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Two well-known virtues of large N string/gauge 
theory dualities:

•  The large radius limit of string theory is dual to the 
strong coupling regime in the gauge theory

•  The genus expansion of the string theory can be in 
principle mapped to the 1/N expansion of the gauge 

theory

R

!s
! 1↔ λ! 1
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These virtues have their counterparts: 

• It is hard to test the duality, since one has to do 
calculations at strong ‘t Hooft coupling in the gauge 

theory. More ambitiously, one would like to have 
results interpolating between weak and strong coupling

• It is hard to obtain information beyond the planar 
limit, even in the gauge theory side.
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In this talk I will report on some recent progress on 
these problems in ABJM theory and its string dual.

In particular, I will present exact results (interpolating 
functions) for the planar 1/2 BPS Wilson loop vev and 

for the planar free energy on the thee-sphere. 

The strong coupling limit is in perfect agreement with 
the AdS dual, and in particular provides the first 

quantitative test of the         behaviour of the M2 brane 
theory

N3/2
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Moreover, I will show that it is possible to calculate 
explicitly the free energy for all genera (very much like 

in non-critical string theory). 

This makes possible to address some nonperturbative 
aspects of the genus expansion in a quantitative way 
(large order behavior, Borel summability, spacetime 

instantons...)
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 We will rely on the following “chain of dualities”, 
which relates a sector of ABJM theory to a 

topological gauge/string theory via a matrix model: 

ABJM theory

large N

localization

localization

CS on S3/Z2

Topological Strings
on local P1 × P1

CS matrix model

Type IIA superstring
on AdS4 × CP3

large N
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A   B   J  M  theory

N1 N2

2 hypers

2 twisted hypers

U(N1)k × U(N2)−k

CS theories + 4 hypers C in 
the bifundamental; related to  
supergroup               theory 

via [Gaiotto-Witten] 

This is a 3d SCFT which (conjecturally) describes                   M2 
branes probing a              singularity, with                 fractional 

branes 

U(N1|N2)
two ‘t Hooft 

couplings

C4/Zk

λi =
Ni

k

|N1 −N2|

Note:  “ABJM slice” refers to λ1 = λ2 = λ

min(N1, N2)
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type IIA theory/AdS4 × P3

Gravity dual

Hopf 
reduction

ds2 =
L2

4!2s

(
ds2

AdS4
+ 4ds2

CP3

)

Gauge/gravity 
dictionary:

gst =
1
k

(
32π2λ̂

)1/4

B = λ1 − λ2 +
1
2

M-theory on
AdS4 × S7/Zk

(
L

!s

)2

=
(
32π2λ̂

)1/2

λ̂ = λ1 −
1
2

(
B2 − 1

4

)
− 1

24
Warning! 

shifted charges
[Bergman-Hirano, Aharony et al.]
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Wilson loops

1/2 BPS Wilson loops constructed by [Drukker-Trancanelli]. They exploit 
the hidden supergroup structure

W 1/2
R = sTrRP exp

[
i
∫ (

A1 · ẋ + · · ·
−A2 · ẋ + · · ·

)]

U(N1) connection U(N2) connectionrep U(N1|N2) circle

There are also circular 1/6 BPS Wilson loops. They involve 
only one gauge connection, but they know about the other 

node through the bifundamentals

W 1/6
R = TrRP exp

[
i
∫ (

A1 · ẋ + |ẋ|CC
)]
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Two string/gravity predictions

〈W 1/2〉planar ∼ eπ
√

2λ̂
1) 1/2 BPS Wilson 

loop from 
fundamental string

2) The planar free energy of the Euclidean theory on         
should be given by the (regularized) Euclidean Einstein-Hilbert 

action on AdS4

S3

ds2 = dρ2 + sinh2(ρ) dΩ2
S3 ,

−F (N, k) ≈ SAdS4 =
π

2GN
=

π
√

2
3

k2λ̂3/2, λ̂$ 1, gst % 1

[Emparan-Johnson-Myers] 
using universal counterterms Nonzero and probing the 3/2 growth!
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A similar prediction: 1/2 BPS Wilson loop in N=4 SYM. The string 
prediction at strong coupling was obtained from an exact 

interpolating function: [Ericksson-Semenoff-Zarembo, Drukker-Gross]

