Strange metals from holography

David Vegh Simons Center for Geometry and Physics

Hong Liu, John McGreevy, DV	arXiv:0903.2477
Thomas Faulkner, Hong Liu, John McGreevy, DV	arXiv:0907.2694
Thomas Faulkner, Gary Horowitz, John McGreevy, Matthew Roberts, DV	arXiv:0911.3402
Thomas Faulkner, Nabil Iqbal, Hong Liu, John McGreevy, DV	arXiv:1003.1728 and in progress
(see also: Sung-Sik Lee, arXiv:0809.3402 ; Cubrovic, Zaanen,	Schalm, arXiv:0904.1933)

The Galileo Galilei Institute - September 29, 2010

Introduction Holographic non-Fermi liquids Charge transport

Introduction

David Vegh Strange metals from holography

Introduction

Holographic non-Fermi liquids $AdS_4 - BH$ geometry Fermi surfaces Near-horizon AdS_2 and emergent IR CFT

Introduction

Holographic non-Fermi liquids $AdS_4 - BH$ geometry Fermi surfaces Near-horizon AdS_2 and emergent IR CFT

Charge transport Conductivity Summary

Fermions at finite density

Landau Fermi liquid theory

[Landau, 1957] [Abrikosov-Khalatnikov, 1963] stable RG fixed point [Polchinski, Shankar] (modulo BCS instability) [Benfatto-Gallivotti]

(i) ∃ Fermi surface
 (ii) (weakly) interacting *quasiparticles* ⇒ thermodynamics, transport properties

> appear as *poles* in the single-particle Green's function:

$$G_R(t,\vec{x}) = i\theta(t) \cdot \langle \{\psi^{\dagger}(t,\vec{x}),\psi(0,\vec{0})\} \rangle_{\mu,T}$$
$$G_R(\omega,\vec{k}) = \frac{Z}{\omega - v_F k_{\perp} - \Sigma} + \dots, \qquad k_{\perp} \equiv |\vec{k}| - k_F \qquad \Sigma \sim i\omega_{\star}^2$$

$$\rho(\omega, \vec{k}) \equiv \operatorname{Im} G_{R}(\omega, \vec{k}) \stackrel{k_{\perp} \to 0}{\longrightarrow} Z\delta(\omega - v_{F}k_{\perp}) \quad \text{with Z finite}$$

Non-Fermi liquids do exist

- \succ sharp Fermi surface still present \checkmark
- no long-lived quasiparticles × pole residue can vanish
- anomalous thermodynamic and transport properties

Examples

- \succ 1+1d Luttinger liquid: interacting fermions \rightarrow free bosons
- Mott metal-insulator transition
- heavy fermion compounds

Organizing principle for non-Fermi liquids?

- set up finite density state
- look for a Fermi surface
- study low-energy excitations near FS
- transport properties

$AdS_4 - BH$ geometry

Relativistic CFT_3 with gravity dual and conserved U(1) global symmetry

$$S = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} \left(\mathcal{R} + \frac{6}{R^2} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \ldots \right)$$

Charged black hole solution

$$ds^{2} = \frac{r^{2}}{R^{2}} \left(-f(r)dt^{2} + d\vec{x}^{2} \right) + R^{2} \frac{dr^{2}}{f(r)r^{2}}$$

$$f(r) = 1 + rac{Q^2}{r^4} - rac{M}{r^3}$$
 $A = \mu \left(1 - rac{r_0}{r} \right) dt$

where μ = chemical potential, horizon at $r = r_0$.

Retarded spinor Green's function

Introduce ψ spinor field in the AdS - BH background

$$S_{probe} = \int d^{4}x \sqrt{-g} \left(\bar{\psi}(\not{D} - m)\psi + interactions \right)$$

with $D_{\mu} = \partial_{\mu} + \frac{1}{4}\omega_{ab\mu}\Gamma^{ab} - iqA_{\mu}$.

Universality: for two-point functions, the interaction terms do not matter. Results only depend on (q, Δ) $\Delta = \frac{3}{2} \pm mR$

Prescription [Henningson-Sfetsos] [Mück-Viswanathan] [Son-Starinets] [Iqbal-Liu]

- Solve the Dirac equation for the bulk spinor in AdS BH
- Impose infalling boundary conditions at the horizon
- Expand the solution at the boundary

$$\psi = (-gg^{rr})^{-1/4}e^{-i\omega t + ikx}\Psi \qquad \Phi_{\alpha} = \frac{1}{2}(1 - (-1)^{\alpha}\Gamma^{r}\Gamma^{t}\Gamma^{x})\Psi$$
$$\Phi_{\alpha} \stackrel{r \to \infty}{\approx} a_{\alpha}r^{m} \begin{pmatrix} 0\\ 1 \end{pmatrix} + b_{\alpha}r^{-m} \begin{pmatrix} 1\\ 0 \end{pmatrix} \qquad G_{\alpha}(\omega, k) = \frac{b_{\alpha}}{a_{\alpha}} \qquad \alpha = 1,2$$

Fermi surfaces

At $q=1,\Delta=3/2$ the numerical computation gives [Liu-McGreevy-DV]

- ▷ Quasiparticle-like peaks for $k < k_F$ $\omega \sim k_\perp^z$ with $z \approx 2.09$
- Bumps for $k > k_F$
- Scaling behavior: $G_R(\lambda k_{\perp}, \lambda^z \omega) = \lambda^{-\alpha} G_R(k_{\perp}, \omega)$ with $\alpha = 1$
- non-Fermi liquid!

