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Motivation
Field equations in curved stringy backgrounds
In string theory want to go beyond (super)gravity:

I ∃ exact theories realizing this, particularly, coset (G/H) CFTs .
I When groups are non-abelian there are no isometries (generic).
I Solving the field equations is an impossible task with

traditional methods, i.e. separation of variables.
I In physical applications this is precisely what is needed, i.e.

propagating fluctuations, etc.

Understanding Non-abelian T-duality
Unlike abelian T-duality:

I Not well understood.
I Not likely to be an exact symmetry.
I Yet, what is it good for? Maybe for some effective description?
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Gauged WZW models and Non-abelian T-duality

Gauged WZW models: Action
Let a group G and a subgroup H ∈ G .
Introduce g ∈ G and gauge fields A± ∈ L(H).

I The gauged WZW action is

S(g ,A±) = k

WZW︷ ︸︸ ︷
I0(g) +

k
π

∫
dσ+dσ− Tr

[
A−∂+gg−1 − A+g−1∂−g

+ A−gA+g−1 − A−A+

]
.

Not minimally coupled gauged fields.
I Gauge invariance: For Λ(σ+, σ−) ∈ H

g → Λ−1gΛ , A± → Λ−1(A± − ∂±)Λ .



Gauged WZW models: The geometry

I The gauge fields are non-dynamical and can be integrated out

Aa
+ = −(M−1)ab(∂+gg−1)b , Aa

− = (g−1∂−g)b(M−1)ba ,

where (a, b ∈ H)

Mab = Tr(tagtbg−1)− ηab .

I Gauge fix dim(H) parameters in g or, better, choose those
that are H-singlets. That leaves dim(G/H) xµ’s.

I One obtains the σ-model of the form (only NS fields)

S =
k
π

∫
(Gµν + Bµν)∂+X µ∂−X ν

and a dilaton
Φ = −1

2
ln det(M) .

I Background solves beta-functions for conformal invariance.
I Isometries GL × GR of the WZW are generically broken.



Non-abelian WZW T-duals and their geometry

I The starting action is

SNonAb(g , v ,A±) = S(g ,A±)− i
k
π

∫
Tr(vF+−)︸ ︷︷ ︸

Lagrange mult.

.

I Gauge invariance: As before and in addition v → Λ−1vΛ.
I Gauge fix dim(H) parameters in g and v , leaving dim(G )

variables XM . Integrate out the A±’s and get the σ-model.
I Properties:

I Isometries GL × GR of the WZW generically broken.
I Even if G is compact, (some) variables of its non-abelian dual

appear non-compact.
I Transformation is not invertible at the action level.
I Drastically different than abelian T-duality.

I Is it useful? What does it describe?



Relating non-abelian T-duality to gauged WZW models

I Start with the gauged WZW action for Gk×H`
Hk+`

for two group
elements g ∈ G , h ∈ H and gauged field in L(H).

I Expand infinitesimally around the identity

h = I + i
k
`

v +O
(

1
`2

)
and take the limit ` → ∞.

I We get the non-abelian T-duality action, i.e. classically [KS 94]

Gk ×H`

Hk+`

∣∣∣∣
`→∞

= dual of Gk with respect to H .

I Remarks:
I In the limit some variables become non-compact.
I A well defined limit can be taken on the geometric background.
I Can this be the effective background describing a consistent

sector of the parent theory?



Solving field equations in coset CFT backgrounds
For the background corresponding to

Gk ×H`/Hk+` ,

we would like to solve the scalar equation

− 1
e−2Φ

√
G

∂µe−2Φ
√

GGµν∂νΨ = EΨ .

I We will obtain its general solution from that of the scalar
equation for the WZW model for G ×H.

I Start with Reps of G ×H. The eigenstates are

Rαβ(g) rµν(h) ,

which are, relatively, easy to construct.
I The eigenvalues (semiclassically, for k , ` � 1) are

E (R, r) =
C2(R)

k
+

C2(r)
`

,

where the C2’s are the Casimirs.



I Under the vector H-transf they transform as

(R × r)× (R̄ × r̄) = (r1 ⊕ r2 ⊕ · · · )⊗ (r̄1 ⊕ r̄2 ⊕ · · · ) .

I We decompose R × r and its conjugate into Reps ri of H.
I We get a singlet from all products of the form ri × r̄i .
I These singlets, representing the coset eigenstates, are

ψR,r ;ri (g , h) = ∑
a;α,β,µ,ν

Ca
αµ(R, r ; ri )Ca

βν(R, r ; ri )︸ ︷︷ ︸
Clebsch−Gordan

G×H︷ ︸︸ ︷
Rαβ(g)rµν(h)︸ ︷︷ ︸

gauged fixed

.

