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Motivation

 Field theory motivation:
 Would like to understand dynamics of strongly coupled fields in 

curved spacetime. 
 Quantitative computations of expectation values of local operators, 

say <Tµν>?

 Why AdS?:
 Maximally symmetric spacetime.
 Not globally hyperbolic → role of boundary conditions and influence 

on dynamics?
 AdS spacetime provides a geometric IR cut-off.



Motivation

 AdS/CFT motivation:
 `Russian doll’ holography:
 What is the boundary dynamics of strongly interacting QFT  + weak 

AdS gravity?   

 Given a field theory, say N = 4, what is the bulk dual when we 
consider this theory AdS4?

 Better understanding of N = 4 dynamics: rich story....



Global AdS spacetime

Global AdS is a cylinder with a time-like boundary which is a copy of 
the Einstein Static Universe (Lorentzian cylinder). 

ds2 = −
�
1 +

r2

�2

�
dt2 +

dr2�
1 + r2

�2

� + r2 dΩ2

∂(AdSd) = R× Sd−2

take preliminary steps to understanding the strongly coupled theory; we are quickly led to

a more comprehensive discussion of the boundary conditions and this we undertake in §6.
In §7, armed with a better understanding of the supersymmetric boundary conditions, we

describe how to construct holographic duals for the field theory in certain cases, and the

issues involved in the general construction. We end in §?? with a discussion of open issues.

2 Free quantum fields on AdSd

s:qftads

Let us begin with a consideration of free quantum fields in AdSd. A well known fact about

AdS spacetimes is that they possess a time-like I +,2 which in particular implies that these

spacetimes are not globally hyperbolic. This means that to have a well-posed Cauchy problem

one needs to prescribe sensible boundary conditions on the time-like boundary, which for

global AdSd spacetimes is the Einstein Static Universe, ESUd−1 ≡ R× Sd−2.

From early investigations on the subject [1] it was clear that one can have non-trivial

choices of boundary conditions to impose. We will first recall some of the basic facts regard-

ing such boundary conditions for fields up to spin 1, since we will be primarily interested

in quantum fields sans gravity in asymptotically AdSd backgrounds. See [6, 11, 12] for a

discussion of higher spins. To describe the boundary conditions it is useful to fix a metric

on the spacetime. We find it convenient to work with global coordinates on AdSd:

ds2 = −(1 +
r2

�2d
) dt2 +

dr2

1 + r2

�2d

+ r2 dΩ2
d−2 (2.1) global2

In these coordinates the conformal boundary ESUd−1 of AdSd is obtained as r → ∞. We

will often use intuition from the AdS/CFT correspondence and discuss the interpretation of

our boundary conditions from the point of view of a hypothetical CFT living on ESUd−1 (in

certain cases the boundary conditions will lead to having physical degrees of freedom located

on the boundary ESUd−1).3

Another useful fact to keep in mind is that AdSd itself, being conformally flat, can be

mapped into a space conformal to ESUd via a simple coordinate change r = �d cot θ, which

leads to the metric

ds2 =
�2d

sin2 θ

�
−dt2 + dθ2 + cos2 θ dΩ2

d−2

�
, (2.2) globalesu

2Recall that the future null infinity I + corresponds to ‘endpoints’ of future-directed null geodesics.
3When gravity in the AdSd spacetime is non-dynamical, we do not expect to have a holographic dual in

terms of a CFTd−1. Formally one can still view the spectral data of fields in AdSd in terms of representations

of the isometry group SO(d − 1, 2), which is the conformal group for a d − 1 dimensional CFT. In some

cases it may be possible to really have a physical dual conformal field theory, if the quantum field theory on

AdS space can be part of a consistent theory of quantum gravity on this space, but we will not discuss this

possibility here.
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Fields on AdS: Boundary conditions

 AdS is not globally hyperbolic, and has a timelike I+  ⇒ boundary 
conditions are necessary to prescribe dynamics. 

φ(r) → A(x) r∆−(d−1) +B(x) r−∆

 Usual boundary conditions for Δ > d/2: 
 fix A(x) to be source for boundary operator
 B(x) is the vev of dual operator (response).

 For classical scalars in AdSd satisfying Klein-Gordon equation with 
m2 l2 = Δ(Δ - (d-1))



Fields on AdS: Boundary conditions

 It is however well known that in a special range of masses other 
boundary conditions are allowed.

 For m2BF ≤ m2 ≤ m2BF + 1 can alternately fix B to be the source. 
 Both fall-offs are normalizable in this range of masses.

 Nb: conformally coupled scalars always lie in this window.

m2
BF = − (d− 1)2

4 �2

m2
c = −d (d− 2)

4 �2
Breitenlohner, Freedman



Gauge fields on AdS: Boundary conditions

 Vector fields can also admit different boundary conditions
 Vectors in AdS4:

 Dirichlet/standard/electric boundary conditions:
 fix aμ ⇒ source for boundary current Jμ
 Neumann/modified/magnetic boundary conditions:
 fix bμ  or integrate over all sources Aμ ⇒ < Jμ > = 0 

Ar = 0 , Aµ(r, x) → aµ(x) +
bµ(x)

r

 For abelian theories these boundary conditions are necessitated by 
electric-magnetic duality, which exchanges Dirichlet and Neumann.

Witten

Ishibashi, Wald

Marolf, Ross



Free gauge theories on AdS4

 SU(N) gauge theory with Dirichlet boundary conditions:
 No Gauss law constraint

 O(N2) excitations about the vacuum.

 SU(N) gauge theory with Neumann boundary conditions:
 No  charged states allowed 
  ∃ Gauss law constraint

 O(1) excitations about the vacuum. 

 Theory undergoes a Hagedorn transition at Tc l ~ 1.



