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Introduction

• The AdS/CFT correspondence provides a tool for
studying large Nc gauge theories at strong coupling.
Has been applied to several problems of interest from
nuclear physics to condensed matter (chiral symme-
try breaking, viscosity to entropy ratio, marginal fermi
liquid description, superconductors etc.)

• Interesting to study higher derivative gravity theo-
ries in the context of the AdS/CFT correspondence.
They provide a holographic example where c 6= a.
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Introduction

Gravitational theories with higher derivative terms in
general

• Have ghosts when expanded around flat space.

• Their equations of motion contain more than two
derivatives of the metric. Hard to solve exactly.

Additional degrees of freedom.

In holography, this implies the existence of extra op-
erators in the boundary CFT.

[Skenderis, Taylor and van Rees].
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Introduction

There exists a special class of gravitational theories with
higher derivative terms, Lovelock gravity.

S =
∫
dd+1x

√
−g

[d2]∑
p=0

(−)p
(p− 2d)!

(p− 2)!
λpLp

with [d
2
] the integral part of d

2
, λp are the Lovelock pa-

rameters and the p-th order Lovelock term Lp is

Lp =
1

2p
δµ1ν1···µpνp
ρ1σ1···ρpσpR

ρ1σ1
µ1ν1
· · ·Rρpσp

µpνp

Lp is the Euler density term in 2p–dimensions.
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Introduction

We choose λ0 = 1 and λ1 = −1 such that

L0 =
d(d− 1)

L2
L1 = R .

Examples:

• 2nd order Lovelock term ⇔ Gauss-Bonnet

L2 = R2
µνρσ − 4R2

µν +R2

• 3rd order Lovelock term

L3 = 2RρσκλRκλµνR
µν

ρσ + 8Rρσ
κµR

κλ
σνR

µν
ρλ+

+ 24RρσκλRκλσµR
µ
ρ + 3RR2

ρσκλ + 24RρκσλRσρRλκ+
+ 16RρσRσκR

κ
ρ − 12RR2

ρσ +R3
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Introduction

Special Properties of the Lovelock action:

• Equations of motion contain only up to second order
derivatives of the metric ⇒ No additional boundary
data.

Black hole solutions can be found exactly.

• No ghosts when expanded around Minkowski flat back-
ground.

• Palatini and Metric formulations equivalent

[Exirifard, Sheikh–Jabbari].
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Introduction

Lovelock gravity admits AdS solutions with radius

L2
AdS = αL2 where α = α(λp)

Example: Gauss-Bonnet term λ2 6= 0

α =
1

2

(
1 +
√

1− 4λ2

)
Asymptotically AdS black hole solutions exist

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

d−1∑
i=1

dx2
i

where f(r) satisfies the equation of motion∑
p

(d− 1)λpr
d−2pfp

′ = 0⇒
∑
p

λp

(
f

r2

)p
=
(
r+

r

)d
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Introduction

Study Lovelock theories of gravity in the context of the
AdS/CFT correspondence. What new features does
the boundary CFT acquire given the additional param-
eters of the theory λp? Can we learn something new?

In this talk:

Part 1: Energy Flux Positivity ⇒ Absence of Ghosts

Part 2: Focus on holographic entanglement entropy.
New features and tests [work in progress].
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Outline

• Part 1.

– Review of causality and energy flux positivity cor-
respondence

– Absence of ghosts and energy flux positivity in field
theory.

• Part 2.

– Entanglement Entropy: A review

– EE in four dimensional CFTs : Solodukhin’s Result

– Holographic Description of Entanglement Entropy

– Fursaev’s proposal and Generalizations

– Summary, Conclusions and Open Questions
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Part 1.

Absence of ghosts and Positivity of the Energy Flux
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Fluctuation Analysis

Study quasinormal modes of the AdS black hole solution
⇒ Pole Structure of the retarded stress-energy tensor
two point function.

• Consider metric fluctuations δg12 = φ(r, t, xd−1)

Corresponds to 〈T12(x)T12(0)〉 (scalar channel).

• Perform a Fourier Transform

φ(t, r, xd−1) =
∫ dωdq

(2π)2ϕ(r)e−iωt+iqxd−1 , k = (ω,0,0, · · · ,0, q).

Express the equation of motion for ϕ in Schrodinger
form

−
1

q2
∂2
yΨ +

[
c2
g(y) +

V1(y)

q2

]
Ψ =

ω2

q2
Ψ

The horizon is now at y = −∞ and the boundary at y = 0
whereas Ψ ∼ ϕ.
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Fluctuation Analysis

What is the behavior of the potential?

