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• Structure of a partonic calculation.

• How to perform a simple NLO calculation.

• Reasons for calculating higher orders.

• Life after NLO: to NNLO and beyond.

• Examples of some state-of-the-art calculations are 
sprinkled throughout the lectures.

Overview of the lectures



• What are the higher order corrections that I’ll talk about?

• In these lectures I will be talking about corrections to hard-scattering cross 
sections, in particular QCD corrections.

• Since we’re living in a hadron-collider dominated era (at least for now), I 
will concentrate on such processes.

The hadronic cross section factorizes into a part 
describing the partons inside hadrons (universal) 

and another part describing the scattering of 
those partons (calculated case-by-case).

Any hard scale (Q2) will do, e.g. particle with large 
enough mass (Drell-Yan) or high ET object (inclusive jets).

• The presence of this scale means that the hard-scattering cross section may 
be calculated as a perturbative expansion, because of asymptotic freedom.

• I will be discussing an expansion in the strong coupling αs because it plays 
the dominant (but not the only) role in higher order corrections:

σ̂ab→X = σ̂(0)
ab→X + αs(Q2)σ̂(1)

ab→X + αs(Q2)σ̂(1)
ab→X + . . .

LO/tree level/Born NLO/1-loop NNLO/2-loop

σAB =
∫

dxadxb fa/A(xa, Q2)fb/B(xb, Q
2) σ̂ab→X



• A quick word about subjects that are important, but which I won’t cover.

• The other side of the coin is soft scattering processes. Although in 
principle described by the same theory of QCD, the level of understanding 
is much less compared with what I’ll discuss here.

• Such processes are important, for instance when:

• determining the total cross section;

• predicting properties of the underlying event;

• understanding multiple interactions.

• These are all dominated by non-perturbative effects that are relatively 
poorly understood and in practice are often only modelled.

• Of course, in order to make sense of the wealth of data that will be 
available we must have both hard and soft physics under control.

c.f. the lectures of 
Frank Krauss

Here, I’ll concentrate 
on aspects of pQCD.

Some material is 
borrowed from a recent 

IOP review paper.



• Before discussing higher order corrections, here’s a recap of the procedure 
for LO calculations.

1. Identify the leading-order partonic process that contributes to the 
hard interaction producing X.

2. Calculate the corresponding matrix elements.

3. Combine with appropriate combinations of pdfs for the initial-state 
partons a and b.

4. Perform a numerical integration over the energy fractions xa, xb and 
the phase-space for the state X.

usually a tree diagram, 
e.g. Drell-Yan

... but not always, e.g. 
Higgs from gluon fusion

• The NLO correction comes from combinations of diagrams that introduce an 
additional factor of αs .

σAB =
∫

dxadxb fa/A(xa, Q2)fb/B(xb, Q
2) σ̂ab→X



• These contributions fall into two categories, which can be illustrated 
simply by considering Drell-Yan production.

an additional gluon is radiated 
and present in the final state; in 
general there are contributions 

from additional quarks too

REAL radiation diagrams

the square of the amplitude 
appears in the expansion

VIRTUAL radiation or ONE-LOOP diagrams

the additional radiation is emitted 
and reabsorbed internally

it is the interference of these diagrams 
with the LO ones that enters

• The evaluation of each of these contributions can be performed using a well-
defined procedure that, unfortunately, leads to considerable complications.

• These complications mean that the evaluation of NLO corrections has, so 
far, eluded a solution via algorithmic methods (c.f. the plethora of leading 
order tools that F. Krauss has discussed).

• We will consider each contribution in turn.



• After straightforward application of the Feynman rules, the squared matrix 
elements for the real diagrams takes the form:

where the invariants are defined by:

|Mud̄→W+g|2 ∼ g2

(
t̂2 + û2 + 2Q2 ŝ

t̂û

)
,

ŝ = sud̄, t̂ = sug, û = sd̄g .

• These must be combined with the corresponding phase space integral for a
2 →2 scattering. This contains an integral of the form,

where we’ve used the fact that the gluon is massless and where θg represents 
the orientation of the gluon w.r.t. an arbitrary set of axes.

• Taking advantage of the fact that actually all the partons are massless we can 
write out the invariants in terms of energies and angles, so that:

• We can then see that, combining the final term of the ME and PS, we have:

t̂ = 2EuEg(1− cos θug), û = 2Ed̄Eg(1− cos θd̄g) .

g2

2

∫ (
Q2ŝ

EuEd̄

)
dEg d cos θg

Eg(1− cos θug)(1− cos θd̄g)
logarithmic singularities as 

Eg→0, cosθug→1 and cosθdg→1

∫
d4pg δ(p2

g)→
∫

d3"pg

2Eg
∝

∫
Eg dEg d cos θg



• The divergence as Eg→0 corresponds to the gluon becoming soft.

• The other two divergences represent the gluon travelling exactly collinear 
to the incoming up and anti-down quarks.

• Approaching both of these limits, the physical picture of the final state 
looks identical to the one at LO. In a detector with finite resolution that 
couldn’t detect close to the beam, we wouldn’t be able to tell them apart.

• This too is borne out by the calculation. The matrix element that is left 
over is exactly the LO one.

• This is easiest to see by considering the soft limit.
pu + pd̄ + pW + pg = 0kinematics with all particles outgoing:

[
ū(pd̄)γ

µ (−pu − pg)
(pu + pg)2

γαu(pu)
]

Vµ(pW )εα(pg)

[
ū(pd̄)γ

α (pd̄ + pg)
(pd̄ + pg)2

γµu(pu)
]

Vµ(pW )εα(pg)

→
(

pd̄ · ε(pg)
pg · pd̄

)
[ū(pd̄)γ

µu(pu)]Vµ(pW )

→
(
−pu · ε(pg)

pg · pu

)
[ū(pd̄)γ

µu(pu)]Vµ(pW )
(in the 

soft limit)



• Summing the diagrams, in the soft limit the amplitude is proportional to,

ε(pg) ·
(

pd̄

pg · pd̄
− pu

pg · pu

)
[ū(pd̄)γ

µu(pu)]Vµ(pW )
︸ ︷︷ ︸

LO amplitude

• Moreover, we can see the singular factor that emerges when we square the 
matrix element. It is just,

∑

spins

εµ(pg)ε!
ν(pg)

(
pd̄

pg · pd̄
− pu

pg · pu

)µ (
pd̄

pg · pd̄
− pu

pg · pu

)ν

=
2pu · pd̄

pg · pd̄ pg · pu

using the usual identity to sum over gluon polarizations 
and the fact that the quarks are massless

• This factorization into an eikonal factor multiplied by the LO matrix 
elements is in fact universal. 