 Spectrum of N = 4 SYM on AdS4

 Field content (all adjoint valued): 
 6 conformally coupled scalars
 4 Weyl fermions
 Gauge fields

ω � = ∆+ k + 2n , k, n ∈ Z+

  Lots of choices of boundary conditions:

 scalars can have Δ = 1, 2.
 gauge fields can have Neumann/Dirichlet bc.

 fermions have Δ = 3/2.



Free theory partition functions 

 Define the single particle partition sum

• modified (Neumann): Vector modes are treated as ∆ = 1 and the scalar modes are

treated as ∆ = 2.

Furthermore, it turns out that the vector modes correspond only to the k ≥ 1 part of (4.2),

due to the well-known absence of spherically-symmetric radiation for vector gauge fields; see

[6] and appendix A.2 for details.

Note also that the degeneracy of the vector and scalar modes in AdS4 is the same since

the vector and scalar harmonics on S2
are related via (see Appendix A for the definitions of

the harmonics)

V(k)
i = �ij ∇j Y

(k) . (4.4)

Generally one can choose to impose either Neumann (∆− fall-off) or Dirichlet (∆+ fall-

off) boundary conditions on the scalar fields in the N = 4 supermultiplet. In the following

we will usually implement this choice by requiring 0 ≤ α ≤ 6 of the scalars XI
to have

Dirichlet boundary conditions and the remaining to satisfy Neumann boundary conditions.

However, a generic such choice will break all the supersymmetries of the theory. As was

shown originally in [1], supersymmetry requires that one has an equal number of ∆+ and

∆− scalars, i.e., α = 3 in the notation introduced above.

4.2 Free N = 4 SYM partition functions
s:freepartfn

We have now assembled the pieces of data required to compute the spectral information of

N = 4 SYM on AdS4. We will proceed to compute the free field partition function directly

for the two choices of boundary condition described earlier. It is first useful to record the

partition function of the ‘letters’ i.e., the basic fields Ψ = {Aµ, XI ,ψαa} of the theory. We will

refer to these, following the earlier analysis of gauge theories on compact spatial manifolds,

as single particle partition functions [17]. These will then be used to generate the free energy

of the theory at finite temperature with various choices of boundary conditions.

4.2.1 Single particle partition sum
s:singpart

In §4.1 we have derived the spectrum of free N = 4 SYM in AdS4. This information is

sufficient to derive single particle partition sums for the free theory. Note that this can

equivalently be viewed as the partition function of the Abelian theory, and we define this

quantity as

z(x) =
�

single-particle states

�

ω

e−β ω , x ≡ e−β �−1
4 . (4.5)

Consider first the single particle partition function for the adjoint-valued scalar fields of
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 For N = 4 SYM one has using the spectral data: the theory. From the spectrum (4.2), we find

z±scalar(x) = x∆±

∞�

n,k=0

(2 k + 1) x2n+k
=

x∆±

(1− x)3
, ∆± = 1, 2 , (4.6) sca1p

where we have left the answer in terms of ∆± to leave open the possibility of imposing

different boundary conditions on each of the scalars. Likewise we can compute the single

particle partition sum for the fermions. N = 4 SYM has 4 Weyl fermions, each of which has

2 degrees of freedom. For a single Weyl fermion with spectrum (A.32) one has

zfermions = 2 x
3
2

∞�

n,k=0

(2 k + 1) x2n+k
= 2

x
3
2

(1− x)3
. (4.7) fer1p

The single particle partition sum for the gauge fields is also easy to compute. However,

we now have to account for the scalar (As
µ) and vector (Av

µ) degrees of freedom and also

for the boundary conditions discussed earlier. As discussed above and in appendix A.2, for

either Dirichlet or Neumann boundary conditions the gauge field spectrum is precisely the

k ≥ 1 part of the spectrum for a pair of scalars, one having ∆ = 1 and the other having

∆ = 2. Thus we have
7

zgauge(x) =
∞�

k=1

∞�

n=0

(2 k + 1)
�
x2

+ x
�
x2n+k

=
3 x2 − x3

(1− x)3
. (4.8) gauge1p

Putting all this information together, we find that the single letter partition function for

free N = 4 SYM is given by

z(x) = α z+scalar(x) + (6− α) z−scalar(x) + 4 zfermions(x) + zgauge(x), (4.9) z1p

where α was defined above.

4.2.2 Multi-particle partition sum
s:multipart

In a relativistic CFT, one has to account for the fact that the sensible partition sum to

compute is for multi-particle states (in the grand-canonical ensemble). This can be easily

derived by suitable combinations of the single particle partition sums. However, now we have

to finally face up to the issue of how the boundary conditions influence this computation.

Multi-particle partition function for Dirichlet bc: Let us first discuss the case where

we impose Dirichlet boundary conditions on the gauge fields. This in particular implies that

7This answer can also be derived by simply counting the number of single trace conserved current operators

and their descendants in a 2 + 1 dimensional CFT (the hypothetical dual living on ESU3).
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ΨF = {ψαI}. As explained in [17] we can express the result in terms of an integral over the

gauge group. One has

Z(x) =

�
[DU ] exp

� ∞�

m=1

1

m

�
zB(x

m) + (−1)m+1
zF (x

m)
�
χG
adj(U

m)

�
, (4.18) Zneu

where U is a group element of the gauge group G and [dU ] is the standard Haar measure on

the group manifold. χG
adj is the group character in the adjoint representation (since all the

field content of N = 4 SYM transforms in the adjoint of G).

