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Double trace deformations can

Implement spontaneous symmetry breaking

Provide a new way to construct holographic
superconductors

Provide a knob to tune the critical
temperature of holographic superconductors

Lead to new quantum critical points with
nontrivial critical exponents



Consider the following action:

S = [ dav=g (R~ (Vo) - 2v(s)

h
where |

V(p) = -3+ §m2qb2 + ...

Need m? > mg2 =-9/4 for a stable ground state.

Start with asymptotically (globally) AdS solutions

2
ds? = r2(—dt? + dQ) + diz
T



Asymptotically, the scalar field is

a | p

¢ = A pAy

where Ay =3/24+/9/4 + m?

Usually normalizability requires a = 0, but if
m2;<m2<m?; +1

both modes are normalizable and one has a choice
of boundary conditions.



If O is the operator dual to ¢,

a =0 =>0 has dimension A, and <O0>=3
(standard quantization)

B =0 =>0 has dimension A and <O> = a
(alternative quantization)

More generally, one can set B = W’(a) for any W(a)



Double trace deformations

In alternative quantization, A < 3/2, and one can
modify the action by

S%S—/dgaj/@OTO

K has dimension 3 - 2A > 0 so this is a relevant
coupling.

On gravity side it corresponds to boundary
conditions (Witten; Berkooz, Sever and Shomer)
B = Kka



Theory with k < 0 can still have a stable
ground state. (Faulkner, Roberts, G.H., 2010)

In the new ground state, <O> is nonzero.
This is a classic example of spontaneous
symmetry breaking.

For real O, you break a Z, symmetry, but the
argument can be extended to complex O. Then
you break a U(1) symmetry.



We first review an earlier result and then extend it.
(Assumem?=-2,s0A =1, A, =2.)

Theorem (Amsel, Hertog, Hollands, Marolf, 2007):

If V() admits a suitable superpotential, and W(a) is
bounded from below, then the total energy is
bounded from below.

Outline of proof: Let P(¢) satisfy

V(g) =2 <%>2 —3P?

Near ¢ =0, a solution is P(¢) = 1 + ¢?/4 + O(*)



Following Witten and Townsend, let
. 1
V,vV=V, ¥+ §P(¢)FM\IJ

Given a spacelike surface 2 with boundary C, let W
be a solution to Witten's equation: 'V, ¥ =0

such that —T"#¥ approaches 0/0t
asymptotically.

Let B,Lw = \TJF[MF,,FP]@“I! + h.c. (Nester)
Then the spinor charge (Q = / *B
C

satisfies Q = 0.



In asymptotically flat spacetime, Q is the total energy
E. But in AdS, with general boundary conditions:

E=Q+ %[W(&) + af] + lim Bra2 — 23 (P —1)

T—00

Using the solution for P and the asymptotic form of ¢

E=Q+ W

So E >4 int W



One can prove an even stronger positive energy
theorem (Faulkner, Roberts, G.H., 2010):

The equation for the superpotential:

AP\’
Vip) =2 —) —3P°
9 =2(3)
admits a one parameter family of solutions for small
¢ (also noticed by Papadimitgiom, 2007):

P(¢) =1+ igbz + O(o¢h)

Repeating the above argumentwith this P(¢) yields



E> ]f [W(&) + g\oﬂ

So the energy remains bounded from below even
for, e.g., W = (k/2)a? with k < 0, corresponding to
double trace deformations with negative coefficient!

Of course, this assumes that solutions P () exist for
all @. This depends on V(@), but typically they do up

to a critical value s_. Thus

1
E > 47 inf |[W(a) + gsc\oz\g




Existence of superpotentials

The equation for P can be written:

P'() — \/31;2 { V;qb)

Clearly, a solution fails to exist when the argument
of the square root becomes negative. Initially,

1

P'(9) = 5[6 — s¢”




Since. V' =[4P" — 6P]P’
one expects V' =0 if P’ =0, but this is usually not the
case. Instead, P’ oc £(¢p1 — ¢)1/2

The two branches of solutions meet at ¢ = ¢, and P
does not exist for ¢ > ¢,.

If V' =0when P’ =0, then P’ (1 — @)
and the solution exists for ¢ > ¢,.
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For a purely quadratic potential with m?=-2,
S, = .52



1.0

V=5/2-6 Cosh(¢/V2 )+Cosh(\/— (p)/z
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For the consistent truncation of supergravity
used by Gauntlett, Sonner and Wiseman (2009)
= .56



Candidate ground states

Expect the ground state to be static and spherically

symmetric. Look for solutions of the form
15 = —f(r)d? + T 1240, 6= or)
g(r) | |

The equations of motion give three ODE’s for f(r),
g(r), and @ (r). Solutions are solitons.