• This is clear because the only diagrams
which are singular in the soft limit are
ones which emit the gluon at the end of
a line (propagators are just scalar products
involving the gluon momentum).

• Moreover, in our example we only relied on commuting gamma matrices at 
the end of a spinor line - not on the rest of the structure of the diagrams.

p1 p2

pX pYpg

1
(p1 + pX + pg)2

=
1

p2
X + 2p1 · pX + . . .



• The matrix element undergoes a similar factorization in the other singular 
cases, when the gluon is collinear to one of the quarks.

• Suppose u and g become collinear, i.e.

• In that limit, the invariants can be replaced according to, 

so that the matrix element becomes,

Q = pu + pg with pu = zQ, pg = (1− z)Q

ŝ = sud̄ → zsQd̄ û = sd̄g → (1− z)sQd̄ Q2 → sQd̄

|Mud̄→W+g|2 ∼ g2

(
t̂2 + û2 + 2Q2 ŝ

t̂û

)
−→ g2

sug

(
(1− z)sQd̄ +

2sQd̄ × zsQd̄

(1− z)sQd̄

)

= sQd̄ ×
g2

sug

(
1 + z2

1− z

)
in the limit that sug→0

LO matrix 
element squared

Altarelli-Parisi splitting 
function, Pqq(z)

• These collinear and soft singularities are a general feature of the real 
emission diagrams.

• Their effects must be included in a complete NLO calculation. We’ll now 
discuss how that can be done.



• Usually we expose the singularities by using dimensional regularization to 
move away from exactly four dimensions.

• For instance, setting d=4-2ε changes our phase-space measure:

• It also changes our matrix elements via the gamma matrix algebra. It actually 
introduces finite terms that we’re not worried about for now.

• The change in measure means that the integrals are no longer 
logarithmically divergent, e.g. for the soft integral:

∫
1

E2
g

× E1−2ε
g dEg = − 1

2ε
E−2ε

g

∫
d4pg −→

∫
d4−2εpg −→

∫
E1−2ε

g dEg d2−2εΩ

the divergences appear as poles 
in the regulating parameter ε

• At the end of the calculation we’d like to return to reality by taking the limit 
ε→0, but for now we’ll just have to live with the divergence.

• In simple cases (such as ones involving only a few particles) it’s possible to 
perform the whole phase-space integration analytically.

• In general though, this is not the case. The phase-space is too complicated 
and there are too many singular regions.

• In addition, we’d like to apply experimental cuts (for instance, to identify jets 
or to reduce backgrounds) that are impossible to incorporate analytically.



• In that case we need an alternative strategy. The usual approach is to 
isolate the singular regions of phase-space and try to extract the divergent 
pieces in analytic form.

• When the matrix elements are not singular, the phase-space can be safely 
integrated numerically.

• There are two methods that are widely used in existing NLO calculations. 
They both rely on the fact that, in the singular regions, both the phase-
space and the matrix elements factorize against universal functions.

phase-space 
slicing

subtraction

Giele, Glover and Kosower, 1980;
Keller and Laenen, 1999;
Harris and Owens, 2002.

Ellis, Ross and Terrano, 1981;
Catani and Seymour, 2002.

• I’ll briefly describe both approaches with reference to a toy integral:

• I’ll then look at the subtraction method in more detail.

x controls the approach to the singular 
region, c.f. the gluon energy

M(x) represents the real matrix 
elements, with M(0) the lowest order

I =
∫ 1

0

dx

x
x−εM(x)



• In the slicing approach, an additional theoretical parameter (δ) is 
introduced which is used to define the singular region.

• Close to the singular region, the matrix elements are approximated by the 
leading order ones. 

• In our toy model, this means choosing δ≪1 and approximating M(x) by

M(0) when x<δ.

• In that case we can split the integral into two regions thus:

I =M(0)
∫ δ

0

dx

x
x−ε +

∫ 1

δ

dx

x
x−εM(x)

isolated singularity

︸ ︷︷ ︸
finite and ready to be integrated numerically

• The final result should be independent of δ, via an implicit cancellation of 
logarithms between the exposed log and the lower limit of the integral.

• Therefore there is a tension between retaining a good approximation 
(wanting small δ) and reducing numerical log-cancellations (large δ).

dropping the regularising term in the 
second integral because it’s finite

= −1
ε
δ−εM(0) +

∫ 1

δ

dx

x
M(x)

=
(
−1

ε
+ log δ

)
M(0) +

∫ 1

δ

dx

x
M(x)



• e.g. Wbb production (with massive b-quarks) at NLO. Actually uses two 
cutoffs, one for soft (δs) and one for collinear (δc) singularities.

Febres Cordero, Reina, Wackeroth, 2006

large logarithmsnumerical instability



• The method of subtraction proceeds by subtracting from the integrand, in 
each singular region, a local counterterm with exactly the same singular 
behaviour.

• In our toy integral, the counterterm is obvious:

• This procedure appears to be straightforward, but is in fact more tricky than 
it seems at first sight.

• First, a cutoff is still needed in practise. For numerical stability, it is still 
impractical to integrate the subtracted singularity completely (to zero, in our 
toy example).

• In addition, the trick here is to construct the singular terms in such a manner 
that they are both universal and readily integrated analytically.

• Such a formulation is provided by the dipole subtraction procedure.

I =
∫ 1

0

dx

x
x−ε [M(x)−M(0)] +M(0)

∫ 1

0

dx

x
x−ε

local counterterm=
∫ 1

0

dx

x
[M(x)−M(0)]− 1

ε
M(0)

isolated singularity︸ ︷︷ ︸
suitable for numerical integration



• The dipole subtraction method introduces local counterterms for each of 
the collinear singularities.

• The method harks back to the earliest form of subtraction in which the 
eikonal terms representing the soft singularities are partional-fractioned: 

pa · pb

pg · pa pg · pb
=

1
pg · pa

pa · pb

(pg · pa + pg · pb)
+

1
pg · pb

pa · pb

(pg · pa + pg · pb)

• The result is two collinear singularities, or dipoles. They are described in 
terms of the three partons - emitter, emitted and spectator.

• In general the matrix elements can be written as a sum over many eikonal 
terms. Hence the subtraction of singularities corresponds to a sum over 
many dipole counterterms.

• The method relies on a redefinition of the momenta in the subtracted matrix 
element such that the phase space can be exactly factorized.