In order to account for the statistics, we have split up the single particle (or Abelian)

partition function into bosonic and fermionic parts. To be precise,

zB(x) = α z
+
scalar(x) + (6− α) z−scalar(x) + zgauge(x) , zF (x) = 4 zfermions(x) (4.19) zbzf

Of physical interest to us is the fact that the theory exhibits a large N phase transition

between a “confining” phase with a free-energy of order one, and a “deconfined phase” which

behaves like a free theory in the bulk, i.e. F ∼ O (N2). This transition happens precisely at

the temperature [17]9

T� = − 1

�4 log(x�)
, with z(x�) = zB(x�) + zF (x�) = 1 (4.20) weakHagA

The low temperature phase has a Hagedorn density of states proportional to exp(E/T�).

One can evaluate the location of this transition for various choices of scalar boundary condi-

tion specified by α. The result is tabulated in Table 1. At weak non-zero ’t Hooft coupling

λ, the transition either remains a first order phase transition or splits into two continuous

phase transitions; a three-loop computation is required to distinguish between these two

possibilities [17].

Note that the symmetric choice of scalar boundary conditions α = 3, which can preserve

half of the supersymmetries of the theory (in the ground state), leads to a particularly simple

value for the transition temperature, T� =
1

2 log(3) �4
.

Multi-particle partition function for Neumann boundary condition for H ⊂ G:

One can also perform a similar analysis when we have modified boundary conditions for a

subgroup H of G. Now one has a single constraint on H-valued fields. Assuming that the

fields in the complement G/H transform in representations Ri of H one obtains the partition

9At large N the computation can be carried out more simply by enumerating the gauge invariant oper-

ators. The transition temperature is determined by examining the boundary convergence of the partition

sum thus computed. Equivalently one can re-express (4.18) in terms of the eigenvalue distribution and look

for the boundary of stability of the uniform distribution (see also Appendix B).
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Partition functions for the simple bcs

 Dirichlet bcs: account for multi-particle states & statistics.

the gauge symmetry of N = 4 SYM is treated as a global symmetry on the boundary ESU3.

Since AdS4 is non-compact, there is no Gauss’ law constraint for electrically charged states

in the theory, and one can therefore simply compute the multi-particle partition function by

summing over multi-particle states, keeping track of indistinguishability of the states and

accounting for the statistics.

For each bosonic degree of freedom, the multi-particle partition sum is given by

Zboson(β) =
�

ω

�
1

1− e−β ω

�
, (4.10) bosmpart

where ω are the single particle energy levels. Using the spectrum of the single particle states

in AdS4, (4.2) one finds for each component of the adjoint valued scalars in N = 4 the

partition sum:

Z±
scalar(x) =

∞�

n,k=0

�
1

1− x∆±+2n+k

�2k+1

= exp

� ∞�

p=1

1

p
z±scalar(x

p)

�

=
∞�

m=0

�
1

1− x∆±+m

� 1
2 (m+1) (m+2)

. (4.11)

The partition sum for the vectors can be obtained similarly, using the single-particle partition

function (4.8); one has

Zgauge(x) = exp

� ∞�

p=1

1

p
zgauge(x

p)

�
=

∞�

m=0

�
1− xm+3

(1− xm+2)3

� 1
2 (m+1) (m+2)

. (4.12) mzvector

Fermions on the other hand have a multi-particle partition sum which reads

Zfermion(β) =
�

ω

�
1 + e−β ω

�
. (4.13) fermpart

From the spectrum (4.3) one derives

Zfermion(x) =
∞�

n,k=0

�
1 + x

3
2+2n+k

�2 (2k+1)
= exp

� ∞�

p=1

(−1)p+1

p
zfermions(x

p)

�

=
∞�

m=0

�
1 + x

3
2+m

�(m+1) (m+2)
. (4.14)

Putting these pieces together one finds that the partition function for N = 4 SYM in

AdS4 is given by

ZN=4(x) =

� �
Z+

scalar(x)
�α �

Z−
scalar(x)

�6−α
Zgauge(x)Z

4
fermion(x)

�dim(g)

, (4.15)
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Zboson(x) = exp

� ∞�

p=1

1

p
zboson(x

p)

�
, Zfermion(x) = exp

� ∞�

p=1

(−1)p+1

p
zfermions(x

p)

�

where we have accounted for the fact that there are dim(g) degrees of freedom in the adjoint

valued fields in the gauge group G. Since each of these states carrying the gauge charge can

be treated separately we have simply exponentiated the final result of the Abelian theory.

The asymptotic behaviour of logZN=4(x) for high temperatures x → 1 can be extracted

by saddle point methods.8 In particular, the free energy of the theory defined as usual as

F = −T logZN=4(β) (4.16)

behaves for T � 1 as

F = −15 ζ(4)T 4 �34 dim(g) = −π4

6
T 4 �34 dim(g) . (4.17) Fdir

re-express in terms of central charge? check factors of 2

The fact that the free energy (4.17) shows a characteristic T 4 behavior at high tem-

peratures, β /�4 � 1 is in keeping with the physical idea that the asymptotic part of the

spectrum should be insensitive to the AdS curvature. However, due to the confining nature

of the AdS spacetime, the free energy is exponentially damped at temperatures T �4 � 1.

Nevertheless, it is important to note that the free energy scales with the central charge c of

the theory (note c ∝ dim(g)) for all temperatures. This scaling of the free energy is easy to

understand, once one notes the absence of the Gauss’ Law constraint in AdS4 for electrically

charged states. Since we are allowed states carrying arbitrary G-valued charges, we should

allow them in our partition sum. As a result each adjoint valued field in the theory acts as

a distinguishable particle and the free energy simply scales as the number of such fields.

Multi-particle partition function for Neumann bc: With the Neumann boundary

conditions one has to deal with the Gauss’ law constraint for the G-valued gauge field. As

we have described earlier in §3, one way to impose these boundary conditions is to gauge

the boundary value of the bulk Aµ. One then has a G-valued boundary gauge field living on

ESU3 which satisfies Gauss’ law, which in particular implies that we only have singlet states

in the bulk.