∼ e
√

λ

1 +
λ

8
+ · · ·

Rationale: the path integral calculating of the vev of the 
Wilson loop reduces to a Gaussian matrix model 

λ = g2
YMN

λ! 1

λ! 1

〈WR〉 =
1
Z

∫
dM e−

2N
λ Tr M2

TrReM

1
N
〈W 〉planar =

2√
λ

I1(
√

λ)

Exact interpolation from a matrix model
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This is the simplest matrix model, and the planar density of 
eigenvalues is the famous Wigner semicircle distribution

ρ(z) =
2

πλ

√
λ− z2

1
N

〈W 〉planar =
∫ √

λ

−
√

λ
ρ(z)ezdz

This conjecture was finally proved by using localization techniques 
[Pestun]. 

One can also compute 1/N corrections systematically
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Reduction to a matrix model in ABJM

Localization techniques were extended to the ABJM theory in a 
beautiful paper by [Kapustin-Willett-Yaakov]. The partition function on      

is given by the following matrix integral:  

contribution 4 hypers

S3

contribution CS gauge fields

 We “just” need the planar solution, but exact in the ‘t Hooft 
parameters, in order to go to strong coupling

ZABJM(N1, N2, gtop)

=
1

N1!N2!

∫ N1∏

i=1

dµi

2π

N2∏

j=1

dνj

2π

∏
i<j

(
2 sinh

(
µi−µj

2

))2 (
2 sinh

(
νi−νj

2

))2

∏
i,j

(
2 cosh

(
µi−νj

2

))2 e−
1

2gtop (P
i µ2

i−
P

j ν2
j )

gtop =
2πi
k
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Relation to Chern-Simons matrix models 

Shortcut: relate this to the lens space CS matrix model [M.M. 
building on Lawrence-Rozansky] [AKMV, Halmagyi-Yasnov] 

U(N) (pure) 
CS theory on 
L(2,1)=          S3/Z2

sum over flat connections

U(N) (pure) CS theory on     : S3

ZS3(N, gtop) =
1

N !

∫ N∏

i=1

dµi

2π

∏

i<j

(
2 sinh

(
µi − µj

2

))2

e−
1

2gtop

P
i µ2

i

can be rederived with SUSY localization  [Kapustin et al.]

ZL(2,1)(N, gtop) =
∑

N1+N2=N

ZL(2,1)(N1, N2, gtop)
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ZL(2,1)(N1, N2, gtop) =
1

N1!N2!

∫ N1∏

i=1

dµi

2π

N2∏

j=1

dνj

2π

∏

i<j

(
2 sinh

(
µi − µj

2

))2 (
2 sinh

(
νi − νj

2

))2

×
∏

i,j

(
2 cosh

(
µi − νj

2

))2

e−
1

2gtop (P
i µ2

i +
P

j ν2
j )

  Superficially similar to the matrix model describing ABJM...   

1/a a−1/b−b

z

Z = ez

z = 0

z = πi

N1

N2

This is a two-cut model with two ‘t Hooft parameters

ti = gtopNi
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Fact [M.M.-Putrov]: the ABJM MM is the supermatrix version of 
the L(2,1) MM. They are related by analytic continuation:

N2 → −N2

1/N expansion F (N1, N2, gtop) =
∑

g≥0

g2g−2
top Fg(t1, t2)

analytic functions

t1 = 2πλ1, t2 = −2πλ2

CS matrix model

i.e.

ABJM theory

1/N expansion of the lens space matrix model gives the 
1/N expansion of ABJM free energy on the sphere
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Topological string large N dual

CS theory on L(p,1) has a large N topological string dual [AKMV]. 
The genus g free energies (for a fixed, generic flat connection) 
are equal to the genus g free energies of a topological string 

theory on a toric CY manifold

FCS
g (ti = gsNi) = FTS

g (ti = moduli)

For p=1 (i.e. M=    ) this is the 
original Gopakumar-Vafa large N 

duality. The CY target is the resolved 
conifold

S3 O(−1)⊕O(−1)→ S2

(single) ‘t Hooft parameter= (complexified) area of two-sphere
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Topological string large N dual 2

For p=2 the CY target is local            .  It has two complexified         
Kahler moduli             measuring the sizes of the two-spheres  

