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Motivation

Field equations in curved stringy backgrounds

In string theory want to go beyond (super)gravity:

» T exact theories realizing this, particularly, coset (G/H) CFTs .
» When groups are non-abelian there are no isometries (generic).

» Solving the field equations is an impossible task with
traditional methods, i.e. separation of variables.

» In physical applications this is precisely what is needed, i.e.
propagating fluctuations, etc.

Understanding Non-abelian T-duality
Unlike abelian T-duality:

» Not well understood.
» Not likely to be an exact symmetry.

> Yet, what is it good for? Maybe for some effective description?



Outline

e Gauged WZW models and Non-abelian T-duality:

» Gauged WZW models and their geometry.
» Non-abelian WZW T-duals and their geometry.
» Relating non-abelian T-duality to gauged WZW models.

e Solving field equations in coset CFT backgrounds.

e Example: SU(2) x SU(2)/SU(2)

e The infinitely large spin limit and the effective non-abelian T-dual.
e Example: Non-abelian T-dual of SU(2) WZW.

e Concluding remarks.

e Towards Non-Abelian T-duality in RR-backgrounds.



Gauged WZW models and Non-abelian T-duality

Gauged WZW models: Action

Let a group G and a subgroup H € G.
Introduce g € G and gauge fields Ay € L(H).

> The gauged WZW action is

WZW
/\

S(g. Ax) = klolg /d0+d0 Tr[A digg ' —Arg lo_g
LA gAig 17A,A+} .

Not minimally coupled gauged fields.
» Gauge invariance: For A(ct,07) € H

g—A1gA, AL > ATYAL—091)A



Gauged WZW models: The geometry
» The gauge fields are non-dynamical and can be integrated out
AL = (M) (01gg )y, AL = (g ta_g)p(M )™,

where (a, b € H)

Myp = Tr(tagtbgil) —Mab -

» Gauge fix dim(H) parameters in g or, better, choose those
that are H-singlets. That leaves dim(G/H) x#'s.

» One obtains the o-model of the form (only NS fields)

5 - %/(Gyv + Byy)aJrXVa,XV

and a dilaton .
D= —5 Indet(M) .

» Background solves beta-functions for conformal invariance.

» |sometries G; X Ggr of the WZW are generically broken.



Non-abelian WZW T-duals and their geometry

» The starting action is

k
Snonab (8 V. AL) = S(g, As) — i / Tr(vF,_)
7T R

Lagrange mult.

Gauge invariance: As before and in addition v — A71vA.

v

v

Gauge fix dim(H) parameters in g and v, leaving dim(G)
variables XM Integrate out the A4+'s and get the o-model.

v

Properties:

> Isometries G; X Gg of the WZW generically broken.

» Even if G is compact, (some) variables of its non-abelian dual
appear non-compact.

» Transformation is not invertible at the action level.

» Drastically different than abelian T-duality.

Is it useful? What does it describe?

v



Relating non-abelian T-duality to gauged WZW models

» Start with the gauged WZW action for G":H[ for two group
elements g € G, h € H and gauged field in L(H).
» Expand infinitesimally around the identity
.k 1
h=T+i 7 v+0O (52>

and take the limit ¢/ — oo,
> We get the non-abelian T-duality action, i.e. classically [KS 94]

Gk X Hy

= dual of G, with respect to H|.

» Remarks:

> In the limit some variables become non-compact.

> A well defined limit can be taken on the geometric background.

» Can this be the effective background describing a consistent
sector of the parent theory?



Solving field equations in coset CFT backgrounds

For the background corresponding to

Gy X Hy/Hiyp |

we would like to solve the scalar equation
1
e 2%\/G

» We will obtain its general solution from that of the scalar
equation for the WZW model for G x H.
» Start with Reps of G x H. The eigenstates are

Raﬁ(g) ryv(h) ,

which are, relatively, easy to construct.
> The eigenvalues (semiclassically, for k, £ > 1) are
_G(R) |, Gl(n)
=T T

where the G,'s are the Casimirs.

due 2*VGGH, ¥ = EY .