The free gauge theory partition function with the Neumann boundary condition can be

computed using the methods described in [19, 20, 17]; we will follow the treatment of [17] in

what follows. To enumerate the gauge invariant operators in the theory, we should construct

gauge invariant words from the basic letters. So we string along the fields from the set

Ψ each weighed by its energy and project onto singlet states to achieve gauge invariance.

The projection has to be done accounting for particle statistics; as usual we pick symmetric

combinations of the bosons ΨB = {Aµ, XI} and anti-symmetric combination of the fermions

8A suitable generalization of a theorem due to Meinardus allows determination of the asymptotics of

ZN=4 itself, see [18].
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 Neumann bcs: account for Gauss Law constraint & statistics.
ΨF = {ψαI}. As explained in [17] we can express the result in terms of an integral over the

gauge group. One has

Z(x) =

�
[DU ] exp

� ∞�

m=1

1

m

�
zB(x

m) + (−1)m+1
zF (x

m)
�
χG
adj(U

m)

�
, (4.18) Zneu

where U is a group element of the gauge group G and [dU ] is the standard Haar measure on

the group manifold. χG
adj is the group character in the adjoint representation (since all the

field content of N = 4 SYM transforms in the adjoint of G).

In order to account for the statistics, we have split up the single particle (or Abelian)

partition function into bosonic and fermionic parts. To be precise,

zB(x) = α z
+
scalar(x) + (6− α) z−scalar(x) + zgauge(x) , zF (x) = 4 zfermions(x) (4.19) zbzf

Of physical interest to us is the fact that the theory exhibits a large N phase transition

between a “confining” phase with a free-energy of order one, and a “deconfined phase” which

behaves like a free theory in the bulk, i.e. F ∼ O (N2). This transition happens precisely at

the temperature [17]9

T� = − 1

�4 log(x�)
, with z(x�) = zB(x�) + zF (x�) = 1 (4.20) weakHagA

The low temperature phase has a Hagedorn density of states proportional to exp(E/T�).

One can evaluate the location of this transition for various choices of scalar boundary condi-

tion specified by α. The result is tabulated in Table 1. At weak non-zero ’t Hooft coupling

λ, the transition either remains a first order phase transition or splits into two continuous

phase transitions; a three-loop computation is required to distinguish between these two

possibilities [17].

Note that the symmetric choice of scalar boundary conditions α = 3, which can preserve

half of the supersymmetries of the theory (in the ground state), leads to a particularly simple

value for the transition temperature, T� =
1

2 log(3) �4
.

Multi-particle partition function for Neumann boundary condition for H ⊂ G:

One can also perform a similar analysis when we have modified boundary conditions for a

subgroup H of G. Now one has a single constraint on H-valued fields. Assuming that the

fields in the complement G/H transform in representations Ri of H one obtains the partition

9At large N the computation can be carried out more simply by enumerating the gauge invariant oper-

ators. The transition temperature is determined by examining the boundary convergence of the partition

sum thus computed. Equivalently one can re-express (4.18) in terms of the eigenvalue distribution and look

for the boundary of stability of the uniform distribution (see also Appendix B).
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λ, the transition either remains a first order phase transition or splits into two continuous

phase transitions; a three-loop computation is required to distinguish between these two

possibilities [17].

Note that the symmetric choice of scalar boundary conditions α = 3, which can preserve

half of the supersymmetries of the theory (in the ground state), leads to a particularly simple

value for the transition temperature, T� =
1

2 log(3) �4
.

Multi-particle partition function for Neumann boundary condition for H ⊂ G:

One can also perform a similar analysis when we have modified boundary conditions for a

subgroup H of G. Now one has a single constraint on H-valued fields. Assuming that the

fields in the complement G/H transform in representations Ri of H one obtains the partition

9At large N the computation can be carried out more simply by enumerating the gauge invariant oper-

ators. The transition temperature is determined by examining the boundary convergence of the partition

sum thus computed. Equivalently one can re-express (4.18) in terms of the eigenvalue distribution and look

for the boundary of stability of the uniform distribution (see also Appendix B).

17



 N = 4 SYM on AdS4 : Two puzzles

 N = 4 has SL(2,Z)  S-duality. 
 Expect exchange Dirichlet and Neumann bcs (true for abelian 

theory), but  

 Dirichlet: O(N2) excitations about the vacuum

 Neumann: O(1) excitations about the vacuum
  Phase transition as a function of coupling?

 Expect to have holographic dual in AdS5

 how does bulk dual have N2  dofs? 
 New asymptotically AdS spacetimes with degenerate horizons?



Susy bc for N = 4 SYM on AdS4 

 Useful to look at susy preserving bcs for N = 4
 Have to treat scalars asymmetrically: SO(6)  → SO(3) X SO(3)

 In fact the theory has a plethora of 1/2-BPS boundary conditions.
 Complete classification exists for theory on half-space R2,1 X R+.

 Adapt these boundary conditions on AdS4 as it is conformal to the 
half-space.
 Rich dynamics enabled by choice of bcs.

Breitenlohner, Freedman

Gaiotto, Witten



 Abstract discussion of susy bc

  Simpler understanding of boundary conditions in terms of D-branes 
for unitary G. 

 Gaiotto-Witten bcs are characterized by a triple (ρ, H, B ) for gauge 
group G.

 ρ (Nahm data): SU(2) → G
 H: commutant of Nahm data (preserved gauge group)

 B: Boundary CFT living on R X S2.