• The details of the transformations of the momenta depend on whether the 
emitted and spectator partons are in the initial or final state of the process. 
Hence there are four different types of dipole.

dipole 1: (a,g,b) dipole 2: (b,g,a)



• e.g. “final-final” singularity with final state emitter parton a and spectator b.

• Define transformed momenta for the emitter and spectator by:

with the additional variable y given by,

p̃µ
a = pµ

a + pµ
g −

y

1− y
pµ

b , p̃µ
b =

1
1− y

pµ
b

y =
pa · pg

(pa · pg + pb · pg + pa · pb)
.

• These are the momenta that appear in the matrix elements of the 
counterterms. They allow the phase-space to be factorized via:

• This is possible because the kinematics are implemented exactly:

dPSn(. . . pa, pg, pb, . . .) = dPSn−1(. . . p̃a, p̃b, . . .)× dPS1(pg)

pa + pg + pb = p̃a + p̃b momentum conservation

p̃2
a = p̃2

b = 0 on-shell relations preserved

(c.f. the simplest formulation, defined without reference to a spectator parton)

• Slightly different transformations are used for each type of dipole, but these 
features are common throughout.



• The actual subtraction term for the “final-final” dipole corresponding to 
the splitting q→qg is:

where z is the fractional momentum as before, 

• It looks much like the regular splitting function, which it maps onto in the 
limit y→0, but reproduces the correct form of the partial-fractioned eikonal. 

z =
pa · pb

pa · pb + pg · pb
.

• The corresponding phase space that is factored out takes the form,

where we’ve absorbed the collinear propagator factor (1/y) from the dipole.

∫ 1

0
dy y−1−ε(1− y)1−2ε

∫ 1

0
dz z−ε(1− z)−ε

• The singularities are manifest as y→0 and z→1, but are regularized by 
keeping away from four dimensions as before.

• The integrals can be performed, yielding:

• Similar results can be tabulated for all the other combinations of initial and 
final particles and flavours of parton.

∫
[dipole] dPS1 =

1
ε2

+
3
2ε

+ 5− π2

2
.

1
2pa · pg

(
2

1− z(1− y)
− 1− z − ε(1− z)

)



• A more complicated example: W+jet production. The real radiation 
corrections to this process include diagrams with a W and two gluons.

• Let’s look at the singularity structure of the matrix elements when gluon 1 
becomes soft. These diagrams are the only relevant ones because they 
include gluon 1 adjacent to an external particle.

• The presence of two gluons ensures non-trivial colour structure.

tBtA tAtB

ifABCtC = (tAtB − tBtA)



• The amplitude can thus be written as,

Mqq̄→Wgg = tAtB(D2 + D3) + tBtA(D1 −D3)
colour matrices 

factored out kinematic structure only
︸ ︷︷ ︸ ︸ ︷︷ ︸

• The remaining stripped-out structures are colour-ordered amplitudes.

• It is then straightforward to square up the colour matrices using, e.g. the 
Fierz identity for the colour matrices.

• The result (after a little bit of algebra) is,

• It is these squared colour-ordered amplitudes that factorize simply in the soft 
and collinear limits. They represent the proper generalization of our simple 
example, where the full matrix element factored exactly over the LO.

|Mqq̄→Wgg|2 =
CF N2

2

[
|D2 + D3|2 + |D1 −D3|2 −

1
N2

|D1 + D2|2
]

.

|Mqq̄→Wgg|2 soft−→ CF N2

2

[
[q p2] + [p2 q̄]− 1

N2
[q q̄]

]
Mqq̄→Wg.

with our usual eikonal factor, [a b] ≡ a · b

p1 · a p1 · b



• These singularities can be interpreted in terms of lines of colour flow along 
the quarks and gluons in the LO matrix element. The colour-connected 
partons are the emitter and spectator for the emitted gluon.

• The leading term in N contains singularities along two lines, connecting 
gluon 2 to the quark and anti-quark respectively.

• The sub-leading term has a singularity on a line of colour flow straight 
along the quark line. The reason is that the matrix elements for the sub-
leading term are just the same (modulo overall coupling factors) as those 
for the emission of two photons from a quark line.

• In parton shower Monte Carlos such as HERWIG and PYTHIA the gluon 
emission in the shower proceeds along the lines of leading colour flow.

• Using the subtraction method, the eikonal pattern is readily interpreted in 
terms of dipoles: CF N2

2

[
[q p2] + [p2 q̄]− 1

N2
[q q̄]

]

2 dipoles (initial-final 
and final-initial) 2 more similar dipoles 2 initial-initial dipoles 

note: many dipoles, 
each with their own 
kinematics and ME’s



• The real radiation diagrams contain soft and collinear singularities. They 
can be readily identified from the diagrams themselves, particularly with 
the help of colour decomposition.

• The singularities take the form of universal factors multiplied by the LO 
matrix elements.

• This factorization of matrix elements (and phase space) is exploited by the 
techniques of slicing and subtraction. Both methods effectively isolate the 
singularities. As the numbers of partons in the final state grows, this 
procedure becomes more complicated because more singular regions 
must be handled in this way (e.g. must calculate many dipole terms).

• They are extracted analytically using dimensional regularization, resulting 
in poles in the parameter ε.

• The remainder of the phase space integration can be performed 
numerically. This procedure is well-established and is implemented in 
many parton-level Monte Carlo programs.

• Now we must turn to the issue of the remaining poles and how they are 
accounted for in the full calculation. To see this, we’ll now move on to 
discuss the virtual diagrams.

Real radiation summary



• Let’s return to W production, 
where the most complicated 
diagram (and, in fact, usually 
the only one) is the vertex 
correction.

• An arbitrary loop momentum    is introduced which, nevertheless, 
satisfies momentum conservation at each vertex. It is integrated out in 
the evaluation of the amplitude:

where the propagators in the loop make up the denominator and the 
numerator factor results from the Dirac structure of the matrix elements,

∫
d4! N

!2(! + pd̄)2(! + pd̄ + pu)2

N = [ū(pd̄)γ
α !"γµ(!" + !pd̄ + !pu)γαu(pu)]Vµ(pW ) .

• The evaluation of these integrals in the general case is highly non-trivial 
and for a long time has been a major challenge in generating NLO 
predictions.

•  The integrals can be classified according to the form of the propagators and 
the powers of the loop momentum that are present in the numerator.  Life 
would be much easier if we only had scalar propagators and couplings!

!



• Inspection of the denominators reveals the now-familiar problems. They 
are best seen by shifting the loop momentum: 

!2(! + pd̄)
2(l + pd̄ + pu)2 −→ !2(!− pd̄)

2(l + pu)2 [!→ !− pd̄]

• There is a soft singularity as   →0 and two collinear singularities, when    is 
proportional to either of the external momenta:

• These infrared singularities, just as in the real diagrams, can be handled by 
using dimensional regularization.