P1 × P1

T1, T2

S2

S2

A1

This implies that we can obtain the planar free energy of ABJM theory 
by using special geometry for this CY! 

or equivalently, mirror symmetry! 
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Topological Strings
on local P1 × P1

CS matrix model

ABJM theory

recap:

solvable! We want to compute 
the genus zero free energy. This 

is just the prepotential of the 
mirror manifold- a standard 

calculation in special geometry
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Moduli space and special geometry

A key subtlety is that there are many possible prepotentials, as 
in Seiberg-Witten theory. The reason is that the moduli space 

of this CY is nontrivial, and it has special points (or loci). At each 
special point in moduli space there is a preferred choice of 

local coordinates and prepotential 

orbifold point

T1, T2 →∞

t1, t2 → 0

large radius limit

conifold locus
t1 = 0 or t2 = 0

strong coupling
in ABJM

weak coupling
in CS MM/ABJM
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u = 1u = −1

weakly coupled
ABJM theory

strongly coupled
ABJM theory

conifold point

u→∞B =
1
2

(ABJM slice)

κ = λ = 0 κ, λ! 1

global coordinates: κ, B

modulus

One can show that, for each choice of B field, the 
moduli space is a copy of the u-plane of Seiberg-Witten 

theory

u = − cos(2πB) +
κ2

8
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Special geometry and analytic continuation

The local coordinates and the derivatives of the local 
prepotential w.r.t. them are called the periods. They are defined 

in a neighborhood of the special points

orbifold
period 
vector

Πweak = Πorbifold = (λi, ∂λiF
orb
0 )

Πstrong = MΠLR, ΠLR = (Ti, ∂TiF
LR
0 )

analytic continuation

(linear) symplectic transformation

large 
radius
period 
vector

cf. “phases” and small distances in CY manifolds [Witten, 
Aspinwall, Greene, Morrison]
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We stay on the ABJM slice for simplicity

standard periods at 
large radius:

N3/2      on the back of an envelope

analytic continuation from the orbifold 
point to large radius is S-duality:

orbifold periods fixed 
by weak coupling 

[AKMV] 

λ ∼ κ

∂λF orb
0 ∼ κ log(κ)

T ∼ log(κ)

∂T FLR
0 ∼ log2(κ)

λ ∼ ∂T FLR
0

∂λF orb
0 ∼ T

⇒ F orb
0 (λ) ∼ λ3/2, λ# 1
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In the ABJM slice we can write very explicit interpolating functions:

λ(κ) =
κ

8π
3F2

(
1
2
,
1
2
,
1
2
; 1,

3
2
;−κ2

16

)

∂λF0(λ) =
κ

4
G2,3

3,3

(
1
2 , 1

2 , 1
2

0, 0, − 1
2

∣∣∣∣−
κ2

16

)
+ 4π3iλ

0.1 0.2 0.3 0.4 0.5

10

20

30

40

50

60

∂λF0

λ

exact

SUGRA
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     B field and worldsheet instantons

λ1(κ, B) =
1
2

(
B2 − 1

4

)
+

1
24

+
log2 κ

2π2
+ f

(
1
κ2

, cos(2πB)
)

We can now add the B-field. The orbifold periods read, after 
analytic continuation to strong coupling:

serieswe reproduce the shifts!

after multiplying  by         it 
matches the AdS4 

calculation !

g−2
top phase of the 

partition 
function 

calculable series of 
worldsheet instantons on 

CP1 ⊂ CP3

F0(λ̂, B) =
4π3
√

2
3

λ̂3/2 − π3i(λ2
1 − λ2

2) +O
(

e−2π
√

2λ̂±2πiB

)

[Sorokin et al.]
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Back to Wilson loops

This corresponds to a (topological) disk string amplitude in the 
topological string picture

AdS prediction worldsheet instanton 
corrections 

One can refine this computation to obtain vevs for 1/6 BPS 
Wilson loops [M.M.-Putrov] and for 1/2 BPS “giant” Wilson loops 

[Drukker-M.M.-Putrov]

B=0: [M.M.-Putrov]

〈W 1/2〉 = eπiB κ(λ̂, B)
2

≈ eπ
√

2λ̂

(
1 +O

(
e−2π

√
2λ̂±2πiB

))
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Beyond the planar approximation
It turns out that one can compute the full 1/N expansion of 
the free energy in a systematic (and efficient!) way, at least in 

the ABJM slice

Mirror symmetry at higher genus is encoded in the BCOV 
holomorphic anomaly equations. Schematically,

