\} \\ \chi_{7,2} &= \{1, -\omega, \omega^2, \omega^2, -\omega, 1, 0, \dots\} \\ \chi_{7,3} &= \{1, \omega^2, \omega, -\omega, -\omega^2, -1, 0, \dots\} \\ \chi_{7,5} &= \{1, -\omega, -\omega^2, \omega^2, \omega, -1, 0, \dots\} \\ \chi_{7,6} &= \{1, \omega^2, -\omega, -\omega, \omega^2, 1, 0, \dots\} \end{split}$$

$$\begin{split} \chi_{8,1} &= \{1, 0, 1, 0, 1, 0, 1, 0, \dots\} \\ \chi_{8,2} &= \{1, 0, 1, 0, -1, 0, -1, 0, \dots\} \\ \chi_{8,3} &= \{1, 0, -1, 0, 1, 0, -1, 0, \dots\} \\ \chi_{8,4} &= \{1, 0, -1, 0, -1, 0, 1, 0, \dots\} \\ \chi_{9,1} &= \{1, 1, 0, 1, 1, 0, 1, 1, 0, \dots\} \\ \chi_{9,2} &= \{1, \omega, 0, \omega^2, -\omega^2, 0, -\omega, -1, 0, \dots\} \\ \chi_{9,3} &= \{1, \omega^2, 0, -\omega, -\omega, 0, \omega^2, 1, 0, \dots\} \\ \chi_{9,4} &= \{1, -1, 0, 1, -1, 0, 1, -1, 0, \dots\} \\ \chi_{9,5} &= \{1, -\omega, 0, \omega^2, \omega^2, 0, -\omega, 1, 0, \dots\} \\ \chi_{9,6} &= \{1, -\omega^2, 0, -\omega, \omega, 0, \omega^2, -1, 0, \dots\} \\ \chi_{10,1} &= \{1, 0, 1, 0, 0, 0, 1, 0, 1, 0, \dots\} \\ \chi_{10,2} &= \{1, 0, i, 0, 0, 0, -i, 0, -1, 0, \dots\} \\ \chi_{10,3} &= \{1, 0, -1, 0, 0, 0, i, 0, -1, 0, \dots\} \\ \chi_{10,4} &= \{1, 0, -i, 0, 0, 0, i, 0, -1, 0, \dots\} \end{split}$$

C⁴ sequences

					\mathbb{C}^4/Γ_N					
N	1	2	3	4	5	6	7	8	9	10
$g_{x_{1}^{4}}$	1	7	13	35	31	91	57	155	130	217
$g_{x_1^2 x_2}$	1	3	5	11	7	15	9	31	18	21
$g_{x_2^2}$	1	3	5	11	7	15	9	31	18	21
$g_{x_1x_3}$	1	1	1	2	1	1	3	2	4	1
g_{x_4}	1	1	1	3	3	1	1	5	2	3
$g^{D=4}$	1	2	3	7	5	10	7	20	14	18
N	11	12	13	14	15	16	17	18	19	20
$g_{x_{1}^{4}}$	133	455	183	399	403	651	307	910	381	1085
$g_{x_1^2 x_2}$	13	55	15	27	35	75	19	54	21	77
$g_{x_2^2}$	13	55	15	27	35	75	19	54	21	77
$g_{x_1x_3}$	1	2	3	3	1	3	1	4	3	2
g_{x_4}	1	3	3	1	3	7	3	2	1	9
$g^{D=4}$	11	41	15	28	31	58	21	60	25	77