V1(y) is monotonically increasing function.

Monotonicity properties of c2
g(y) depend on λp. It is

either monotonically increasing, reaching maximum at
the boundary c2

g = 1, or develops a maximum in the
bulk c2

g,max > 1 and metastable states may appear in the
spectrum.
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Fluctuation Analysis

Consider the large q limit. Replace V1(y) by an infinite
wall at y = 0. Use the WKB approximation to determine
the group velocity of the states in the dual CFT.

U =
dω

dq
→ c2

g,max

Conclusion:

For values of the Lovelock parameters λp such that c2
g(y) at-

tains a maximum greater than unity in the bulk, the boundary
theory contains superluminal states, i.e., violates causality.

Method by [Brigante, Liu, Myers, Shenker, Yaida].
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Causality Bounds

The specific form of the constraints on the Lovelock
parameters λp are determined by the near boundary be-
havior of c2

g

c2
g = 1− C(λp)

rd+
rd

+ · · ·

where

C(λp) = −
∑
p p((d− 2)(d− 3) + 2d(p− 1))λpαp−1

α (d− 2) (d− 3)
(∑

p pλpα
p−1

)2

Preserving causality in the dual theory

C(λp) ≥ 0 ⇒
∑
p

p((d− 2)(d− 3) + 2d(p− 1))λpα
p−1 < 0

[de Boer, Parnachev, M.K.] [Buchel, Escobedo, Myers,
Paulos, Sinha, Smolkin] [Camanho, Edelstein]
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Causality Bounds

Similar results can be obtained from studying graviton
perturbations of different helicity. Each polarization
gives a different constraint:

C1(λp) > 0, C2(λp) > 0, C3(λp) > 0

[Myers, Buchel; Hofman; Camanho, Edelstein].

Examples:

Gauss–Bonnet gravity d = 4:

−
7

35
< λ2 <

9

100

3rd order Lovelock gravity d = 6:

C(λp) = α
5α2λ2 + (9− 8α)

[α2λ2 + (3− 2α)]2 ≥ 0
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Positivity of the Energy Flux

• What do the Lovelock parameters λp correspond to
in the boundary CFT? What are the corresponding
constraints?

The two- and three-point functions of the stress energy
tensor are completely determined up to three indepen-
dent coefficients (A, B, C) [Osborn, Petkou].

〈Tµν(x)Tρσ(0)〉 =
(d− 1)(d+ 2)A− 2B − 4(d+ 1)C

d(d+ 2)

Iµν,ρσ(x)

x2d

〈Tµν(x3)Tρσ(x2)Tτκ(x1)〉 = A
Jµνρστκ(x)

xd12x
d
13x

d
23

+ B
Kµνρστκ(x)

xd12x
d
13x

d
23

+

+ C
Mµνρστκ(x)

xd12x
d
13x

d
23
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Positivity of the Energy Flux

The Lovelock parameters λp can be expressed in terms
of the CFT parameters A, B, C. Then holography pre-
dicts that A, B, C obey three independent constraints:

C1(A, B, C) > 0, C2(A, B, C) > 0, C3(A, B, C) > 0

These constraints precisely match the constraints de-
rived from the positivity of the energy flux one-point
function! [Hofman, Maldacena]

Note: Supersymmetry implies a linear relation between
A,B, C. Effectively, two independent parameters.

Example: the central charges a, c in d = 4.

Curiously, the Lovelock parameters satisfy this relation.
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Positivity of the Energy Flux

Definition: The energy flux operator E(n̂) per unit angle
measured through a very large sphere of radius r is

E(n̂) = lim
r→∞

rd−2
∫
dt n̂i T 0

i (t, rn̂i)

ni is a unit vector specifying the position on Sd−2 where
energy measurements may take place. Integrating over
all angles yields the total energy flux at large distances.

Focus on the energy flux one-point function on states
created by the stress–energy tensor operator

Oq = εijTij(q)

with εij a symmetric, traceless polarization tensor
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Positivity of the Energy Flux

• Rotational symmetry fixes the form of the energy flux
one–point function up to two independent parame-
ters.

〈E(n̂)〉Tij =
〈ε∗ikTikE(n̂)εljTlj〉
〈ε∗ikTikεljTlj〉

=

=
E

Ωd−2

[
1 + t2

(
ε∗ilεljninj

ε∗ijεij
−

1

d− 1

)
+ t4

(
|εijninj|2

ε∗ijεij
−

2

d2 − 1

)]

By construction t2, t4 can be expressed in terms of the
CFT parameters A,B, C. The supersymmetric case: the
linear relation between A,B, C is equivalent t4 = 0.
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Positivity of the Energy Flux

Demand positivity of the energy flux one point function,
i.e., 〈E(n̂)〉 ≥ 0.