Fermi surfaces

dispersion from 'photoemission' results

q = 1.0 $k_F = 0.53$ q = 1.56 $k_F = 0.95$ q = 2.0 $k_F = 1.32$

Black hole geometry

$$ds^{2} = \frac{r^{2}}{R^{2}} \left[-f(r)dt^{2} + d\vec{x}^{2} \right] + R^{2} \frac{dr^{2}}{f(r)r^{2}} \qquad f(r) = 1 + \frac{3}{r^{4}} - \frac{4}{r^{3}}$$

- Emergent "IR CFT" $AdS_2 \Leftrightarrow$ "(0+1)-d CFT" AdS₄ $r \gg 1$ At low frequencies, the parent theory
- is controlled by IR CFT.
- Each UV operator O is associated to a family of operators O_k in IR.

Conformal dimensions in IR

$$\delta_{\vec{k}} = \frac{1}{2} + \nu_{\vec{k}} \qquad \nu_{\vec{k}} = \frac{1}{\sqrt{6}} \sqrt{\left(\Delta - \frac{3}{2}\right)^2 + k^2 - \frac{q^2}{2}} \qquad \mathcal{G}_k(\omega) = c(k) \omega^{2\nu}$$

 $r \sim \mathcal{O}(1)$

r = 1

 $AdS_2 imes \mathbb{R}^2$ $r-1 \ll 1$

horizon

Small ω expansion

- > To understand scaling around FS, study low- ω behavior of correlators.
- Not straightforward:

 $\omega\text{-dependent}$ terms in DE are singular near the horizon.

Strategy [Faulkner-Liu-McGreevy-DV]

- ▷ Separate spacetime into UV region and the $AdS_2 \times \mathbb{R}^2$ IR region.
- > Perform small ω expansions separately.
- Match them at the overlapping region.

Result

$$G_{R}(\omega,k) = \frac{b_{+}^{(0)} + \omega b_{+}^{(1)} + O(\omega^{2}) + \mathcal{G}_{k}(\omega) \left[b_{-}^{(0)} + \omega b_{-}^{(1)} + O(\omega^{2}) \right]}{a_{+}^{(0)} + \omega a_{+}^{(1)} + O(\omega^{2}) + \mathcal{G}_{k}(\omega) \left[a_{-}^{(0)} + \omega a_{-}^{(1)} + O(\omega^{2}) \right]}$$

 $\mathcal{G}_k(\omega) \in \mathbb{C}$ retarded correlator for $\mathcal{O}_{\vec{k}}$ in IR CFT $a^{(0)}_{\pm}, a^{(1)}_{\pm}, b^{(0)}_{\pm}, b^{(1)}_{\pm} \in \mathbb{R}$ are *k*-dependent functions (from UV region)

Fermi surfaces

$$G_{R}(\omega,k) = \frac{b_{+}^{(0)} + \omega b_{+}^{(1)} + O(\omega^{2}) + \mathcal{G}_{k}(\omega) \left[b_{-}^{(0)} + \omega b_{-}^{(1)} + O(\omega^{2}) \right]}{a_{+}^{(0)} + \omega a_{+}^{(1)} + O(\omega^{2}) + \mathcal{G}_{k}(\omega) \left[a_{-}^{(0)} + \omega a_{-}^{(1)} + O(\omega^{2}) \right]}$$

Suppose that for some k_F : $a^{(0)}_+(k_F) = 0$ Then, at small ω, k_{\perp} we have

$$G_R(k,\omega) = rac{h_1}{k_\perp - rac{1}{v_F}\omega - h_2 \mathcal{G}_{k_F}(\omega)} + \dots$$

$$\mathcal{G}_k(\omega)=c(k)\omega^{2
u_k} \qquad
u_{ec k}=rac{1}{\sqrt{6}}\sqrt{m^2+k^2-rac{q^2}{2}} \qquad h_1,h_2,v_{ extsf{F}}\in\mathbb{R}$$

This is the quasiparticle peak we saw earlier.