Bcs via brane constructions

 Neumann bc: N D3-branes ending on a single NS5-brane.
 Gauge fields and 3 scalars: Neumann bc
 Radial component + remaining 3 scalars: Dirichlet bc

 Dirichlet bc: N D3-branes ending on a N D5-branes.
 Gauge fields and 3 scalars: Dirichlet bc
 Radial component + remaining 3 scalars: generalized Neumanntype, so I prefer generalized Neumann by a small �.

dX i

dz
+ �ijk [Xj, Xk] = 0. (6.4) nahm

These boundary conditions arise for D3-branes ending on a D5-brane (hence D-type).

• Neumann or NS-type: This boundary condition involves Neumann boundary condition

for Aµ and for Y , whilst X and Az satisfy Dirichlet boundary condition. This boundary

condition arises for D3 branes ending on a single NS5-brane. In this case the entire

gauge symmetry of the N = 4 SYM, G, is preserved on the boundary of the half-space.

As a result one has only O(1) states in the spectrum at low energies owing to the singlet

constraint discussed in §4.

6.1.2 Nahm data for the D-type boundary conditions
s:nahm

We will first attempt to understand some aspects of D3-branes ending on D5-branes which

will clarify the role of the generalized Neumann boundary conditions(6.4) relevant for the

D-type boundary condition mentioned above. To do so let us recall that the D5-brane has a

world-volume U(1) gauge field that is sourced when a D3-brane ends on the five-brane. As is

well known the end point of the D3-brane is like a monopole in the D5-brane world-volume.

A single D3-brane ending on a single D5-brane simply gives a Dirac monopole singularity at

the intersection for the U(1) gauge field. In order for multiple D3-branes to terminate on a

single D5-brane one has to generalize the Dirac monopole solution; this is precisely achieved

by Nahm’s equations (6.4).

There is an intuitive way to think about this boundary condition and the solutions of

Nahm’s equations in terms D-branes. In fact the solutions to Nahm’s equation are the fuzzy

funnel construction of [22]. As described there the D3-branes ending on the D5-brane exert

a force and distort the world-volume of the D5-brane. Alternately one can think of the

D3-branes themselves flaring out to create a D5-brane as described in the non-commutative

construction of [23].

To see this more explicitly consider N -D3 branes that flare out as a fuzzy funnel and

make up a single D5-brane. To obtain this by solving (6.4) we require that the X fields are

required to provide a homomorphism from SU(2) into SU(N) which has a simple pole at

z = 0, i.e.,

X i =
1

z
ti , ti ∈ N-dimensional representation of SU(2). (6.5) xbc

Since the scalar fields X i transform in this case under the N -dimensional representation of

SU(N) the gauge group of N = 4 SYM is explicitly broken by this choice of boundary

condtions. More generally, solutions to Nahm’s equation can be given by prescribing a
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 each D3-brane ends on a D5-brane. SU(N) global symmetry comes 
from the D5 brane gauge fields.



S-duality for N=4 with boundary

Dirichlet bcs have explicit D5-brane sources and the N D5-branes 
actually realize the SU(N) global symmetry.

Can have D3 branes ending on a single D5-brane, but choice of solution 
to Nahm’s equation breaks global symmetry completely. This is 
obtained by the N-dimensional irrep of SU(2). 

 S-dual of Dirichlet bc: Neumann bc coupled to a boundary CFT

 S-dual of Neumann bc: Nahm poles breaking G to trivial subgroup.

Xi ∼ ti

z
, ti ∈ � , � : SU(2) → G



Holographic duals for Simple bcs?

Boundary condition Realization Dual boundary condition

Neumann for SU(N) N D3-branes ending Dirichlet with Nahm pole

on a NS5-brane ρ = N

Dirichlet for SU(N) D3-branes ending (3 + 1)-dim N = 4 SYM coupled to

on N D5-branes (2 + 1)-dim T (SU(N)) quiver

Table 2: The basic boundary conditions and their duals. The field theories are engineered

by taking N D3-branes lying along (0123) with z being restricted to z ≥ 0. D5-branes are

taken to lie along (012456) while NS5 branes occupy (012789). SU(2) representations are

labelled by appropriate integers, with 2j+1 denoting the spin j representation. t:basicd

of degrees of freedom, though many of these fields are heavy due to the Higgs mechanism

resulting from (6.5).

On the other hand the Dirichlet boundary conditions preserving the entire global symme-

try are obtained by having N D3-branes ending on N -D5 branes (or more generally picking

appropriate homomorphisms ρ for general g). The S-dual is then given by N D3-branes

ending on N NS5-branes. This is a non-trivial boundary condition, and for the first time

we encounter the third ingredient mentioned in the supersymmetric boundary conditions

earlier, viz., the boundary CFT B. This theory is a 2+1 dimensional CFT with N = 4

supersymmetry. It was shown in [10] that this theory B is a quiver type theory called T (G),

and it has G×G
∨ global symmetry, with G

∨ being the dual of G.

The theory T (SU(N)) is a bit easier to describe in terms of branes. We consider N NS5-

branes ordered along the direction z with j D3-branes between the jth and (j+1)st NS5-brane,

with the leftmost NS5-brane having a single D3-brane ending on it. The T (SU(N)) theory

is the superconformal 2 + 1 dimensional CFT which arises in the infra-red limit of such a

quiver gauge theory; in this limit the NS5-branes overlap, so we get an SU(N) × SU(N)

global symmetry from the N NS5-branes and the N D3-branes going out of the intersection

region. In our construction above the D3-brane factor of the global symmetry is gauged,

while the NS5-brane factor is dual to the original SU(N) global symmetry associated with

the Dirichlet boundary conditions.