I Conclusion: The states in the G ×H/H coset theory are the
H-singlet combinations of the states in the WZW model
G ×H as this is dictated by group theory.



Remarks:

I The eigenvalues get shifted as

E (R, r ; ri ) =
C2(R)

k
+

C2(r)
`

− C2(ri )
k + `

.

This is in accordance to the algebraic coset construction
[Goddard-Kent-Olive, 85].

I The coset background fields receives 1/k corrections.
They become simple in the semiclassical limit for k � 1.

I Remarkably, the eigenstates do not depend on α′ ∼ 1/k , only
the eigenvalues do (indicated expressions are for k � 1).



Example: SU(2)× SU(2)/SU(2)
Parametrization
We parametrize g1 × g2 ∈ SU(2)× SU(2) as

g1 =
(

α0 + iα3 α2 + iα1
−α2 + iα1 α0 − iα3

)
, g2 =

(
β0 + iβ3 β2 + iβ1
−β2 + iβ1 β0 − iβ3

)
,

where from unitarity

α2
0 +~α2 = 1 , β2

0 + ~β2 = 1 .

I Under the diagonal SU(2) they transform as vectors

δαi = εijkαj εk , δβi = εijk βj εk ,

I The SU(2)-singlets are α0, β0 and γ =~α · ~β, obeying

0 6 α0, β0 6 1 , |γ| 6
√

1− α2
0

√
1− β2

0 .

and represent the three compact geometrical coordinates.



The background fields
Following the general procedure outlined above...

I The metrics is

ds2 =
k1 + k2

(1− α2
0)(1− β2

0)− γ2

(
∆ααdα2

0 + ∆ββdβ2
0 + ∆γγdγ2

+2∆αβdα0dβ0 + 2∆αγdα0dγ + 2∆βγdβ0dγ
)

.

The ∆’s are functions of α0, β0, γ and of r = k1/k2.
I The field Bµν = 0 and the dilaton

Φ = −1
2

ln
(
(1− α2

0)(1− β2
0)− γ2

)
.

I Background is a bit complicated, with no isometries.



Solution of the eigenvalue problem
A general SU(2) spin j Rep has matrix elements

R j
m1,m2(a, b, c , d) = ∑

k
Aj

m1,m2,k
aj−m1−kd j+m2−kbkck+m1−m2 ,

The general state is

Ψj
j1,j2 = ∑

m

j2

∑
m2,n2=−j2

C j ,m
j1,m−m2,j2,m2

C j ,m
j1,m−n2,j2,n2︸ ︷︷ ︸

Clebsch−Gordan

SU(2)×SU(2) d−functions︷ ︸︸ ︷
R j1

m−m2,m−n2
(g1)R j2

m2,n2 (g2)︸ ︷︷ ︸
gauged fixed

.

Examples:
I For j2 = 0 and thus j1 = j :

Ψj
j ,0 =

Character︷ ︸︸ ︷
j

∑
m=−j

R j
m,m(g1) =

Chebyshev Pol.︷ ︸︸ ︷
U2j (α0)
2nd kind

.



I For (j1, j2) = (1, 1/2):

Ψ1/2
1,1/2 = (4α2

0 − 1)β0 + 4α0γ , Ψ3/2
1,1/2 = (4α2

0 − 1)b0 − 2α0γ .

For (j1, j2) = (1, 1):

Ψ0
1,1 = 4(α0β0 + γ)2 − 1 ,

Ψ1
1,1 = 6α2

0β2
0 + 4α0β0γ− 2γ2 − 2(α2

0 + β2
0) + 1 ,

Ψ2
1,1 = 26α2

0β2
0 − 20α0β0γ + 2γ2 − 6(α2

0 + β2
0) + 1 .

I Due to luck of isometries, there is no factorization.
I With increasing j1,2 expressions become complicated.

Impossible to obtain with other methods.
I What about the high spin limit, i.e. when j1, j � 1?



Large spins and the effective non-abelian T-dual
High spin limit in the Gk ×H`/Hk+` theory?

I Let Reps in L(H) with highest weight (spin) j � 1. The Reps
in the tensor product with those in L(G ) have also large spin.

I We may expand as

C2(r) = a(r)j2 + b(r)j +O(1) .

I Similarly for C2(ri ), with j replaced by j + n (n =finite).
I Keeping the eigenenergies finite requires the correlated limit

` =
k
δ

j → ∞ , δ = positive real .

The limit of the eigenfunction is delicate. It involves the
limiting behaviour of the Clebsch–Gordans.

I But, ` → ∞ is associated to the non-abelian T-dual of Gk .
I Hence:

Non-abelian T-duality provides an effective description
of the high spin sector of the parent theory.