∂t̄Fg(t, t̄) = functional ofFg′<g(t, t̄)

Direct integration [Klemm+Huang, M.M., ...] : formulate them in terms of 
modular forms and impose boundary conditions at special points 

in moduli space. In local CY they are fully integrable

F2 =
1

432bd2

(
−5

3
E3

2 + 3bE2
2 − 2E4E2

)
+

16b3 + 15db2 + 21d2b + 2d3

12960bd2
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Upgrading the matrix models of non-critical strings: we have an 
integrable structure encoding a 1/N matrix model expansion, 

similar to the Painleve-type nonlinear ODEs  

We can now address some nonperturbative issues in the string 
coupling constant by looking at the large genus behavior

Ast(λ) ∝ 1
π

∂λF0(λ) + π2i

Fg(λ) ∼ (2g)!(Ast(λ))−2g, λ >
1
2

[cf. Shenker]

A1

B

A1 A2

B

(complex) eigenvalue
tunneling

one-cut:
[Shenker, David, 

Seiberg-Shih, 
M.M.-Schiappa-

Weiss]

two-cuts:
[Klemm-

M.M.-Rauch]
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At strong coupling we find: Ast ≈
R3

4

(
1 +

2πi
R2

)

Complex instantons: superstring perturbation theory on AdS4xCP3 
is Borel summable for all nonzero ‘t Hooft coupling/radius!

Borel plane of the string coupling constant

Ast(λ)

5 10 15 20 25
g

!20

!15

!10

!5

5

10

R!II"g
Λ#1.2838 $ 0. I

Euclidean 
brane wrapping

          ?

What is the ZZ 
brane in this theory? RP3

Borel summability 
invisible in SUGRA 
-a stringy effect!

Fg(λ)
(2g)!|Ast(λ)|−2g

∼ cos(2gθA(λ) + δ)
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Conifold singularity and analytic continuation

In the ABJ theory, expanding around the conifold locus means 
expanding around pure CS theory (one A cycle/node collapses) 

In the ABJM slice, the conifold locus takes place at imaginary ‘t 
Hooft coupling and there is a double-scaling limit giving the 

c=1 string:

In this regime (with imaginary CS coupling) the genus 
expansion is no longer Borel summable (real instantons)

All this seems to give a concrete realization of the scenario 
advocated for Polyakov to go to de Sitter space

Fg ∼
B2g

2g(2g − 2)

(
λ− λc

log(λ− λc)

)2−2g

λc = −2iK
π2
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Conclusions and open problems

•  We have used matrix models/topological strings to derive 
important aspects of ABJM theory at strong coupling. It is of 

course possible to analyze related 3d SCFTs with the same tools 
[in progress]

•  Concrete predictions for worldsheet instanton corrections, 
which should be better understood. Direct calculation? 

Localization in the superstring?

•  Is there an a priori reason for the connection with topological 
strings? 

•  Nonperturbative effects in the string coupling constant: identify 
them in both the gauge theory (large N instantons?) and in the 

superstring theory (wrapped D-branes?)
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Appendix: Supermatrix models

Φ =
(

A Ψ
Ψ† C

)
Hermitian 

supermatrix

A, C Hermitian, Grassmann even

Ψ complex, Grassmann odd

Zs(N1|N2) =
∫

DΦ e−
1

gs
StrV (Φ)

Assume the eigenvalues are real (physical supermatrix model):

Zs(N1|N2) =
∫ N1∏

i=1

dµi

N2∏

j=1

dνj

∏
i<j (µi − µj)

2 (νi − νj)
2

∏
i,j (µi − νj)

2 e−
1

gs
(P

i V (µi)−
P

j V (νj))

Zb(N1, N2) =
∫ N1∏

i=1

dµi

N2∏

j=1

dνj

∏

i<j

(µi − µj)
2 (νi − νj)

2
∏

i,j

(µi − νj)
2 e−

1
g (P

i V (µi)+
P

j V (νj))compare 
to

[Yost, Alvarez-Gaume-Mañes, 
Dijkgraaf-Vafa, ...]
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