The positivity of the energy flux imposes constraints on
t2, t4:

C1(A,B, C) ≡ 1 −
1

d− 1
t2 −

2

d2 − 1
t4 ≥ 0

C2(A,B, C) ≡ 1 −
1

d− 1
t2 −

2

d2 − 1
t4 +

t2

2
≥ 0

C3(A,B, C) ≡ 1 −
1

d− 1
t2 −

2

d2 − 1
t4 +

d− 2

d− 1
(t2 + t4) ≥ 0

When expressed in terms of A,B, C these constraints pre-
cisely match the ones obtained from holography!
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Example: Bounds for a d = 6 dimensional SCFT

Parameter space t2, t4 of a consistent CFT. Values out-
side the triangle are forbidden.
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Absence of ghosts and CFT constraints

The energy flux positivity constraints are related to
causality in the gravity language. Can we see some-
thing similar in field theory?

Guide from the AdS/CFT analysis:

• Consider the Fourier transform of the two–point func-
tion of the stress energy tensor at finite temperature.

• Three independent polarizations; each polarization
yields a different set of constraints.

• Focus on large momenta, small temperatures k
T
� 1.
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Absence of ghosts and CFT constraints

How do we compute the two–point function of the
stress-energy tensor in an arbitrary CFT at finite tem-
perature?

In the regime of small temperatures use the OPE:

Tµν(x)Tρσ(0) ∼
Iµν,ρσ
x2d

+Dµνρσκτ(x)T κτ(0) + · · ·

Dµνρσκτ(x) is related to the three point function of the
stress energy tensor [Osborn, Petkou].

Consider the three independent polarizations separately.
Take the expectation value and Fourier transform.

Note: 〈T00〉 = 3〈Tii〉 ∝ 3T 4.
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Absence of ghosts and CFT constraints

Example:

The two-point function in the ”scalar channel” in d = 4.

G12,12(w, q)T ∼ C1(A,B, C)
w2 + q2

w2 − q2
T 4 + · · ·

C1(A,B, C) =
(

1−
t2

3
−
t4

15

)

Note: C1 determines the sign of the residue of the pole.
Absence of ghosts requires C1 ≥ 0. This is precisely the
energy flux positivity constraint!

The other two constraints are recovered by studying
different polarizations.
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Absence of ghosts and CFT constraints

What about other operators in the OPE? Relevant op-
erators would dominate the low temperature limit!

• Scalar Operators 〈O〉 ∼ T∆

Their contribution to the OPE proportional to

T∆(k2)2−∆
2 ⇒ not singular for ∆ ≤ 4.

• Vector Operators 〈Jµ〉 6= 0

Rotational invariance implies that only 〈J0〉 6= 0. Ro-
tation by θ = π in the x0 − x1 plane ⇒ 〈J0〉 = 0.

The argument breaks down when the theory contains
more than one stress-energy tensors which do not de-
couple.
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Summary and Open Questions

• AdS/CFT for Lovelock gravity helped to show that
energy flux positivity is equivalent to the absence of
ghosts.

• Unitarity constraints are derived from three point
functions.

• Can we use this (and other lessons from Lovelock
gravity) to understand conformal filed theories bet-
ter? e.g.

– Does scale invariance implies conformal invariance
(proven only in d = 2) ?

– Analog of Zamolodchikov’s theorem in higher di-
mensions?
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Part 2.

Entanglement Entropy and Lovelock Gravity
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Entanglement Entropy: Review

• Consider a quantum mechanical system at zero tem-
perature in a pure state |Ψ〉. The density matrix is
ρ0 = |Ψ〉〈Ψ| and the von Neumman entropy vanishes

S = −trρ0 ln ρ0 = 0 .

• “Divide” the system into two subsystems A, B with
Hilbert spaces HA, HB. The reduced density matrix
ρA = trBρ0 is accessible only to A. The entanglement
entropy for the subsystem A is the von Neumman
entropy of the reduced density matrix ρA

SA = −trAρA ln ρA
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Entanglement Entropy: Review

The entanglement entropy, EE, measures how ”quan-
tum” a system is.

Example:

Consider two systems A,B with Hilbert spaces consisting
of two states {|1〉, |2〉}. The total Hilbert space is the
product of the Hilbert spaces HA, HB.