Example: Non-abelian T-dual of SU(2) WZW

The background fields

I Non-abelian T-dual of the SU(2) WZW model w.r.t. SU(2)

ds2 = dψ2 +
cos2 ψ

x2
3

dx2
1 +

(x3dx3 + (sin ψ cos ψ + x1 + ψ)dx1)
2

x2
3 cos2 ψ

,

plus a dilaton
Φ = −1

2
ln(x2

3 cos2 ψ) .

I A bit complicated with no isometries.
I ψ is periodic and x1, x3 are non-compact.

I What do the eigenfunctions and eigenenergies look like?
They should effectively describe the large spin sector of the
SU(2)× SU(2)/SU(2) coset.



Solution of the eigenvalue problem
We will take the limit in the states and eigenvalues of the coset.

I Consider the high spin-level limit

j1 = j − n , k1 =
k2
δ

j , j2, n = finite , j � 1 .

I The energy eigenvalues E j
j1,j2 = j1(j1+1)

k1
+ j2(j2+1)

k2
− j(j+1)

k1+k2
,

remain finite

Ej2,n,δ = lim
j→∞

E j
j1,j2 =

j2(j2 + 1)
k2

+
δ− 2n

k2
δ .

I In the high spin limit the Clebsch–Gordan coefficients

lim
j→∞

C j ,m
j−n,m−m2,j2,m2

= d j2
m2,n(ζ) , cos ζ =

m
j

.

I They get associated with an auxiliary SU(2) rotation.
I Expected for a classical body given extra angular momentum.



I At the end we obtain the finite sum

Ψj2,n,δ(x1, x3, ψ) = lim
j→∞

Ψj
j−n,j2 =

j2
∑

m2=−j2
Γj2,m2,n,δ(x3) R j2

m2,m2(g2)︸ ︷︷ ︸
gauged fixed

,

where

Γj2,m2,n,δ(x3) =
∫ π

0
dζ sin ζ

(
d j2
m2,n(ζ)

)2
e−2iδv3 cos ζ .

I Explicit expressions become complicated fast, as j2 increases.
I Fair to say:

Solution would have never been found without using this
method.



Examples of states:

I Define

v3 =
√

(x1 + ψ)2 + x2
3 , β0 = sin ψ ,

β1 =
x3 cos ψ√

(x1 + ψ)2 + x2
3

, β3 =
(x1 + ψ) cos ψ√
(x1 + ψ)2 + x2

3

.

I For instance, for j2 = 1 (and δ = 1):

Ψ1,±1 =
β2

1 − 2β3(β3 ∓ 2β0v3)
2v2

3
cos 2v3

+
2β2

3 − β2
1 +∓4β0β3v3 + 4(β2

0 − β2
3)v

2
3

4v3
3

sin 2v3 ,

Ψ1,0 =
2β2

3 − β2
1

v2
3

cos 2v3 +
β2

1 − 2β2
3 + 2(1− 2β2

1)v
2
3

2v3
3

sin 2v3 .



Concluding remarks

I Using group theoretical methods one may solve field equations
for general G/H, for which:

I Generically, there are no isometries.
I Conventional techniques are not applicable.

I Non-abelian duality generates solutions that:
I effectively describe high spin sectors.
I Taking the limit is a delicate procedure, but nevertheless the

only way to solve field equation of the T-dual background.

I Method works in other occasions with non-abelian isometries.
For instance, when the symmetry group acts from on side,
i.e. in Principal Chiral Models.

I Use non-compact groups leading to Minkowski signature
spacetimes, i.e. SL(2, IR)× SL(2, IR)/SL(2, IR). Explore
physical applications, i.e. in cosmology.



Towards Non-Abelian T-duality in RR-backgrounds

with D. Thompson (Vrije Universiteit Brussels – Solvay Institute)

I So far Non-abelian T-duality has been formulated only in pure
NS-NS backgrounds.

I What about backgrounds with RR-fluxes?
I Abelian T-duality: From type-IIA to type-IIB and vice versa.
I Natural expectation: Non-abelian T-duality changes (remains

in the same) type-II theory if the dimension of the isometry
group is odd (even).

I A natural formulation is within the pure spinor formalism
allowing the description of the superstring in general curved
backgrounds with non-trivial RR sectors [Berkovits 07].



Example: The near horizon of the D1-, D5-brane system.

I AdS3 × S3, but with RR-fluxes (proportional to volume forms).
I NS-NS sector as in Principal Chiral Model for

SL(2, R)× SU(2).
I Some evidence that non-abelian T-duality w.r.t. SU(2) gives a

solution of the massive IIA Romans theory.
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