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Motivation

Field theory motivation.

@ Would like to understand dynamics of strongly coupled fields in
curved spacetime.

@ Quantitative computations of expectation values of local operators,

say < 1yv>?

Why AdS?:

@ Maximally symmetric spacetime.

@ Not globally hyperbolic — role of boundary conditions and influence
on dynamics?

@ AdS spacetime provides a geometric IR cut-oft.




Motivation

AdS/CET motivation:
® Russian doll’ holography:

« What is the boundary dynamics of strongly interacting QFT + weak
AdS gravity?

#® Given a field theory, say. V= 4, what is the bulk dual when we
consider this theory AdS,?

B Better understanding of .//'= 4 dynamics: rich story....




Global AdS spacetime
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Global AdS is a cylinder with a time-like boundary which is a copy of
the Einstein Static Universe (Lorentzian cylinder).




Fields on AdS: Boundary conditions

B AdS is not globally hyperbolic, and has a timelike .7* = boundary

conditions are necessary to prescribe dynamics.

@ For classical scalars in AdSq satistying Klein-Gordon equation with

m? 2= A(A - (d-1))
o(r) — A(x) P =) B(x) p A

® Usual boundary conditions for A > d/2:

@ fix A(x) to be source for boundary operator

® B(x) is the vev of dual operator (response).




Fields on AdS: Boundary conditions

@ It is however well known that in a special range of masses other
boundary conditions are allowed.

2 (d—1)°

Mppr = 102

® For m*gr < m* < M?gr + 1 can alternately fix B to be the source.
@ Both fall-offs are normalizable in this range of masses.

@ Nb: conformally coupled scalars always lie in this window:

BRI 1o pate)
: 402

Breitenlohner, Freedman




Gauge fields on AdS: Boundary conditions

@ Vector fields can also admit different boundary conditions
@ Vectors in AdS,:

b ()
L
A= 0= A, (r,x) = a,(x) .
@ Dirichlet/standard/electric boundary conditions: Witten
@ fix 2, = source for boundary current 7, Ishibashi, Wald
@ Neumann/modified/magnetic boundary conditions: Marolf, Ross

& fix b, or integrate over all sources A, = < f.>=0

@ For abelian theories these boundary conditions are necessitated by
electric-magnetic duality, which exchanges Dirichlet and Neumann.




Free gauge theories on AdS,

® SU(N) gauge theory with Dirichlet boundary conditions:

& No Gauss law constraint

® ()(N?) excitations about the vacuum.

® SU(N) gauge theory with Neumann boundary conditions:

# No charged states allowed

& 1 Gauss law constraint

® ()(1) excitations about the vacuum.

® Theory undergoes a Hagedorn transition at 7. ~ 1.




Spectrum of N = 4 SYM on AdS;,

@ Field content (all adjoint valued):
® 6 conformally coupled scalars

@ 4 Weyl fermions

& Gauge fields

W = AN =R 3 S T k,neZ,

® Lots of choices of boundary conditions:

® scalars can have A = 1, 2.

& gauge fields can have Neumann/Dirichlet bc.

® fermions have A = 3 /2.




Free theory partition functions

® Define the single particle partition sum
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® For.V'= 4 SYM one has using the spectral data:
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Partition functions for the simple bcs

® Dirichlet bes: account for multi-particle states & statistics.
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@ Neumann bcs: account for Gauss Law constraint & statistics.
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N = 4 SYM on AdS; : Two puzzles

® V=4 has SL2,Z) S-duality.
® Expect exchange Dirichlet and Neumann bcs (true for abelian

theory), but.

@ Dirichlet: O(N?) excitations about the vacuum

9 Neumann: O(1) excitations about the vacuum

@ Phase transition as a function of coupling?

@ Expect to have holographic dual in AdS;
® how does bulk dual have N* dofs?

« New asymptotically AdS spacetimes with degenerate horizons?




Susy bc for N = 4 SYM on AdS,

® Useful to look at susy preserving bes for. V= 4
Have to treat scalars asymmetrically: SO(6) — SO(3) X SO(3)

Breitenlohner, Freedman

In fact the theory has a plethora of 1/2-BPS boundary conditions.
B Complete classification exists for theory on half-space R>' X R..

Gaiotto, Witten

@ Adapt these boundary conditions on AdS, as it is conformal to the
half-space.
@ Rich dynamics enabled by choice of bcs.




Abstract discussion of susy bc

® Gaiotto-Witten bcs are characterized by a triple (o, H, B) for gauge
group G.

@ o (Nahm data): SU2) — G
« H: commutant of Nahm data (preserved gauge group)
@ B: Boundary CFT living on R X S°.

@ Simpler understanding of boundary conditions in terms of D-branes
for unitary G.




Bcs via brane constructions

® Neumann bc: N D3-branes ending on a single NSs-brane.
& Gauge fields and 3 scalars: Neumann bc

& Radial component + remaining 3 scalars: Dirichlet bc

® Dirichlet be: N D3-branes ending on a N Ds-branes.
# Gauge fields and 3 scalars: Dirichlet bc
# Radial component + remaining 3 scalars: generalized Neumann

dX"
dz

9% [ X, Xi] =0

« each D3-brane ends on a Ds-brane. SU(N) global symmetry comes
from the Dg brane gauge fields.




S-duality for N=4 with boundary

Dirichlet bcs have explicit D§-brane sources and the N Ds-branes
actually realize the SU(N) global symmetry:

Can have D3 branes ending on a single Ds-brane, but choice of solution
to Nahm’s equation breaks global symmetry completely. This is

obtained by the N-dimensional irrep of SU(2).