Product State:
|1A1B〉 ⇒ SA = 0

Pure (non product) State:

1√
2

(|1A2B〉 − |2A1B〉)⇒ SA = ln 2
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Entanglement Entropy: Review

EE satisfies a number of different properties (pure state):

• For the subsystem V and its complement V c entan-
glement entropy is equal.

S(V ) = S(V c)

• For any two subsystems A, B entanglement entropy
satisfies the strong subadditivity property

S(A) + S(B) ≥ S(A ∪B) + S(A ∩B)
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Entanglement Entropy: Review

EE in a continuous system is UV divergent. The “Area
Law” of EE refers to the form of the leading divergence

S(V ) ∼
Area(∂V )

εd−2
+ · · ·

Note: The “Area Law” is violated for systems with a
Fermi surface [Wolf, Gioev, Klich, ...].

For a conformal field theory, CFT, in d-dimensions

S(V ) =
gd−2[∂V ]

εd−2
+ · · ·+

g1[∂V ]

ε
+ g0[∂V ] ln ε+ s(V ) .

If V has a single characteristic length scale, R, gi[∂V ] is
a homogeneous function of degree i of R.

31



Entanglement Entropy: Review

Functions gi[∂V ] with i 6= 0 are non-physical, cutoff de-
pendent.

• The coefficient of the logarithmically divergent term
in the EE, g0[∂V ], is physical and universal.

In 2-dimensional CFTs the leading divergent term is
logarithmic. Its coefficient is proportional to the central
charge c of the CFT.

e.g: The EE of a line segment of length l

S(l) =
c

3
ln
l

ε
[Casini, Huerta]: An alternative proof of the c-theorem
in combining this result with the strong subadditivity
property of EE.
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Entanglement Entropy: Review

• How to compute EE in quantum field theory?

The replica trick:

S(V ) = lim
n→1

trV ρnV − 1

1− n
= −

∂

∂n
ln trV ρ

n
V |n=1

In the path integral formalism trV ρnV = Zn
Zn1

and one com-

putes the partition function Zn by gluing together n

copies of IRd along the boundary (∂V ).
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Entanglement Entropy: Review

(a) Path integral representation of the reduced density matrix,

(b) The n-sheeted surface, with n = 3 for simplicity.
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Solodukhin’s result for EE in 4d-CFTs.

The coefficient of the logarithmic term in the EE of a
subspace V with boundary ∂V of extrinsic curvature kiµν

g0[∂V ] =
c

720π
g0c[∂V ]−

a

720π
g0a[∂V ]

c, a are the CFT central charges defined through the
Weyl anomaly on a curved manifold

〈T µµ 〉 =
1

90
×

1

64π2

(
cI2 − aL(2)

)
I2 is the square of the Weyl tensor and L(2) is the Euler
density in four dimensions, i.e., the Gauss–Bonnet term.
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Solodukhin’s result for EE in 4d-CFTs.

g0c, g0a depend on the details of the boundary ∂V

g0c[∂V ] =
∫
∂V
Rµνστ(n

µ
i n

σ
i )(nνjn

τ
j)−Rµνn

µ
i n

ν
i +

1

3
R +

+
∫
∂V

[
1

2
kiki − (kiµν)

2
]

g0a[∂V ] =
∫
∂V
R(∂V )

• ni with i = 1,2 are vectors normal to the surface (∂V )

• kiµν is the extrinsic curvature associated to ni with ki

its trace.

kiµν = −γρµγσνDρniσ where γµν = gµν − niµniν
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Solodukhin’s result for EE in 4d-CFTs.

Corollary for the EE of any four dimensional CFT:

• For V a ball B of radius of R

g0(B) =
a

90

• For V a cylinder C of radius R and “infinite” length l

g0(C) =
c

720

l

R
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Solodukhin’s result for EE in 4d-CFTs.

Solodukhin’s result for the coefficient of the logarithmi-
cally divergent term in the entanglement entropy of a
ball was confirmed for the case of a free massless scalar
field both numerically and analytically.

[Lohmayer, Neuberger, Schwimmer, Theisen / Casini,
Huerta]

Note: This result provides a new, distinct characteriza-
tion of the central charges (c, a) of the CFT.

Connection to Zamolodchikov’s theorem? Generaliza-
tion to arbitrary dimensions?
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Holographic Description of EE

[Ryu-Takayanagi]

The EE in a CFT on IRd of a subspace V with arbitrary
(d− 2)-dimensional boundary (∂V ) ∈ IRd−1 is given by

S(V ) =
1

4G(d+1)
N

∫
Σ

√
σ

Here Σ is the static d-dimensional minimal surface within
AdSd+2 which asymptotes to (∂V ).