More generally the strategy for finding the S-dual of a given boundary condition (ρ, H,B)

is described in detail in [10]. For the case of unitary gauge groups having brane constructions,

one can use the fact that NS5-branes and D5-branes are exchanged by S-duality. This has to

be further supplemented by some brane translations to be able to read off the dual boundary
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 What about holographic duals for these boundary conditions?
  Dirichlet: perhaps impossible to find weakly coupled gravity dual 

since we require to have large number of D5 sources.
 Neumann: potentially no obstruction, but no solution with desired 

properties is known.



Holographic Duals of the Simple bcs

  Dirichlet case: 
 The D5s are expected to play an important role. 
 Necessary for global symmetry ⇒ can’t replace them by their 

effective geometry (which would gauge the symmetry).
 They provide a place for the D3s to end ⇒ effect will be strong near 

AdS boundary. 
 S-dual involves complicated boundary CFT. 

  Neumann case: 

 NS5 has O(1) backreaction in the sugra limit. 
 S-dual is a single D5 ⇒ Nahm data involving N-dim irrep of SU(2). 

 The W-bosons are all massive with m ~ √N.  Gravity dual?



Summary: Strong coupling limits of simple bc

 The simplest set of susy bcs are disappointing.
 Hard to see how to construct appropriate duals in the Dirichlet case 

and the Neumann bcs seem just a bit out of reach.

 Main message: holographic duals possible if we have a boundary 
gauge symmetry of sufficient rank (scales with N). 

 Strategy: Engineer new classes of boundary conditions that allow 
exploring the planar strong coupling limit. 
 Preserve a large amount of boundary gauge symmetry. 

 Lead us to study “quotient constructions’’.

Alternately one can work with “transparent bcs’’.           Hubeny, Marolf, MR



 N = 4 SYM on AdS4 : Quotients

 A-priori we can pick bcs that break G to subgroup H.
 Essentially these are Neumann for some subgroup. 

 
 Obtain via a quotient:
 Mod out the theory on R3,1 by Z2 which acts as spacetime reflection 

together with an involution on G.

 Can get large class of such examples whose S-duals are also known.
 Focus on unitary G for simplicity.

Involution Quotient Gauge group H ⊂ G

Class I O5+ SO(N)

Class II O5− USp(N)

Class III I4(−1)FL SU(p)× SU(N − p)

Table 3: A summary of the involutions breaking the gauge symmetry and their realization

in string theory. t:quosum

• An orbifold by I4 (−1)FL . Here I4 is a spacetime reflection on four directions, three

directions transverse to the D3-brane along with z → −z, and (−1)FL is the operator

that counts world-sheet left moving fermions.

• An orientifold which involves the same I4 reflection as above along with a world-sheet

orientation reversal.

The quotient constructions in string theory have a natural mapping to the involutions

of unitary G mentioned above. The orbifold by I4 (−1)FL has of course to be supplemented

with an action on the Chan-Paton factors. One has a choice of a discrete Z2 action by way of

assigning charges ±1 to the Chan-Paton factors. Since one can pick say p D3-branes where

the action is + and q with action −, the orbifold realizes the Class III involution, thereby

breaking the gauge group down to SU(p)× SU(q) with p+ q = N . It is also useful to note

that this orbifold has a twisted sector U(1) gauge field that lives on the fixed plane.

In the case of the orientifold, the quotient itself breaks SU(N) down to USp(N) or to

SO(N) depending on the choice of orientifold plane (O5∓, respectively). Apart from the

five brane charge carried by the orientifolds, the two choices of O5± are distinguished by

the flavour symmetry acting on the D3-brane fields. To be precise, m D5’s coincident with

an O5− have SO(2m) gauge symmetry, while those atop an O5+ have a USp(2m) gauge

symmetry. For a set of D3-branes which end on such D5+O5, these gauge symmetries of the

D5-brane theory act as flavour symmetries on the hyper-multiplet fields.

The flavour symmetry is useful to relate the two choices of the orientifold action with the

Class I and II involutions described above. The Class I involution which breaks SU(N) →
SO(N) involves an O5+ orientifold, while the Class II involution breaking SU(N) → USp(N)

is related to an O5− orientifold plane. A summary of the basic constructions is provided in

Table 3 for quick reference.

As before these simple ingredients do not suffice to explain all possible boundary condi-

tions; one can certainly have Nahm poles which reduce the symmetry in addition to explicit

breaking of symmetry by further Neumann boundary conditions. Rather than explain these

in abstraction, we will introduce them as necessary when we describe the action of the

S-duality between these various quotient constructions momentarily.
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 N = 4 SYM on AdS4: Quotients

Gauge group Quotient Dual gauge Nahm data Boundary

H group �H for dual data (dual)

D5-brane

SU(
N
2 )× SU(

N
2 ) I4(−1)

FL USp(N) ρ = N × 1 localized

on O-plane

Symmetry

SU(p)× SU(q) I4(−1)
FL USp(2q) ρ = (p−q)⊕ 2q × 1 breaking

Neumann bc

Non-trivial

SO(N) O5
+ SU(N) ρ = N × 1 2 + 1 SCFT

on boundary

USp(N) O5
− SU

�
N
2

�
d
⊂ SU(N) ρ =

N
2 × 2 None

Table 4: The possible gauge theories engineered by the orbifold/orientifold action and their S-

dual partners. The first two columns refer to the gauge theory obtained by the quotient action

and the last three columns provide the data describing the dual theory. The notation is as in

Table 2 with orientifold planes along (012456) and the orbifold plane along (012789). Here

SU(
N
2 )d denotes the diagonal subgroup in the decomposition SU(

N
2 ) × SU(

N
2 ) ⊂ SU(N).

Note that the S-dual of a quotient in general involves action of an involution and in addition

some Nahm data and/or extra boundary degrees of freedom. t:orborient

USp(2q) ⊂ SU(2q). The case p = q + 1 simply involves symmetry breaking boundary

conditions without a Nahm pole, the symmetry group being just USp(N − 1). In this

generic case of p �= q one does not require D5-brane degrees of freedom (these are

effectively provided by the Nahm data).