• There are further problems though, which only become apparent when 
considering the numerator. If we project out the loop momentum in the 
numerator factor,

then simple power-counting shows that the final term diverges for large loop 
momenta, i.e. it contains an ultraviolet divergence.

N = N0 +N µ
1 !µ +N µν

2 !µ!ν

• In fact, DR takes care of both of these problems at once. Formally, ε<0 to 
regularize the IR divergences and ε>0 for the UV ones.

• One finds that the UV and IR divergences are both proportional to LO, just 
as in the case of the real radiation diagrams.

! ∝ pd̄ or ! ∝ pu .

∫
d4!

!µ!ν

!2(! + pd̄)2(! + pd̄ + pu)2
−→ log(|!0|) as |!0|→∞

!!



• For simple cases (such as this vertex correction) it is straightforward to 
perform the integrals directly.

• The normal method is to combine the denominators with Feynman 
parameters and shift the loop momentum: (Feynman parameters)

(loop momentum shift)

L = ! + (1− x1) pd̄ + x3 pu= 2
∫ 1

0
dx1

∫ 1−x1

0
dx3

1
(L2 −∆)3 ∆ = −2x1x3 pu · pd̄

• The move to d dimensions, together with a Wick rotation, leaves the final 
result expressed in terms of gamma functions:

• If the loop momentum shift is substituted back into the numerator that 
comes from the matrix elements, all the remaining integrals can be 
performed in terms of beta (i.e more gamma) functions. For example,

= (−2pu · pd̄)
−1−ε

(
−1

ε

)
Γ(−ε)Γ(1− ε)

Γ(1− 2ε)

∫ 1

0
dx1

∫ 1−x1

0
dx3 (−2x1x3 pu · pd̄)

−1−ε = (−2pu · pd̄)
−1−ε

∫ 1

0
dx1 x−1−ε

1

(
−1

ε

)
x−ε

1

= (−2pu · pd̄)
−1−ε

(
1
ε2

)
Γ2(1− ε)
Γ(1− 2ε)

soft 
singularity 
exposed

∫
ddL

(2π)d

1
(L2 −∆)n

= i
(−1)n

(4π)d/2

Γ
(
n− d

2

)

Γ(n)
∆d/2−n

1
!2(! + pd̄)2(! + pd̄ + pu)2

= 2
∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3

δ(x1 + x2 + x3 − 1)
[x1!2 + x2(! + pd̄)2 + x3(! + pd̄ + pu)2]3



• Terms involving an odd power of L vanish, by symmetry.

• The remaining term has two powers of L and symmetry this time simplifies 
the integral,

i.e. apart from a trivial overall factor the term proportional to the metric 
tensor is actually the usual scalar integral, but in (d+2) dimensions.

∫
ddL

(2π)d

LµLν

(L2 −∆)n
=

gµν

d

∫
ddL

(2π)d

L2

(L2 −∆)n
=

gµν

d

∫
ddL

(2π)d

[
1

(L2 −∆)n−1
+

∆
(L2 −∆)n

]

• Inspecting the argument of the gamma function shows the presence of the 
UV divergence explicitly.

• In a simple calculation such as this one, all the integrals are straightforward 
and we are almost done. In more complicated processes, performing the FP 
integrals for the scalar integral is hard enough.

• One then needs a systematic way of evaluating the tensor integrals.

= i
(−1)n−1

(4π)d/2

Γ
(
(n− 1)− d

2

)

Γ(n− 1)
∆d/2−(n−1)

︸ ︷︷ ︸ ︸ ︷︷ ︸

= i
(−1)n

(4π)d/2

Γ
(
n− 1− d

2

)

Γ(n)
∆d/2−n+1

[
−(n− 1) + (n− d

2
− 1)

]
+ i

(−1)n

(4π)d/2

Γ
(
n− d

2

)

Γ(n)
∆d/2−n+1

= i
(−1)n

(4π)d/2

Γ
(
n− d+2

2

)

Γ(n)
∆(d+2)/2−n

(
−d

2

)
(Generally true, not just 

for this special case)



• A popular method is Passarino-Veltman reduction.

• First, one performs a form-factor expansion of the integral over the basis of 
available tensor structures, e.g.

Passarino, Veltman, 1979.

• The coefficients are then determined by contracting with external momenta 
and expressing the dot products in terms of the propagators, e.g.

∫
dd!

!µ

!2(! + pd̄)2(! + pd̄ + pu)2
= A1 pµ

d̄
+ B1 pµ

u

∫
dd!

!µ!ν

!2(! + pd̄)2(! + pd̄ + pu)2
= A2 pµ

d̄
pν

d̄ + B2 pµ
upν

u + C2

(
pµ

d̄
pν

u + pµ
upν

d̄

)
+ D2 gµν

=
1
2

∫
dd!

[
1

!2(! + pd̄)2
− 1

!2(! + pd̄ + pu)2
− 2pu · pd̄

!2(! + pd̄)2(! + pd̄ + pu)2

]
A1 pd̄ · pu =

1
2

∫
dd!

(! + pd̄ + pu)2 − (l + pd̄)2 − 2pu · pd̄

!2(! + pd̄)2(! + pd̄ + pu)2

︸ ︷︷ ︸
scalar integrals with one propagator 

removed, or “pinched” away

︸ ︷︷ ︸
original scalar integral

• In this way the tensor integrals can be reduced to combinations of 
already-calculated scalar integrals with the same, or fewer, propagators.

• In general it can be formulated as a matrix method in which the 
coefficients are found by inverting matrices of kinematic factors. 



• As an example, the simplest integral is recast in terms of vectors,

and then the two possible contractions of the loop momentum with 
external momenta are represented by multiplication with another vector:

∫
dd!

!µ

!2(! + pd̄)2(! + pd̄ + pu)2
=

(
pµ

d̄
pµ

u

) (
A1

B1

)

• The coefficients are then given by,

where the integrals are reduced to scalar integrals as before and the Gram 
matrix G is defined as,

• Hence the inverse matrix of kinematic factors is just:

a 2x2 matrix, G

︸ ︷︷ ︸

(
2pd̄ µ

2pu µ

) ∫
dd!

!µ

!2(! + pd̄)2(! + pd̄ + pu)2
=

(
2pd̄ µ

2pu µ

) (
pµ

d̄
pµ

u

) (
A1

B1

)

(
A1

B1

)
= G−1

( ∫ dd! 2!·pd̄
(...)∫ dd! 2!·pu

(...)