The proposal has been generalized to non-conformal
cases and the near horizon limit of Dp–branes. A co-
variant formulation has been proposed as well.

[Ryu, Takayanagi, Klebanov, Kutasov, Murugan, Hubeny,
Rangamani]
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Holographic Description of EE

Ryu-Takayanagi formula passed several tests:

• It is trivially equal for V and its complement V c (when
evaluated at zero temperature).

• At zero temperature, in the limit of very large V the
holographic EE vanishes. At finite temperature it
asymptotes to the thermal entropy.

• Satisfies the strong subadditivity property.

[Headrick, Takayanagi]

• Agreement with field theoretic results in 2-dimensional
CFTs [Calabrese, Cardy].
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Fursaev’s proposal and Generalizations

In all CFTs dual to Einstein-Hilbert gravity (with a cos-
mological constant): a = c.

• Is there a way to distinguish between the two central
charges in holography?

Gauss-Bonnet gravity, is a higher derivative gravity with
this property.

SGB =
1

16πG(5)
N

∫
d5x
√
−g

(
R+

12

L2
+
λGBL2

2
L(2)

)
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Fursaev’s proposal and Generalizations

Gauss-Bonnet gravity admits two AdS solutions. One
solution is unstable against small perturbations.

Consider the stable solution with radius:

L2
AdS =

1 +
√

1− 4λGB
2

L2

Computation of the Weyl anomaly for Gauss-Bonnet
gravity determines the CFT central charges in terms of
the Gauss-Bonnet parameter λGB [Nojiri, Odintsov].

c = 45π
L3
AdS

G(5)
N

√
1− 4λGB

a = 45π
L3
AdS

G(5)
N

[
−2 + 3

√
1− 4λ

]
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Fursaev’s proposal and Generalizations

A proposal for holographic EE in Gauss-Bonnet gravity
[Fursaev].

S(V ) =
1

4G(5)
N

∫
Σ

√
σ
(
1 + λGBL

2RΣ

)
Σ is the minimal surface ending on (∂V ) which satisfies
the e.o.m. derived from this action. RΣ is the induced
scalar curvature on Σ.

• Coincides with Wald’s entropy formula on AdS black
holes.

• Satisfies all of the properties of EE, including strong
subadditivity [Headrick, Takayanagi].
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Holographic EE for a ball of radius R

Finding the exact minimal surface is a difficult problem.
Solving for the leading divergent terms in the EE is easy.

Consider the case of a ball. Write the AdS metric as

ds2
AdS = L2

AdS

[
dρ2

4ρ2
+

1

ρ

(
−dt2 + dr2 + r2dΩ2

2

)]
Symmetries indicate that Σ is determined by a single
function r(ρ). The e.o.m. in the vicinity of the boundary
ρ = 0 are solved by

r(ρ) = R−
ρ

2R
+ · · ·

Substitute into the “action” to arrive at

S(B) =
a

90

R2

ε2
+

a

90
ln ε+ · · ·
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Holographic EE for a cylinder and a belt

In similar manner, consider the EE of an infinite cylinder.
Write the AdS metric as

ds2
AdS = L2

AdS

[
dρ2

4ρ2
+

1

ρ

(
−dt2 + dz2 + dr2 + r2dφ2

)]
Solve the e.o.m. in the vicinity of the boundary ρ = 0
to find

r(ρ) = R−
ρ

4R
+ · · ·

and substitute in the ”action”

S(C) =
a

90

2πRl

4πε2
+

c

720

l

R
ln ε+ · · ·

The result once more agrees with Solodukhin’s predic-
tion for the lograthmically divergent term in the EE.
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Holographic EE and Lovelock gravity

• Holographic results from Fursaev’s proposal in per-
fect agreement with Solodukhin’s.

A natural generalization of Fursaev’s proposal to any
Lovelock theory of gravity

S(V ) =
1

4G(d+1)
N

[d2]∑
p=0

(−)p+1(p+ 1)
(d− 2p− 2)!

(d− 2)!
λp+1

∫
Σ

√
σL(p)
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Summary, Conclusions and Open Questions

• Fursaev’s formula for the holographic calculation of
EE in Gauss-Bonnet gravity agrees with Solodukhin’s
result.

• There is a natural generalization of this proposal for
any Lovelock theory of gravity.

Open Questions:

• Generalization of Solodukhin’s result to higher di-
mensional CFTs.

• EE in an arbitrary theory of higher derivative gravity?

• Helpful perhaps towards finding the analog of

Zamolodchikov’s theorem in higher dimensions?
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