Thus the S-duals of the orbifold boundary conditions all involve modifications of the O5
−

orientifold (either by explicit introduction of the D5-brane for p = q or by Nahm poles for

general p �= q).

Having understood the S-duals of the orbifold constructions, we now turn to the orien-

tifold boundary conditions. There are two cases to consider depending on the five brane

charge of the O-plane:

• The O5
+
orientifold or the Class I involution, breaks the SU(N) of the D3-branes down

to SO(N). This orientifold is S-dual to a certain configuration of D3-branes ending on

a NS5-brane (which follows from the fact that the D5-brane charge of the O5
+
dualizes
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Quotient theories at weak coupling

 All of the above examples have the essential features of Neumann bc:

 O(1) states at low temperature due to singlet constraint

 Hagedorn transition at some  Tc l ∼ 1.
 Curiously in all cases the Hagedorn transition occurs at a  lower value 

of the temperature. 

Essentially all we need to make explicit the formula (4.21) are the branching rules for the

adjoint representation of G = SU(N) into appropriate representations of H, i.e.,

adj(SU(N)) = N
2−1 =

�

i

mi Ri , (6.7)

where mi are the multiplicities with which the representation Ri of H occurs. For the

quotients of interest the decomposition of the representations is:

SU(p)× SU(q) �→ SU(N) : N
2−1 =

�
p
2−1,1

�
⊕
�
1,q2−1

�
⊕ (p, q̄)⊕ (p̄,q) (6.8)

SO(N) �→ SU(N) : N
2−1 =

N(N− 1)

2
⊕
�
N(N+ 1)

2
− 1

�
(6.9)

USp(N) �→ SU(N) : N
2−1 =

�
N(N+ 1)

2
− 1

�
⊕ N(N− 1)

2
(6.10)

Essentially for the unitary subgroup H = SU(p) × SU(q) we get adjoint representations

for each component along with bi-fundamentals. The orthogonal subgroup H = SO(N)

comes with the adjoint (rank 2 anti-symmetric tensor) and the symmetric, traceless 2-tensor

representation. The symplectic subgroup USp(N) likewise has matter in the rank 2 anti-

symmetric tensor representation in addition to the adjoint gauge multiplet.

The computation of the Hagedorn temperature from (4.21) can be done using the tech-

niques described in [17] which we review in Appendix B. The upshot of the calculation is that

for the three classes of quotients described above (with p ∼ q for the Class III involution)
13

one finds a transition temperature:

T� = − 1

�4 log(x�)
,with z(x�) = zB(x�) + zF (x�) =

1

2
(6.11) Hagquo

For all the quotients of interest, the Hagedorn temperature (taking zB(x) with α = 3 as

required by supersymmetry) is obtained to be T� = − 1
�4 log(7−4

√
3)
.

7 Holographic duals for N = 4 SYM on AdS4
s:holredux

We would like to find holographic descriptions of strongly coupled N = 4 SYM on AdS4 with

the various boundary conditions described in §6.2. Ideally we not only want to understand

the supergravity dual of the ground state, which is some asymptotically locally AdS5 geom-

etry as described in §5.1, but we also want to be able to describe thermal excitations so that

we can probe the phase structure of the theory at strong coupling. We have argued in §6.1.4
13For the Class III involution when p ∼ N but q � N , one has to be a bit more careful since the

eigenvalue distribution for the SU(q) gauge group cannot be treated in a continuum approximation. In fact,

for p = N − 1 one expects that the transition temperature is in fact given by (4.20).
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  Rationale: non-trivial matter (under H ⊂ G) implies that there are 
multiple ways to form singlets. More choices ⇒ faster growth of 
operators.



 Holographic duals of N = 4 SYM on AdS4 

 Expect holographic duals in terms of strings in AdS5  X S5

 AdS4  foliations AdS5?
  boundary is a double cover of AdS4 
 identify two copies of AdS4 via an orbifold/orientifold action.

that the Dirichlet boundary conditions pose a challenge for a holographic interpretation in

terms of supergravity. Whilst it seems possible that the Neumann boundary condition could

admit a description in terms of supergravity degrees of freedom, determining it requires con-

struction of a new class of solutions to type IIB supergravity. We postpone this interesting

problem for future analysis and in the following turn to the quotient constructions described

in §6.2; these prove more amenable to holographic descriptions in terms of already known

solutions.

One of the biggest advantages of the orbifold/orientifold described in §6.2 is that gener-

ically one has large enough residual gauge symmetry to ensure that the low temperature

density of states in O(1). We have furthermore seen explicitly in §6.2.3 that the free energy

of the theory undergoes a Hagedorn transition at a critical temperature Tc ∼ �−1
4 . In fact,

our analysis works nicely in both the electric and magnetic descriptions and one has a nice

consistent picture that gels with the extreme limits.

7.1 AdS foliations of AdS
s:

A simple starting point which hints at an appropriate bulk spacetime is to consider the AdS5

geometry, foliated by AdS4 slices. The AdS5 metric is readily written down as

ds2 = dR2 +
L2
5

�24
cosh2

�
R

L5

�
γµν dx

µ dxν =
L2
5

cos2(Θ)

�
dΘ2 +

1

�24
γµν dx

µ dxν

�
, (7.1) adsinads

where the metric γµν is the standard metric on global AdS4 as for instance given in (2.1). It

is important to note that in these coordinates the boundary is not a single copy of AdS4 but

rather two copies of the same, attained as R → ±∞ in the coordinatization chosen above.