)

G = det(2pi · pj) =
(

2pd̄ · pd̄ 2pd̄ · pu

2pd̄ · pu 2pu · pu

)
.

G−1 =
1

4[p2
up2

d̄
− (pu · pd̄)2]

(
2pu · pu −2pd̄ · pu

−2pu · pd̄ 2pd̄ · pd̄

)
.

Gram 
determinant



• Although this method is tried and tested, it becomes complicated for 
processes which involve a large number of particles and, in particular, 
high powers of loop momenta in the numerator.

• This can result in a proliferation of terms which can easily lead to large 
intermediate expressions during a calculation.

• In addition, the Gram determinants that arise when inverting the matrices 
can cause problems. Although individual terms in the expressions may 
contain high powers of this determinant in the denominator that appear to 
be singularities, the original integrals do not have problems in this limit.

• They vanish when two of the external momenta are degenerate; such 
configurations may therefore be approached within the physical PS.

• Such spurious divergences (the same sort of behaviour may occur in other 
kinematic regions too) can cause numerical instabilities.

• In wholly-analytic approaches to the tensor integrals this may not be too 
serious of a problem. Using a method that relies more on numerical 
techniques, this is a major concern.

• Methods have been introduced which try to deal with this problem, for 
example by collecting together appropriate terms which are finite as the 
regions are approached. Alternatively, the reduction itself can be modified 
to take the degeneracy into account ab initio.



• Going back to our example, when we put the real and virtual terms 
together then we have 4 contributions using the subtraction method:

|Mud̄→W+g|2 −
∑

(singular)|Mud̄→W |2

(
2
ε2

+
3
ε
− 2

ε
Pqq +O(ε0)

)
|Mud̄→W |2

(
− 2

ε2
− 3

ε

)
|Mud̄→W |2

O(ε0)

REAL

real matrix elements with 
singular regions subtracted, 

finite and integrated numerically

counter-terms integrated 
analytically over singular 

phase space

VIRTUAL

divergences extracted from 
the virtual diagrams, 
proportional to LO

finite non-factorizable 
contributions 

• The simple poles in the real and virtual contributions are equal and opposite 
so that they cancel in the sum. This is guaranteed by the Bloch-Nordsieck 
and KLN theorems, for properly defined observables in any process.

• The remaining divergence that is proportional to Pqq is universal and must be 
factored into the definition of the pdfs at NLO. When it is subtracted, a finite 
contribution is included that is dependent on the scheme (usually MS, but 
sometimes DIS).

• All contributions are now suitable for inclusion in a parton-level Monte 
Carlo program that performs the phase-space integrations.



• The most obvious effect of NLO corrections is a change in the cross 
section; it is not guaranteed to increase, but often it does. 

• The information provided by a NLO calculation is often encapsulated by a 
single number: the K-factor, or ratio of NLO to LO cross sections.

• The K-factor obviously depends upon the process under consideration and 
the collider. For more complicated final states (e.g. ones involving jets), it 
also depends on the cuts used to define the LO cross section.

• It can also have a non-trivial dependence on input parameters such as 
masses and parton distribution functions.

• In particular, it is common practice to use leading order PDFs (extracted 
and implemented with a 1-loop value of αs and evolution) in the 
denominator and NLO PDFs (with 2-loop ...) in the numerator. This is the 
case for the numbers in the table above. 

Benefits of NLO



• The K-factor must be used with care however, since it washes out 
important kinematic effects that the NLO corrections introduce.

• These are the reasons that we would want to build a Monte Carlo program 
in the first place. Fully-analytic approaches, where tractable, are only 
useful for fully inclusive calculations or ones that are differential in 
particular variables.

• As a trivial example, consider the simplest hadron-collider process again 
and look at the transverse momentum of a W produced at the Tevatron.

• Both the LO and virtual contributions 
have 2→1 kinematics. By 
conservation of momentum, the W 
boson does not acquire any pT.

• In the real contribution, the diagrams 
are 2→2 processes in which the W 
balances against a hard parton. 
However the counterterms must all 
appear in the first bin.

• Clearly no K-factor can account for 
this richer kinematic structure at NLO. pT(W) [GeV]



• For more complicated processes and observables the phase space is 
extended but in less drastic ways.

• Add a parton to our previous example and demand one hard parton (jet) 
with a pT above 20 GeV. Look at the W pT distribution at the LHC.

• Just as before the W acquires a pT by balancing the hard parton, which 
precludes the region below 20 GeV at LO. At NLO the real contribution 
contains events where the W balances against the vector sum of two partons 
with pT(jet 1) and pT(jet 2) > 20 GeV but |pT(jet 1)+pT(jet 2)| < 20 GeV.

• The alarming behaviour which occurs as the LO phase space boundary is 
approached indicates a large logarithm which should be resummed. It can 
also be “eliminated” by re-binning over a wide enough region.

(K-factor strongly 
pT-dependent)



• For processes which contain jets, the NLO corrections improve the lowest 
order picture in which each jet is modelled by a single parton.

• In the detector a jet is the result of 
combining many tracks and has a 
definite size, for instance the radius
of a cone in (η,φ) space.

• At  NLO the same algorithm can be 
applied to try to combine two of the 
partons. The additional parton present 
in the real corrections can lie outside 
the original cone (and be observed as 
an additional jet) or inside it.

• Thus successive orders in αs begin to 
build up a picture similar to that seen 
in the detectors, with multiple partons 
inside the jets.

• As a result, higher order calculations 
become sensitive to details of the jet-
clustering algorithm - in particular, to 
how the partons are combined and to 
the size of the jet.

A jet event observed by D0



• Scale-dependence is the oft-cited reason for calculating higher-order QCD 
corrections.

• A perturbative calculation for a hadron collider involves the introduction 
of two scales.

• The renormalization scale (μR) is needed in order to redefine bare 
fields in terms of physical ones. It is the scale at which the running 
coupling αs is evaluated.

• The factorization scale (μF) appears when absorbing the collinear 
divergences into the parton densities. One can think of this scale as 
separating the soft (non-perturbative) physics inside the protons from 
the hard process represented by the partonic matrix elements.

• By truncating the perturbative expansion at a given order, residual 
dependence on the chosen values of μR and μF remains.

• Often the scales are chosen to be equal and based on a hard scale that is 
present in the process, such as mW or a minimum pT. Any “reasonable 
value” is allowed though.

• Other strategies for choosing the scale are sometimes favoured, e.g. point 
around which scale dependence is smallest.



• A simple example is provided 
by the single-jet inclusive 
distribution at the Tevatron. At 
high ET it is dominated by the 
quark-antiquark initial state.