E(R,r)




v

v

v

v

v

Under the vector H-transf they transform as

(RxrX(RxF)=(nend - )@(ROR---).

We decompose R X r and its conjugate into Reps r; of H.

We get a singlet from all products of the form r; X 7.

These singlets, representing the coset eigenstates, are

¢R,r;r,- (g' h) =

)3

a,,B,u,v

GxH

a a
Cau(R 1, r,-)CﬁV(R, riri) Rug(g)ruv(h) | .

Clebsch—Gordan

gauged fixed

Conclusion: The states in the G x H/H coset theory are the

H-singlet combinations of the states in the WZW model

G X H as this is dictated by group theory.




Remarks:
» The eigenvalues get shifted as

G(R) N G(r)  G(r)
k 12 k+¢ -

E(R rir)=

This is in accordance to the algebraic coset construction

» The coset background fields receives 1/ k corrections.
They become simple in the semiclassical limit for k > 1.

» Remarkably, the eigenstates do not depend on o’ ~ 1/k, only
the eigenvalues do (indicated expressions are for k > 1).



Example: SU(2) x SU(2)/SU(2)

Parametrization
We parametrize g1 X g2 € SU(2) x SU(2) as

g = wo + iz wp+ing & = Bo +ip3 52+i/31>
! —ap+iny wg—inz ) —B2+ip1 Po—iP3 )’

where from unitarity
WB4+a2=1, BE+pr=1.
» Under the diagonal SU(2) they transform as vectors
duj = €€y 0Bi = €ijkBjek
» The SU(2)-singlets are ag, o and vy =& - B obeying

0<ag, fo<l, [|Y]<y/1-ag\/1-B5.

and represent the three compact geometrical coordinates.



The background fields
Following the general procedure outlined above...

» The metrics is

k1 + k
2 1 2 2 2 2

+2A1x/3d“0d,30 + 2Ayydagdy + 2Alglydﬁod’y) .

The A’s are functions of ag, Bo, ¥ and of r = ki / ko.
» The field B,, = 0 and the dilaton

@=—2in((1-a3)1-p3) - ) .

» Background is a bit complicated, with no isometries.



Solution of the eigenvalue problem
A general SU(2) spin j Rep has matrix elements

j —my—k gj+mo—kk _k-+my—mo
ijlym2(a' b' G d ZAml ma, k d b !

The general state is

SU(2)xSU(2) d—functions

i m im -
./1J2 Z 2 CJ",memz,jz,mz C}ll,mfnz,jz,nz RJnﬁfmz,mfnz(gl)Rn%z nz(g2) .
m ma,na=—j

Clebsch—Gordan gauged fixed

Examples:

» For j» =0 and thus j; = J:

Character
—_—— Chebyshev Pol.
Yio= ). Rhmle) = Usylao)

m——j 2nd kind



» For (jl,jQ) = (1, 1/2)

Y172, = (405 —1)Bo+4a0y , Y347, = (4af — 1)bg — 2007 .

For (i, j2) = (1,1):

Y9, =4(agfo+7)2 -1,
Y11 = 6a3B3+4aoBoy — 2792 —2(ad +B3) +1,
Y2, = 264383 — 20a0Boy + 272 — 6(ad + B3 + 1.

» Due to luck of isometries, there is no factorization.

» With increasing ji o expressions become complicated.
Impossible to obtain with other methods.

» What about the high spin limit, i.e. when ji,j > 17



Large spins and the effective non-abelian T-dual
High spin limit in the Gy x Hy/Hy, theory?
» Let Reps in £(H) with highest weight (spin) j > 1. The Reps
in the tensor product with those in £(G) have also large spin.
» We may expand as

Co(r) = a(r)j? + b(r)j + o).

» Similarly for Cy(r;), with j replaced by j + n (n =finite).
» Keeping the eigenenergies finite requires the correlated limit

k
ézgj—>oo, 4 = positive real .

The limit of the eigenfunction is delicate. It involves the
limiting behaviour of the Clebsch—Gordans.
» But, / — oo is associated to the non-abelian T-dual of Gy.
» Hence:
Non-abelian T-duality provides an effective description
of the high spin sector of the parent theory.