C⁵ sequences

					\mathbb{C}^5/Γ_N					
N	1	2	3	4	5	6	7	8	9	10
$g_{x_{1}^{5}}$	1	15	40	155	156	600	400	1395	1210	2340
$g_{x_1^3 x_2}$	1	7	14	43	32	98	58	219	144	224
$g_{x_1x_2^2}$	1	3	8	19	12	24	16	75	42	36
$g_{x_1^2 x_3}$	1	3	4	8	6	12	10	18	22	18
$g_{x_2x_3}$	1	1	2	4	2	2	4	6	6	2
$g_{x_1x_4}$	1	1	2	3	4	2	2	7	4	4
g_{x_5}	1	0	0	0	1	0	0	0	0	0
$g^{D=5}$	1	2	4	10	8	19	13	45	33	47
N	11	12	13	14	15	16	17	18	19	20
$g_{x_{1}^{5}}$	1464	6200	2380	6000	6240	11811	5220	18150	7240	24180
$g_{x_1^3 x_2}$	134	602	184	406	448	995	308	1008	382	1376
$g_{x_1x_2^2}$	24	152	28	48	96	251	36	126	40	228
$g_{x_1^2 x_3}$	12	32	16	30	24	39	18	66	22	48
$g_{x_2x_3}$	2	8	4	4	4	11	2	6	4	8
$g_{x_1x_4}$	2	6	4	2	8	19	4	4	2	12
$g_{x_{5}}$	4	0	0	0	0	1	0	0	0	0
$g^{D=5}$	30	129	43	96	108	226	78	264	102	357
N	21	22	23	24	25	26	27	28	29	30
$g_{x_{1}^{5}}$	16000	21960	12720	55800	20306	35700	33880	62000	25260	93600
$g_{x_1^3 x_2}$	812	938	554	3066	838	1288	1354	2494	872	3136
$g_{x_1x_2^2}$	128	72	48	600	98	84	184	304	60	288
$g_{x_1^2 x_3}$	40	36	24	72	32	48	85	80	30	72

Tuesday, October 12, 2010

$$\begin{split} P_{\mathbf{g}_{\mathbf{x}_{1}^{4}}}(p) &= 1 + p + p^{2} \\ P_{\mathbf{g}_{\mathbf{x}_{1}^{2}\mathbf{x}_{2}}}(p) &= P_{\mathbf{g}_{\mathbf{x}_{2}^{2}}}(p) = \begin{cases} 3 & \text{if } p = 2 \\ p + 2 & \text{if } p \neq 2 \end{cases} \\ P_{\mathbf{g}_{\mathbf{x}_{1}\mathbf{x}_{3}}}(p) &= \begin{cases} 3 & \text{if } p = 1 \mod 3 \\ 1 & \text{if } p = 0, 2 \mod 3 \end{cases} \\ P_{\mathbf{g}_{\mathbf{x}_{4}}}(p) &= \begin{cases} 3 & \text{if } p = 1 \mod 3 \\ 1 & \text{if } p = 2, 3 \mod 4 \end{cases} \end{split}$$

$$\begin{split} P_{\mathbf{g}_{x_1^3}}(p) &= 1 + p \\ P_{\mathbf{g}_{x_1^3}}(p) &= \begin{cases} 1 & \text{if } p = 2 \\ 2 & \text{if } p \neq 2 \end{cases} \\ P_{\mathbf{g}_{x_3}}(p) &= \begin{cases} 2 & \text{if } p = 1 \mod 3 \\ 0 & \text{if } p = 2 \mod 3 \\ 1 & \text{if } p = 0 \mod 3 \end{cases} \end{split}$$

Tuesday, October 12, 2010

$$\begin{split} P_{\mathbf{g}_{\mathbf{x}_1^5}}(p) &= 1 + p + p^2 + p^3 \\ P_{\mathbf{g}_{\mathbf{x}_1^3 \mathbf{x}_2}}(p) &= \begin{cases} 7 & \text{if } p = 2 \\ p^2 + p + 2 & \text{if } p \neq 2 \end{cases} \\ P_{\mathbf{g}_{\mathbf{x}_1 \mathbf{x}_2^2}}(p) &= \begin{cases} 3 & \text{if } p = 2 \\ 2p + 2 & \text{if } p \neq 2 \end{cases} \\ P_{\mathbf{g}_{\mathbf{x}_1^2 \mathbf{x}_3}}(p) &= \begin{cases} p + 3 & \text{if } p = 1 \mod 3 \\ p + 1 & \text{if } p = 2 \mod 3 \\ 4 & \text{if } p = 3 \end{cases} \\ P_{\mathbf{g}_{\mathbf{x}_2 \mathbf{x}_3}}(p) &= \begin{cases} 2 & \text{if } p = 2 \mod 3 \\ 4 & \text{if } p = 1 \mod 3 \\ 2 & \text{if } p = 3 \\ 1 & \text{if } p = 2 \end{cases} \\ P_{\mathbf{g}_{\mathbf{x}_1 \mathbf{x}_4}}(p) &= \begin{cases} 4 & \text{if } p = 1 \mod 4 \\ 2 & \text{if } p = 3 \mod 4 \\ 1 & \text{if } p = 2 \end{cases} \\ P_{\mathbf{g}_{\mathbf{x}_5}}(p) &= \begin{cases} 1 & \text{if } p = 1, 5 \\ 4 & \text{if } p = 1 \mod 5 \\ 0 & \text{if } p = 2, 3, 4 \mod 5 \end{cases} \end{split}$$