To see this explicitly, note that the global AdS5 geometry has the metric

ds2 = −
�
1 +

ρ2

L2
5

�
dt2 +

dρ2

1 + ρ2

L2
5

+ ρ2 (dζ2 + sin2(ζ)Ω2
2) (7.2) global5

and one obtains (7.1) by the coordinate transformation:

ρ2

L2
5

=
L2
5

�24
cosh2

�
R

L5

� �
1 +

r2

�24

�
− 1 , ρ2 sin2(ζ) =

L2
5

�24
r2 cosh2

�
R

L5

�
. (7.3)

The coordinate ranges are R ∈ (−∞,∞), Θ ∈ (−π/2, π/2) for (7.1) whilst ρ ∈ [0,∞) and

ζ ∈ [0, π]. This coordinate transformation make it clear that the ESU4 boundary of the

global AdS5 is a double-cover of AdS4. For R > 0, the angular coordinate ζ runs from 0 to

π/2 while as R goes negative, it explores the region π/2 to π. Thus the two copies of AdS4

are joined across equator of the S3, i.e., at ζ = π/2.

In (7.1) we have an in principle candidate for the holographic dual of the N = 4 SYM on

AdS4. However, since one naturally has two copies of AdS4 on the boundary one would have
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  The boundaries are located at large positive and negative values of R 
respectively.
 Two copies of AdS4 are joined across the equator of the S3.



 Holographic duals of N = 4 SYM on AdS4 

  In fact, the quotient actions we saw above are precisely of the form 
we need to identify the two AdS boundaries.
 We identify the two AdS4  factors and also act with a reflection on the 

S5 to ensure that we have good string background. 

GW bcs with orbifolds/orientifolds preserving large enough gauge 
symmetry have duals in terms of strings on AdS5  X S5 with orbifold/
orientifold 5-plane wrapping AdS4  X S2.



Strong coupling phase structure

  All static, spherically symmetric AdS5 geometries can be rewritten in 
a form which makes the boundary AdS4 manifest.

applied to (7.4) results in the metric

ds2 =
ρ̄2

L2
d+1 (1 +

r2

�2d
)

�
−f(ρ̄)

ρ̄2
L2
d+1

�
1 +

r2

�2
d

�
dt2 +

dr2

(1 +
r2

�2d
)
+ r2 dΩ2

d−2

�
+

�2
d

L2
d+1

dρ̄2

f(ρ̄)
(7.8) warpads

We have now achieved the stated goal of writing d+1-dimensional static, spherically symmet-

ric asymptotically globally AdSd+1 spacetimes in coordinates where we have AdSd boundary

(up to a conformal transformation, and the need for a Z2 quotient as discussed above).

The metric (7.8) with d = 4 provides a class of potential dual spacetimes for thermal

N = 4. When ρ+ = 0 we have our familiar friend, pure AdS5, while ρ+ �= 0 provides the

Schwarzschild-AdS5 geometry written in coordinates where constant ρ slices are (conformal

to) copies of AdS4. Since with ρ+ �= 0, the temporal Killing field has vanishing norm at

ρ = ρ+, regularity of the Euclidean geometry requires that one identify the Euclidean time

coordinate with period β = T−1
H

. Here TH is the Hawking temperature of a Schwarzschild-

AdSd+1 black hole

TH =
d ρ2+ + (d− 2)L2

d+1

4π ρ+ L2
d+1

. (7.9) bhtemp

In particular, the Schwarzschild-AdSd+1 solutions have a minimum Hawking temperature

attained at ρ+ =

�
d−2
d
Ld+1, with Tmin =

1
2πLd+1

�
d (d− 2).

Let us now return to the thermal N = 4 SYM on AdS4, where we impose the quo-

tient boundary conditions preserving
1
2 of the supersymmetries. From (7.9) we see that the

Schwarzschild-AdS5 solutions with ρ+ �= 0 can provide potential holographic duals only for

T ≥
√
2

π �4
.
15

For lower values of the temperature there is a unique geometry, viz., the thermal

AdS5 geometry written in AdS4 foliation (together with the Z2 involution).

However, one still has to answer the question of which of these geometries has lower

free energy. This can be determined for instance by computing the Euclidean action on the

solutions. In fact, there is nothing new to compute as the results are easily obtained by

recalling the physics of the Hawking-Page transition [25, 26].
16

For the spacetimes of the

general form (7.4), one finds that the Schwarzschild-AdS5 black hole solution has lower free

energy only for ρ+ ≥ L5.
17

This in particular, implies that the Hawking-Page transition for

N = 4 SYM occurs at a critical temperature Tc =
3
2π

1
�4
.

From an explicit evaluation of the Euclidean action, one can argue that the free energy

15
We henceforth use the geometry (7.8) to express the temperatures in terms of the field theory scale �4.

16
Note that we are really interested in quotients of (7.8) to describe duals of the field theories discussed

in §6.2. The effect of the quotient results in a rescaling of the free energy without modifying its zeros.

17
In fact this statement is true in all dimensions; the black hole solution dominates only when its radius

exceeds the AdS radius. It follows then that the Hawking-Page temperature for a d-dimensional CFT is

simply Tc =
d−1
2π

1
�d
.
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 Phase structure tracks through to strong coupling regime.
 low temperature phase is the thermal gas. 

 high temperature phases is the Schwarzschild-AdS5  black hole.

Tc =

√
2

π �4

  Transition temperature appears to be independent of involution.



Summary & Open issues

 Rich dynamics for field theories on AdS4.
 Lots of the structure of the dynamics is due to the non-trivial nature 

of the boundary conditions.
 Possibility of various different bcs for scalars, vectors, fermions.

 The story for N = 4 is very intricate.
 Discussed only susy (1/2-BPS) bcs, for which already there many 

interesting issues.
 Could look for duals for other bcs with less/no susy.
 Other CFTs; different dimensions? 