• At NLO the prediction can be written schematically as:

dσ

dET
=

[
α2

s(µR)A + α3
s(µR)

(
B + 2b0 log(µR/ET )A− 2Pqq log(µF /ET )A

)]

⊗fq(µF )⊗ fq̄(µF ).
Altarelli-Parisi splitting 
function from before

b0 = (33− 2nf )/6π
convolution 

with PDF

• In this expression, the explicit logarithms involving the renormalization 
and factorization scales have been exposed. The remainder of the αs3 
corrections lie in the function B.

• Using the running of the coupling αs and the DGLAP equation describing 
the evolution of the splitting functions,

the NLO result is explicitly independent of μR and μF up to (unspecified) 
higher order terms. 

∂αs(µR)
∂ log µR

= −b0α
2
s(µR) +O(α3

s) ,
∂fi(µF )
∂ log µF

= αs(µR)Pqq ⊗ fi(µF ) +O(α2
s)

Glover, 2002



• The distribution at the Tevatron, for ET=100 GeV. The factorization scale is 
kept fixed at μF =ET and the ratio μR/ET varied about a central value of 1.

• At lowest order, the variation of the cross section just reflects the running 
of αs. The prediction varies considerably as μR is changed so that the 
normalization of the cross section is unreliable.

Typical LO scale dependence



• At NLO, the growth as μR is decreased is softened by the logarithm that 
appears with coefficient αs3. The resulting turn-over is typical of a NLO 
calculation.

• As a result, the range of predicted values at NLO is much reduced and the 
first reliable normalization is obtained.

Typical NLO scale dependence



• The NNLO calculation for this process is not yet complete, but one can 
see the effect of reasonable guesses for the single unknown coefficient. 
We will return to this topic shortly.

• One therefore expects a theoretical error estimate of a few percent, which 
is the level required for many LHC analyses.

Typical NNLO scale dependence?



• However, this rosy picture is not always realized in every process.

• In particular, if the scale variation at LO is particularly small it is unlikely 
to be improved at NLO. This is especially apparent for purely electroweak 
processes which have no dependence on the renormalization scale at LO.

FIG. 4: The scale-dependence of the leading order and next-to-leading order cross-sections σ(pp → ZZZ).
We have set the factorization and the renormalization scales equal to a common value µ.

FIG. 5: The transverse momentum and rapidity distributions of the Z bosons at LO and NLO in αs, nor-

malized by a factor 1/3. The results obtained by re-scaling the LO distribution by a constant K-factor are
also shown. The value of the factorization and the renormalization scales are set equal to 3MZ .

range of µ considered. While such behavior is uncommon, it is by no means unique to this process;
a very similar situation occurs for Z production at the Tevatron [22].

In Fig. 5 we present the transverse momentum and rapidity distributions of the Z bosons. We

include all three bosons and divide by a factor of 3 to normalize the result. We compare these

distributions to the approximation of reweighting the LO results by a constantK-factor, whereK
is the ratio of NLO to LO inclusive cross sections. For the distributions studied, the NLO QCD

corrections do not depend significantly on the kinematics of the produced particles. Rescaling the

leading order kinematic distributions by a constantK-factor gives a description of the NLO result
accurate to a few percent. We expect that this is true in all kinematic regions for which phase space

is available at leading order.
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Lazopoulos & Melnikov, 2007pp → ZZZ at the LHC

A recent pioneering 
calculation of this 2→3 

scattering process

The loop integration is 
performed numerically. 

Singularities are extracted 
using sector decomposition 
and contours deformed to 
avoid internal thresholds.

Downside (in common with 
most other new approaches 
to NLO calculations): slow! 

“ ... ten thousand kinematic points required a few days of running on 
a cluster of several dozen processors.”



• As well as the obvious real radiation diagrams obtained by radiating an 
additional parton in the final state, one must also include the 
corresponding crossed diagrams.

• These often introduce dependence of 
the cross section on new parton PDFs, 
e.g. our Drell-Yan calculation is 
insensitive to the gluon PDF at LO, but 
not so at NLO.

• The diagram contains a collinear 
singularity that is absorbed into the 
definition of the NLO PDF by 
subtracting a term proportional to Pqg. g + u → W + d

• The inclusion of such contributions can have an important effect on the 
behaviour of the NLO cross section.

• In particular it can be the cause of worsened scale dependence, due to the 
fact that this NLO contribution depends on the scale in only a LO fashion.



• This is illustrated by the production of a W 
boson and two b-quarks at the LHC.

(a) (b) (c)

Diagrams by MadGraph
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b    
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u    

     

u    

     

d    

W    

b    

b    
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d    

W    
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d    

     

     

LO

NLO

• Naively one would expect that σ(Wbb+jet)< σ(Wbb), but this is not the 
case (for this definition of a jet, pT > 20 GeV) because of the high gluon 
flux at the LHC. The Wbb final state is very likely to be accompanied by 
additional hadronic activity at the 20 GeV level.

• It is a warning sign that the LO cross section may not be the basic process 
of interest in this case.



• A similar situation regarding the additional radiation occurs in top quark 
production.

• At the Tevatron, where 
typical jet transverse 
momenta are of the order 
of 10-20 GeV the situation 
looks fine.

• At the LHC it is not so clear. 
Perhaps we’ll just need to 
adjust our definition of a jet.

• This phenomenon is not 
unusual. The same 
behaviour occurs, for 
example, in Higgs 
production via gluon fusion.



• The NLO calculation of the top pair + jet process has very recently been 
completed.

• Due to the presence of pentagon loop integrals with an internal mass, this 
is one of the most complex NLO calculations performed so far.

• The results show that this process exhibits canonical scale dependence 
and that the corrections are not terribly large, for the usual scale choices.

Dittmaier, Uwer & Weinzierl, 2007
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FIG. 2: Scale dependence of the LO cross sections for tt̄+jet
production at the Tevatron (upper plot) and at the LHC
(lower plot), where the renormalization and factorization
scales are set equal to µ. The individual contributions of
the various partonic channels are shown also separately.

scales, which are identified here (µ = µren = µfact). The
variation ranges from µ = 0.1 mt to µ = 10 mt. The
dependence is rather large, illustrating the well-known
fact that the LO predictions can only provide a rough
estimate. At the Tevatron the qq̄ channel dominates the
total pp̄ cross section by about 85%, followed by the gg
channel with about 7%. At the LHC, the gg channel
comprises about 70%, followed by qg with about 22%.