The general asymptotic solution is
o(r) = oz/r +6/r% +

g(r) = r*+ (1+a2/2) My /r +
fr) = 7“2-r1—(Mo+4045/3)/7°

There are three undetermined parameters: a, 3, M,



Regularity at the origin requires

¢
g

f

But f, is fixed by requiring f = r2 +
So the only free parameter is @,.

G + V/(¢O)T‘2 + ...
- V(¢0)T2

3
Jo— Jo (gbo) ‘4.

... asymptotically.

This one parameter family of solitons define a

curve By(a).



For small a, one can determine the curve B,(a) by

solving the linearized equation for ¢ in global AdS.

The solution is ¢ = tan"(r), so for small a:
2

Bola) = ——«
Tr
For large a, one can show
Bola) =-s.a?

These solutions are related to planar solutions in
which there is a scaling symmetry r -> Ar. Thus

/A | B/ \?

r r2

O =
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The values of (a,B) realized by solitons.
Blue line is for V = -3 — ¢?
Dashed line is for the potential in Gauntlett et al.:

V =5/2 — 6cosh(¢/V2) + cosh(v2¢)/2



Another potential coming from a consistent
truncation of supergravity is (Duff and Liu, 1999)

V = —cosh(a¢) — 2 cosh(abg)

with a = [2/(1 + 2b?)]¥/2. Below are soliton curves for
b=1,.5,.25,.1, 0 (dashed). Note: s_.=0for b =0.
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Total energy

Given a boundary condition, f = W’(a), the total
energy of these solitons is

E =4n(M, + aff + W)
Let Wo(()é) = —/ ﬂo(&)d&
0

and set V = 4n(W + W,). This is an effective
potential since V, =0 =>B = ,.

There are solitons at each extrema of V.



The energy of the soliton is just the value of
V at its extrema:

Suppose we choose B(a) = B,(a). Then all solitons
are allowed. But static solutions are extrema of the
energy, so all solitons have the same energy. This
includesa=p =0, so

My+aB-W,=0

Therefore, for general boundary condition B = W’ (a)

E=4n(M,+ af + W) = 4t(W + W,) = V
(Hertog and G.H., 2004)



Application to double trace
deformations

Consider planar solutions
V=2n[ka? + (2s./3) |a|3]
1%

At the minimum
o =<0>=-K/s.




For real @, you break a Z, symmetry. But you can do
the same thing for a complex ¢. This now breaks a
U(1) symmetry and provides a new way to construct
holographic superconductors with zero net charge
density.

Previous constructions were based on instabilities
associated with the near horizon geometry of an
extremal charged black hole in AdS.



Gravity Dual of a Superconductor
(Hartnoll, Herzog, and G.H., 2008)

Gravity Superconductor
Black hole Temperature
Charged scalar field Condensate

Need to find a black hole that has scalar hair at
low temperatures, but no hair at high
temperatures.



Gubser (2008) argued that a charged scalar field
around a charged black hole would have the desired
property. Consider

6 1 A 2
L=R+ 72 EF EF., — |0V —igA¥|* — m?|V|

For an electrically charged black hole, the
effective mass of W is

2 a2 2 tt A2
Mo =m" +q°g Aj

But the last term is negative. This causes
scalar hair at low temperature.



There is another source of instability: nearly
extremal charged AdS black holes are unstable to
forming neutral scalar hair.

An extremal AdS black hole has a near horizon
geometry AdS, x R2. The Breitenlohner-Freedman
(BF) bound for AdS,,, is m?;; = - d?/4. Our scalar
can be above the BF bound for AdS,, but below the
bound for AdS,.



General argument for instability
(Denef and Hartnoll, 2009)

Consider a scalar field with mass m and charge g in
the near horizon geometry of an extremal Reissner-
Nordstrom AdS black hole. Get a wave equation in
AdS, with effective mass
2 m? — 2q°
Meff = 7 ¢

The extremal RN AdS black hole is unstable when this
is below -1/4, the BF bound for AdS,. The condition

for instability is m? — 2¢° < —3/2




Hairy black holes

Look for static, homogeneous solutions:
dr?
g(r)

A= gb(?‘)dt, V= ¢(T)

Get four coupled nonlinear ODE’s. At the horizon,
r =r,, g and @ vanish, x is constant.
Asymptotically, metric approaches AdS, and

ds® = —g(r)e_X(r)dt2 -

-r? (dz® + dy?)

MMZN—g



Condensate (hair) as a function of T
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Curves correspondtoqg=1, 3,6, 12
(from Hartnoll, Herzog, G.H., 2008)



The condition m? - 2g?% < -3/2 is sufficient to cause an
instability, but it is not necessary.