@ S-dual of Dirichlet bc: Neumann bc coupled to a boundary CFT

@ S-dual of Neumann bc: Nahm poles breaking G to trivial subgroup.
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Holographic duals for Simple bcs?

Boundary condition Realization Dual boundary condition
Neumann for SU(N) | N D3-branes ending Dirichlet with Nahm pole
on a NS5-brane p=N

Dirichlet for SU(N) D3-branes ending | (34 1)-dim N =4 SYM coupled to
on N D5-branes (2+ 1)-dim T(SU(N)) quiver

@ What about holographic duals for these boundary conditions?
& Dirichlet: perhaps impossible to find weakly coupled gravity dual

since we require to have large number of D3 sources.

# Neumann: potentially no obstruction, but no solution with desired
properties is known.




Holographic Duals of the Simple bcs

@ Dirichlet case:
@ The Dss are expected to play an important role.

# Necessary for global symmetry = can’t replace them by their
effective geometry (which would gauge the symmetry).

« They provide a place for the D3s to end = eftect will be strong near
AdS boundary:.

# S-dual involves complicated boundary CFT.

@ Neumann case:
® NSg has O(1) backreaction in the sugra limit.
# S-dual is a single Dy = Nahm data involving N-dim irrep of SU(2).

#® The W-bosons are all massive with m ~ VN. Gravity dual?




Summary: Strong coupling limits of simple bc

@ The simplest set of susy bcs are disappointing.
@ Hard to see how to construct appropriate duals in the Dirichlet case
and the Neumann bcs seem just a bit out of reach.

@ Main message: holographic duals possible if we have a boundary
gauge symmetry of sufficient rank (scales with N).

@ Strategy: Engineer new classes of boundary conditions that allow
exploring the planar strong coupling limit.
@ Preserve a large amount of boundary gauge symmetry:

® Lead us to study “quotient constructions”.

@ Alternately one can work with “transparent bcs”. Hubeny, Marolf, MR
b y




N = 4 SYM on AdS; : Quotients

@ A-priori we can pick bcs that break G to subgroup H.
@ Essentially these are Neumann for some subgroup.

@ Obtain via a quotient:

® Mod out the theory on R*' by Z2 which acts as spacetime reflection
together with an involution on G.

@ Can get large class of such examples whose S-duals are also known.
@ Focus on unitary G for simplicity:.

Involution | Quotient | (Gauge group H C G

Class I O5™ SO(N)
Class 1 05~ USp(N)
Class III | Z,(—1)t SU(p) x SU(N — p)




N = 4 SYM on AdS,: Quotients

Gauge group | Quotient Dual gauge Nahm data Boundary
H group H for dual data (dual)

Db5-brane

SUZ) x SU(L) | Zu(-1)* USp(N) p=Nx1 localized
on O-plane

Symmetry

SU(p) x SU(q) | Zy(—1)*2 USp(2q) p=(p—q)®2¢x1]| breaking
Neumann bc

Non-trivial
SO(N) O5* SU(N) p=N x1 24+ 1SCFT
on boundary

USp(N) 05~ ST e GHSTLEN) p= X2 None




Quotient theories at weak coupling

@ All of the above examples have the essential features of Neumann bc:
® (J(1) states at low temperature due to singlet constraint

® Hagedorn transition at some 7./~ I.

& Curiously in all cases the Hagedorn transition occurs at a lower value

of the temperature.

1
, with 2(xy) = 2B(xx) + 2r (X)) = 5

T, = —
64 10g(£€*)

« Rationale: non-trivial matter (under H C G) implies that there are
multiple ways to form singlets. More choices = faster growth of

operators.




Holographic duals of N = 4 SYM on AdS,

B Expect holographic duals in terms of strings in AdSs X S°
® AdS, foliations AdS;?

4 boundary is a double cover of AdS,
« identify two copies of AdS, via an orbifold/orientifold action.

L2
ds® = dR? + 6_25 cosh” (?) Ay G T
1 5

@ The boundaries are located at large positive and negative values of R

respectively.
B Two copies of AdS, are joined across the equator of the S°.




Holographic duals of N = 4 SYM on AdS,

®@ In fact, the quotient actions we saw above are precisely of the form
we need to identify the two AdS boundaries.
@ We identify the two AdS, factors and also act with a reflection on the

S° to ensure that we have good string background.

B8 GW bcs with orbifolds/orientifolds preserving large enough gauge
symmetry have duals in terms of strings on AdSs X S° with orbifold/

orientifold 5-plane wrapping AdSs X S2.




Strong coupling phase structure

B All static, spherically symmetric AdSs geometries can be rewritten in

a form which makes the boundary AdS4 manifest.
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®@ Phase structure tracks through to strong coupling regime.

# low temperature phase is the thermal gas.

#® high temperature phases is the Schwarzschild-AdSs black hole.

7= V2
7T€4

@ Transition temperature appears to be independent of involution.




Summary & Open issues

@ Rich dynamics for field theories on AdS,.

@ Lots of the structure of the dynamics is due to the non-trivial nature
of the boundary conditions.

@ Possibility of various diftferent bcs for scalars, vectors, fermions.

B The story for./\'= 4 is very intricate.

@ Discussed only susy (1/2-BPS) bcs, for which already there many
interesting 1ssues.

@ Could look for duals for other bcs with less/no susy:

® Other CFTs; different dimensions?