Series Convolutions

\mathbb{C}^2/Γ_N							
x_{1}^{2}	u						
x_2	u						
	\mathbb{C}^3/Γ_N						
x_{1}^{3}	u * N						
x_1x_2	$u * u * \{1, -1, 0, 2\}$						
x_3	$u * \chi_{3,2}$						
\mathbb{C}^4/Γ_N							
x_{1}^{4}	$u * N * N^2$						
$x_1^2 x_2$	$u * u * N * \{1, -1, 0, 4\}$						
-	$u * u * N * \{1, -1, 0, 4\}$						
x_1x_3	$u * u * \chi_{3,2} * \{1, 0, -1, 0, 0, 0, 0, 0, 3\}$						
x_4	$u * u * \chi_{4,2} * \{1, -1, 0, 2\}$						
	\mathbb{C}^5/Γ_N						
x_{1}^{5}	$u * N * N^2 * N^3$						
-	$u * u * N * N^2 * \{1, -1, 0, 8\}$						
	$u \ast u \ast N \ast N \ast (t - 3t^2 + 14t^4 - 12t^8 + 16t^{16})$						
$x_{1}^{2}x_{3}$	$u \ast u \ast N \ast \chi_{3,2} \ast \{1, 0, -1, 0, 0, 0, 0, 0, 9\}$						
$x_{2}x_{3}$	$\mathbf{u} * \mathbf{u} * \mathbf{u} * \chi_{3,2} * \{1, -1, 0, 2\} * \{1, 0, -1, 0, 0, 0, 0, 0, 3\}$						
x_1x_4	$\mathbf{u} * \mathbf{u} * \mathbf{u} * \chi_{4,2} * (t - 2t^2 + 3t^4 + 6t^{16} - 8t^{32})$						
x_5	$u * \chi_{5,2} * \chi_{5,3} * \chi_{5,4}$						

Table 6: Summary of series convolutions for orbifolds of \mathbb{C}^2 , \mathbb{C}^3 , \mathbb{C}^4 and \mathbb{C}^5 .

Generating Functions

Generating Functions for \mathbb{C}^4 . As presented in [28], the generating function for the symmetry series of \mathbb{C}^4 are

$$f_{x_{1}^{4}}(t) = \sum_{n,m=1}^{\infty} nm^{2}t^{mn} ,$$

$$f_{x_{1}^{2}x_{2}}(t) = \sum_{n,m=1}^{\infty} m\left(t^{mn} - t^{2mn} + 4t^{4mn}\right) ,$$

$$f_{x_{2}^{2}}(t) = \sum_{n,m=1}^{\infty} m\left(t^{mn} - t^{2mn} + 4t^{4mn}\right) ,$$

$$f_{x_{1}x_{3}}(t) = \frac{1}{2} \left[\sum_{n,m=-\infty}^{\infty} t^{n^{2} + 4m^{2}} - 1\right] ,$$

$$f_{x_{4}}(t) = \frac{1}{2} \left[\sum_{n,m=-\infty}^{\infty} t^{n^{2} + mn + 7m^{2}} - 1\right] ,$$
(5.4)

$$\begin{split} g^{D=4}(t) \; = \; \frac{1}{24} \left(g_{x_1^4}(t) + 6 g_{x_1^3 x_2}(t) + 3 g_{x_2^2}(t) + 8 g_{x_1 x_3}(t) + 6 g_{x_4}(t) \right. \,, \end{split}$$
 with $g_{x^{\alpha}} = \sum_{k=1}^{\infty} f_{x^{\alpha}}(t^k).$

• Counting Abelian Orbifolds of C^{D}

- Counting Abelian Orbifolds of C^D
- Reveal a rich structure

- Counting Abelian Orbifolds of C^D
- Reveal a rich structure
- Methods from Crystalography

- Counting Abelian Orbifolds of C^D
- Reveal a rich structure
- Methods from Crystalography
- Number Theory

- Counting Abelian Orbifolds of C^D
- Reveal a rich structure
- Methods from Crystalography
- Number Theory
- Good for orbifolds of any toric diagram, in any dimension

 Can study statistical aspects of such backgrounds with the explicit generating functions

- Can study statistical aspects of such backgrounds with the explicit generating functions
- Growth like $n^{D-2}/|G|$ for large n

Thank you!