Example: If g=0and -3/2 < m? <m?;. + 1, theory
with B = 0 boundary condition is still unstable at low
temperature.

Explanation: Even with m2 > BF bound for AdS,, there
are still unstable modes. These are ruled out by the
AdS, boundary conditions if o =0, but not if 3 = 0.

In fact, T, diverges as A— 7.



(A—1/2)2T. 030"
wq

0.20 | | | | |
0.001 0.002 0.005 0.010 0.020 0.050 0.100

A-1/2
The curves are g =.1, .25, .5

T. diverges like uq / (A — %)Y/2



Including a double trace deformation provides a
new source of instability even for zero charge
density.

With k < 0, Schwarzschild AdS is unstable to
forming scalar hair at low temperature.



Critical temperature: One can analytically find a
static homogeneous mode of a massive scalar field
in (planar) Schwarzschild AdS in terms of
hypergeometric functions.

Impose regularity at the horizon and read off k as a
function of T. For m? = -2 in AdS,,
T.=-.62K

This was for dimension one operator. For general
dimension A:

<O> X (—/{,)A_/(S_ZA_) ’ TC X (_/{)1/(3—2A_)



For T< T, one can find the hairy black holes and the
curves of the condensate look similar to the
previous case. For the potential in Gauntlett et al:
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As before, the free energy is lower for the hairy
black holes, showing that they are stable.
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The main advantage of the new holographic

superconductors is that the DC conductivity in the
normal phase is finite.

Previously, the normal phase had nonzero charge
density. This can be boosted to yield a nonzero

current with no applied electric field, i.e., infinite DC
conductivity.

(Superconductivity was seen as a change in the
coefficient of 6(w) in the frequency dependent
conductivity.)



Even with u # 0, adding a term like kO? (with k > 0)
makes it harder for O to condense. This gives a new
way to tune the critical temperature.

0.20

0.15 +

005+

0.00

For some m,q, can cause T_ =0 creating a
quantum critical point at k = k_ (with p=1).



What are the properties of
this guantum critical point?



For k >k, T = 0 solution is extreme RN AdS with near
horizon region AdS, x R%. The scalar has an effective
mass

9 m? — 2¢*
Meff = 7 ¢
So solutions are
v . W
(r—r)o=  (r—mry)’

where

1 1
5125::\/14—7712&



By analogy with the asymptotic AdS, region, we
define K = w/v. Then one can show

RKITR X KR — K¢

The instability for k < k_can be viewed as turning on
a negative double trace deformation in the IR CFT.

For k < k_.the IR does not include AdS,, but for k
close to k_there is a large intermediate region which
is approximately AdS, x R2. The critical exponents
depend on &_in this region.

!

Dimension of operator dual to scalar in CFT,



Critical exponents

Fora< 8 <%
<O> x (—H[R)é_/(1—25_) ’ Tc x (_K/IR)l/(l_ZCS_)

This is just the IR analog of what we had before.

For 0 < 6. <7, there are relevant higher multi-trace

deformations. If the phase transition remains
second order:

<O> X (_K’IR)l/2 . Tc X (_K]R)l/(1_25—)



For 6 <0, we have mean field behavior:

<O> X (—%[R)1/2, TC X (—KJIR)
From the pole in the two point function <OO> at the
critical point, we find a gapless mode satisfying

w ~ |pl”
2

T 125
(z=2 forg#0and 6. <0, z=1forg=0and &6 <-1/2)

with dynamical critical exponent =z



T, close to k_for different values of 6.
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(k—Kc)/p
From left to right:
6.=0.45, 0.30, 0.26, 0.15, O, -0.15

Agrees with our prediction



<O> close to k. for different values of &

In(k.—k)

6.=0.45,0.37,0.26

Lines show our prediction: (O) x (—/fIR)é_/(l_%_)

Agrees to within 5%.



Asymptotically AdS, solution

As k -> K, the intermediate AdS, region becomes
arbitrarily large. There are two critical solutions:

1) Usual extremal RN AdS which keeps the UV
asymptotic AdS, region.

2) A new asymptotically AdS, x R%solution whose
IR region depends on details of V. If V has
another extremum, can approach AdS,in IR.
Get RG flow from AdS, to AdS,— the opposite
of the usual case!



Sources of BH instability at low
temperature

Charged BH:

*  mis below the BF bound for AdS,

* mis above the BF bound for AdS, but
unstable modes are allowed by alternative
boundary conditions in AdS,

Neutral BH:

 Have boundary conditions corresponding to
a double trace perturbation with k <0



Double trace deformations can

Implement spontaneous symmetry breaking

Provide a new way to construct holographic
superconductors

Provide a knob to tune the critical
temperature of holographic superconductors

Lead to new quantum critical points with
nontrivial critical exponents