In Figure 3 the scale dependence of the NLO cross
sections is shown. For comparison, the LO results are
included as well. As expected, the NLO corrections sig-
nificantly reduce the scale dependence. We observe that
arround µ ≈ mt the NLO corrections are of moderate
size for the chosen setup.

Finally, we have performed a first study of the forward–
backward charge asymmetry of the top quark at the
Tevatron. In LO the asymmetry is defined by
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FIG. 3: Scale dependence of the LO and NLO cross sections
for tt̄+jet production at the Tevatron (upper plot) and at the
LHC (lower plot), where the renormalization and factoriza-
tion scales are set equal to µ.

At
FB,LO =

σ−

LO

σ+
LO

, σ±

LO = σLO(yt>0) ± σLO(yt<0), (1)

where yt denotes the rapidity of the top quark. Cross-
section contributions σ(yt

>
< 0) correspond to top quarks

in the forward or backward hemispheres, respectively,
where incoming protons fly into the forward direction
by definition. Denoting the corresponding NLO contri-
butions to the cross sections by δσ±

NLO, we define the
asymmetry at NLO by

At
FB,NLO =

σ−

LO

σ+
LO

(

1 +
δσ−

NLO

σ−

LO

−
δσ+

NLO

σ+
LO

)

, (2)

i.e. via a consistent expansion in αs. Note, however, that
the LO cross sections in Eq. (2) are evaluated in the NLO
setup (PDFs, αs).

Figure 4 shows the scale dependence of the asymmetry
at LO and NLO. The LO result for the asymmetry is of



• It can provide a more accurate normalization of the cross section which is 
in general larger than the LO prediction.

• However this is not always the case, particularly in kinematic regions 
where the prediction is essentially LO.

• When the scale dependence is not much improved (or worse) than at 
LO, we must either reconsider the physics process in which we are 
interested or consider moving to higher orders in PT.

• It begins to include the effects of radiation that are especially important 
when comparing with jet data.

• The phase space available to observables is often extended at NLO, 
enabling comparison with a wider range of experimental data.

• Whilst large corrections can indicate problems with the perturbative 
approach, they help identify regions in which a large logarithm exists and 
can be resummed.  By matching such a calculation with NLO an even 
more powerful prediction is obtained.

Summary of NLO advantages



• e.g. for top production at the Tevatron, the NLO corrections are large in 
the threshold region.

• These are due to soft gluon radiation which, as we’ve seen, leads to 
logarithms which can be identified predictably. They can then be 
exponentiated and resummed to all orders.

Bonciani, Catani, Mangano, Nason, 1998 

scale uncertainty reduced 
from 10% to 5% by improving 

NLO to include NLL 



• Clearly, NLO alone is not always enough.

• Apart from combining with a formal resummed calculation, another 
(highly desirable) approach is to include NLO information in a parton 
shower.

• As you have heard already from F. Krauss, such procedures are well 
underway and some have been available for a few years already.

• The most widespread example is MC@NLO which provides a NLO parton 
shower for a small number of relatively simple processes (but that number 
is steadily growing).

 Frixione and Webber, 2003

The prediction retains the best 
characteristics of both worlds.

 It contains information on the 
NLO normalization and scale 
dependence, together with the 
good infrared behaviour of the 
shower (and everything else).



• Despite some obvious shortcomings, the calculation of NLO corrections 
remains a high priority, particularly to aid the LHC experiments in the early 
years when data-driven analyses are not yet possible.

• Indeed, some extravagant wishlists of backgrounds that one would like to 
know at NLO have been concocted over the years.

• Limited manpower means we have to prioritize by necessity and feasibility.

NLO wishlist

Hard Interactions of Quarks and Gluons: a Primer for LHC Physics 93

process relevant for

(V ∈ {Z,W, γ})

1. pp → V V + jet tt̄H, new physics

2. pp → H + 2 jets H production by vector boson fusion (VBF)

3. pp → tt̄ bb̄ tt̄H

4. pp → tt̄ + 2 jets tt̄H

5. pp → V V bb̄ VBF→ H → V V , tt̄H, new physics

6. pp → V V + 2 jets VBF→ H → V V

7. pp → V + 3 jets various new physics signatures

8. pp → V V V SUSY trilepton searches

Table 2. The wishlist of processes for which a NLO calculation is both desired and
feasible in the near future.

semi-leptonically. It is useful to look both in the H → WW exclusive channel,

along with the H → WW+jet channel. The calculation of pp → WW+jet will be

especially important in understanding the background to the latter.

• pp → H + 2 jets: A measurement of vector boson fusion (VBF) production of the

Higgs boson will allow the determination of the Higgs coupling to vector bosons.

One of the key signatures for this process is the presence of forward-backward

tagging jets. Thus, QCD production of H + 2 jets must be understood, especially

as the rates for the two are comparable in the kinematic regions of interest.

• pp → ttbb and pp → tt + 2 jets: Both of these processes serve as background to

ttH, where the Higgs boson decays into a bb pair. The rate for ttjj is much greater

than that for ttbb and thus, even if 3 b-tags are required, there may be a significant

chance for the heavy flavour mistag of a ttjj event to contribute to the background.

• pp → V V bb: Such a signature serves as non-resonant background to tt production

as well as to possible new physics.

• pp → V V + 2 jets: The process serves as a background to VBF production of a

Higgs boson.

• pp → V + 3 jets: The process serves as background for tt production where one

of the jets may not be reconstructed, as well as for various new physics signatures

involving leptons, jets and missing transverse momentum.

• pp → V V V : The process serves as a background for various new physics

subprocesses such as SUSY tri-lepton production.

Work on (at least) the processes 1. to 4. of Table 2 is already in progress by several

groups, and clearly all of them aim at a setup which allows for a straightforward

Les Houches 
workshop, 2005

Dominated by final states containing b-quarks, high pT leptons and missing energy.

 All are either 2→3 processes (3 done so far!) or 2→4 (still just a dream ...).

/1

   ------- ZZZ



• So far there have been many implementations of NLO matrix elements for 2→1, 
2→2 and some 2→3 processes, scattered across multiple codes.

• As another shameless plug, I’ll briefly mention my own work on NLO 
corrections, most of which is included in the package MCFM.

http://mcfm.fnal.gov/

J.C., K. Ellis
(+ F. Tramontano,

F. Maltoni, 
S. Willenbrock) 

• The package includes a number of NLO calculations in one place. 

• The flagship processes are W/Z+2 
jets and H+2 jets via gluon fusion 
(not yet available publicly - it is 
slow and somewhat cumbersome 
compared to the other calculations 
that are already included). 

mt →∞

http://wwwlapp.in2p3.fr/lapty/PHOX_FAMILY/main.html
http://wwwlapp.in2p3.fr/lapty/PHOX_FAMILY/main.html


• However, to tackle some of the processes on the wishlist, it is clear that 
new methods for performing the calculations are needed.