Fermi surfaces: singular and non-singular

Suppose $\nu_k < \frac{1}{2}$ $G_R(k,\omega) = \frac{h_1}{k_\perp - h_2 \mathcal{G}_{k_r}(\omega)} + \dots$ $\omega_{\star}(k) \sim k_{\perp}^{z}$ $z = \frac{1}{2\nu_{k_{F}}} > 1$ $\frac{\Gamma(k)}{\omega_{\star}(k)} = \text{const}$ $Z \sim k_{\perp}^{\frac{1-2\nu_{k_{F}}}{2\nu_{k_{F}}}} \rightarrow 0, k_{\perp} \rightarrow 0$ -0.001 Suppose $\nu_k > \frac{1}{2}$ -0.002 $G_R(k,\omega) = rac{h_1}{k_\perp - rac{1}{v_F}\omega - h_2 c(k_F)\omega^{2\nu_{k_F}}} + \dots$ -0.003 $\omega_{\star}(k) \sim v_F k_{\perp}$ $\frac{\Gamma(k)}{\omega_{\star}(k)} = k_{\perp}^{2\nu_{k_F}-1} \rightarrow 0$ $Z = h_1 V_F$

Fermi surfaces: Marginal Fermi liquid

$$G_R(k,\omega) = \frac{h_1}{k_{\perp} - \frac{1}{\nu_F}\omega - h_2 c(k_F) \omega^{2\nu_{k_F}}} + \dots$$

Suppose $\nu_k = \frac{1}{2}$

 v_F goes to zero, $c(k_F)$ has a pole $G_R(k,\omega) = \frac{h_1}{k_\perp + c_1\omega + \tilde{c}_2\omega \log \omega + ic_2\omega}$ where $c \in \mathbb{R}$.

This is the Marginal Fermi liquid Green's function [Varma, 1989]

Introduction Holographic non-Fermi liquids Charge transport

Charge transport

- ▷ Normal phase of optimally doped high- T_c : $ho = (\sigma_{DC})^{-1} \sim T$
- $\begin{array}{ll} & \mbox{impurities:} & \rho \sim {\rm const.} \\ & \mbox{e-e scattering:} & \rho \sim T^2 \\ & \mbox{e-phonon scattering:} & \rho \sim T^5 \end{array}$
- Compute conductivity contribution of the holographic Fermi surfaces [Faulkner-lqbal-Liu-McGreevy-DV]

Conductivity Summary

Charge transport

- ► tree-level conductivity dominates $\sigma_{DC} = \lim_{\omega \to 0} \frac{1}{\omega} Im \langle j_x j_x \rangle = N^2 \sigma^{tree} + N^0 \sigma^{FS} + \dots$
- gauge field a_x mixes with graviton
- trick: bulk spectral density factorizes

$$\operatorname{Im} D_{\alpha\beta}(\Omega, \vec{k}; r_1, r_2) = \frac{\psi_{\alpha}^{norm.}(\Omega, \vec{k}, r_1) \overline{\psi_{\beta}^{norm.}}(\Omega, \vec{k}, r_2)}{W} \rho(\Omega, \vec{k})$$

we obtain

$$\sigma(\omega) = \frac{C}{i\omega} \int d\vec{k} \int \frac{d\omega_1}{2\pi} \frac{d\omega_2}{2\pi} \frac{f(\omega_1) - f(\omega_2)}{\omega_1 - \omega - \omega_2 - i\varepsilon} \times \qquad \sigma = \int_{\Lambda(\omega,k)} \int_{\rho(-\omega,k)} \int_{\rho$$

where $\rho(\omega, \vec{k})$ is the single-particle spectral function, $f(\omega) = \frac{1}{e^{\frac{\omega}{T}}+1}$ $\Lambda(\omega_1, \omega_2, \Omega, \vec{k}) = \int dr \sqrt{g_{rr}} \overline{\Psi}(r; \omega_1, k) Q(r; \Omega, k) \Psi(r; \omega_2, k)$

Charge transport

- similar to Fermi liquid calculation
- ► Marginal Fermi liquid: $\nu = \frac{1}{2} \implies \sigma_{DC} \sim \frac{1}{T}$
- optical conductivity

$$u < rac{1}{2} \qquad \sigma(\omega) \sim T^{-2
u} F_1(\omega/T)$$
for $\omega \gg T$: $\sigma(\omega) \sim (i\omega)^{-2
u}$

$$u > \frac{1}{2}$$
 for $\omega \sim T^{2\nu}$: $\sigma(\omega) \sim \frac{\sigma_0}{1+i\omega\tau}$ (Drude)
for $\omega \gg T$: $\sigma(\omega) \sim \frac{i_a}{\omega} + b(i\omega)^{2\nu-2}$

Summary

- charged black hole in AdS
- probe fermion spectral function shows Fermi surfaces
- (non-)Fermi liquids, marginal Fermi liquids
- \succ conductivity: $\rho \sim$ T for MFL
- ► away from large N?
- backreaction of bulk fermions? Lifshitz spacetime
- quantum phase transitions