Example: Non-abelian T-dual of SU(2) WZW

The background fields
» Non-abelian T-dual of the SU(2) WZW model w.r.t. SU(2)

cos? t,bd n (x3dx3 + (smt,bcost,b—i—xl + 1[J)dx1)2

ds®> = dy? +

X2 x3 cos2 i

plus a dilaton
1
D= —5 In(x2 cos? i) .

> A bit complicated with no isometries.
» 1 is periodic and x, x3 are non-compact.

» What do the eigenfunctions and eigenenergies look like?
They should effectively describe the large spin sector of the
SU(2) x SU(2)/SU(2) coset.



Solution of the eigenvalue problem

We will take the limit in the states and eigenvalues of the coset.

» Consider the high spin-level limit

k
h=j—n, /q:fj, jo,n = finite, j>1.

J1(J1+1) + Jz(Jz+1) . J;((J"f‘l::)
ko 1+k2 !

» The energy eigenvalues Efl
remain finite

ir(jo +1 o0—2
Ejz,n,(S ||m EJ = (J2+ )+ i

oo 12 k2 k2 0.

> In the high spin limit the Clebsch—Gordan coefficients

-j,m 2 _m
_]ll—>n;oC —n,m— mzjzmz_dmz'"(g)’ cos{ = j

» They get associated with an auxiliary SU(2) rotation.
» Expected for a classical body given extra angular momentum.



» At the end we obtain the finite sum

Tijnyé(X11X3ilp) ||m ‘Fj

nj2 -

5

ma=—j2

2 ma,n, o X3) RJI7272,I712 (g2)
—_———
gauged fixed

where

T;

J2mz,n,5(x3) / d@smg d{,z72 n(g)) e 2idvzcosl

» Explicit expressions become complicated fast, as j, increases.

» Fair to say:

Solution would have never been found without using this

method.



Examples of states:

» Define
v3=1/(a+9)2+x3,  Po=siny,
X3 COS (x1 +¢) cosp
p1= : B3 = :
(x1+9)2+x3 (1 +9)2+x3

» For instance, for jp =1 (and 6 = 1):

B3 — 2B3(B3 F 2Bov3)

¥y = 2\/3? cos2v3
282 — g2 4 4(B5 — B3)v3
I Bl il ﬁoﬁ3:3+ (Bo —P3)vs sin2v3
4v3
) 222 +2(1—2B3)v2
o /33 ﬁl c052v3—|—'31 ﬁ3+ ( ,31)V3 sin2v3 .

3
3 2v3



Concluding remarks

» Using group theoretical methods one may solve field equations
for general G/ H, for which:

> Generically, there are no isometries.
» Conventional techniques are not applicable.

» Non-abelian duality generates solutions that:

» effectively describe high spin sectors.
» Taking the limit is a delicate procedure, but nevertheless the
only way to solve field equation of the T-dual background.

» Method works in other occasions with non-abelian isometries.
For instance, when the symmetry group acts from on side,
i.e. in Principal Chiral Models.

» Use non-compact groups leading to Minkowski signature
spacetimes, i.e. SL(2,R) x SL(2,R)/SL(2,R). Explore
physical applications, i.e. in cosmology.



Towards Non-Abelian T-duality in RR-backgrounds

with D. Thompson (Vrije Universiteit Brussels — Solvay Institute)

» So far Non-abelian T-duality has been formulated only in pure
NS-NS backgrounds.

» What about backgrounds with RR-fluxes?

» Abelian T-duality: From type-llA to type-l1IB and vice versa.
> Natural expectation: Non-abelian T-duality changes (remains
in the same) type-1l theory if the dimension of the isometry

group is odd (even).

» A natural formulation is within the pure spinor formalism
allowing the description of the superstring in general curved
backgrounds with non-trivial RR sectors [Berkovits 07].



Example: The near horizon of the D1-, D5-brane system.

» AdS; x S3, but with RR-fluxes (proportional to volume forms).
» NS-NS sector as in Principal Chiral Model for
SL(2,R) x SU(2).
» Some evidence that non-abelian T-duality w.r.t. SU(2) gives a
solution of the massive [IA Romans theory.
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