• Recent twistor-inspired advances have already provided ground-breaking 
results for some of the 1-loop amplitudes - see the lectures by R. Roiban.

• Another approach which has provided both a useful cross-check of these 
results and a full (parton-level) MC implementation is semi-numerical.

• In this approach, the tensor integrals are reduced to a set of master 
integrals in an algorithmic fashion similar to Passarino-Veltman reduction.

• However, at each stage the reduction is performed numerically. Only the 
final set of master integrals is implemented analytically.

• Clearly, great care must be 
taken to ensure that the 
reduction is numerically stable 
across phase space.

• This procedure is also 
computationally expensive; 
nevertheless this is the method 
used for the calculation of H+2 
jet production in MCFM. comparison with the simplest 4-quark 

amplitude (calculable analytically)

Gram 
determinant 

fake singularity

Ellis, Giele and Zanderighi, 2005



• The other obvious direction is to move to the next higher order, NNLO.

• We’ve already seen how the scale dependence is expected to be reduced 
even further.

• Just as we might begin to trust the normalization of a cross section at 
NLO, the theoretical uncertainty associated with it is only reasonably 
estimated at NNLO.

• In addition, many of the arguments for NLO apply again at NNLO - e.g. 
even more sensitivity to jet algorithms, still larger phase space, etc.

• The ingredients for a NNLO 
calculation are similar to, but 
more complicated than, those 
that enter at NLO.

• They can be viewed by 
considering all possible cuts of a 
3-loop diagram.

• A lot of recent effort has been 
focused on the calculation of the 
3-jet rate in e+e- annihilation.

4 types of 
contribution

Higher orders still



• By using similar methods, and using crossing symmetries, a number of 2-
loop matrix elements relevant for hadron colliders are now known.

• Drell-Yan, Higgs production (via gluon fusion and associated with a W/Z)

• dijet, diphoton production

• production of a vector boson and a single jet

• The multiplicity of particles in the final state is very small, due to the 
complexity of the loop integrals.

• The most obvious contribution is the 
cut which represents the interference 
of 2-loop diagrams with LO.

• As the result of much innovative work 
over the last 10 years, this contribution 
is now known.

• This included deriving all the 
necessary master integrals, as well as 
formulating the tensor decomposition 
in terms of them.

A large army of 2-loop stalwarts, 
see for example a recent talk by 
Gehrmann, hep-ph/0709.0351



• The second contribution is the 
square of the 1-loop amplitudes 
that already entered the NLO 
calculation (but as an interference).

• They are therefore straightforward 
to obtain in general. However, 
sometimes the NLO calculation will 
have calculated the interference 
with the LO amplitude only, so they 
might not be directly available.

• The third cut reveals an interference 
between the LO and 1-loop 
amplitudes with 4 partons.

• Just as in the real contributions at 
NLO, this contains divergences when 
two of the partons are unresolved.

• Methods to extract all the 
singularities are by now well-known.



• The final contribution looks 
deceptively simple - it is just LO 
matrix elements squared.

• However, it contains singularities 
when two of the partons cannot be 
resolved from the others.

• The singular configurations can be 
divided into four categories:
  triply collinear       doubly collinear
  doubly soft            soft-collinear     

• As we discussed, at NLO the equivalent singular regions are handled in a 
systematic fashion using the technique of PS slicing or subtraction.

• For a long time, the extension of such a general method to NNLO was not 
available. A few calculations were performed using special tricks and on a 
case-by-case basis.

• The antenna-subtraction method, not dissimilar to dipole subtraction at 
NLO, encodes all singular behaviour between a colour-connected pair of 
hard partons. This method has been successfully applied at NNLO.

• Much of the hard work lies in performing the analytic integrals over the 
singular region of phase space to extract the poles in ε.

Gehrmann-de Ridder, Gehrmann, Glover, 2005.



• First results using this method have only very recently been presented.
Gehrmann-de Ridder, Gehrmann, Glover, Heinrich, 2007.

each line is 
separately 

finite and can 
be integrated 
numerically

Thrust distribution at LEP

Modest increase in 
prediction and reduction 
in scale uncertainty when 
going from NLO to NNLO

Improvement in shape  when 
compared with ALEPH data 

(dots), requiring smaller 
hadronization corrections

(d)

(c)

(a),(b)



• The prognosis for adapting this calculation to hadron colliders is good, 
although undoubtedly some technical issues remain.

• For now we must be content with more inclusive calculations for 2→1 
processes, such as W/Z/H production.

• The NNLO prediction can be computed differentially in the boson rapidity 
or virtuality, itself a pioneering calculation involving significant ingenuity.

Anastasiou, Dixon, Melnikov, Petriello, 2003.

• The effect of each 
successive order in PT is 
clear, with the jump 
from NLO to NNLO 
much smaller than that 
from LO to NLO.

• The much-improved 
scale dependence 
results in a very accurate 
theoretical prediction 
that could even be used 
as a luminosity monitor 
at the LHC.



• The accuracy of the NNLO prediction is demonstrated by a recent 
measurement of the Z rapidity spectrum by D0 at the Tevatron.
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• The aim is to provide a 
central repository of 
information (but not the 
codes themselves) so that 
interested experimenters/
phenomenologists can keep 
abreast of the latest theory 
predictions available.

• The codes span the breadth 
of theory approaches 
available - fixed order, parton 
showers, calculations with 
resummation - and pertain to 
electron-positron, electron-
proton and hadron colliders.

HepCode database

http://www.cedar.ac.uk/hepcode/

• Further information about some of the tools which I have discussed (as well as 
others that I haven’t had time for) is available at the CEDAR HepCode page.

http://www.cedar.ac.uk/hepcode/
http://www.cedar.ac.uk/hepcode/


• Extract from a talk based on a 
seminal paper of 1981, in 
which the QCD corrections to 
the gluonic width of the 
upsilon were calculated.

• Amusingly accurate summary 
of the situation today.

• Performing higher-order 
calculations automatically is 
still the holy grail.

“Use of existing methods would 
require the assembly of a small 
army of Kinoshitas and Lindquists 
to devote many man-years of effort 
working on computer programs for 
many separate processes.”

“The ideal would be the creation of a master program which for any desired 
process would generate the graphs, assign the momenta in the loops, evaluate 
the gamma matrix traces and colour algebra, and perform the integrals.”

Concluding remarks


