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There are two motivations for this work.  The first comes 
from an unpublished experiment on a 2 dimensional 
electron gas (DEG) from the Eisenstein group.  Before I tell 
you about their results, let me first remind you about the 
quantum Hall effect.

The QHE comes in two varieties: 
(1) the integer QHE discovered by von Klitzing, Dorda, and 
Pepper in 1980 and 
(2) the fractional QHE found by Tsui, Stormer, and Goddard 
in 1982.  
They found that if you study a 2 DEG (of density 
around                    ) made from an AlAs-GaAs-AlAs 
heterostructure at low temperatures (around 10 mK) and in 
a strong magnetic field (around 5 T), the DC longitudinal and 
off-diagonal conductivities have the following low 
temperature behavior:

Introduction

1011e−/cm2
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lim
T→0

σxx = lim
T→0

σyy = 0

lim
T→0

σxy = ν
e2

h

ν = n/(2p + 1)for certain discrete choices of                        .
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This should be contrasted with the classical behavior 
where                  .  

If you like, you could begin with a 2D non-interacting 
fermi liquid at zero temperature and imagine slowly 
turning on a background magnetic field, however, you 
would encounter phase transitions once the magnetic 
field was sufficiently strong.  
I.e., the initial starting point is not good for studying the 
QH regime -- denoted by parameters roughly in the 
range stated above.

σxy ∼ n/B

Laughlin, Halperin, and many others explained the basic 
effect back in the 80s and 90s. 
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In addition to the above response, other properties of 
the QH liquid were discovered (still some only 
theoretically): 

-- gapless chiral edge modes (Halperin, Wen), 

-- ground state degeneracy when the liquid is studied on 
a non-trivial Riemann surface (Wen), and 

-- anyonic quasi-particle  excitations (Halperin, Wen, 
Wilczek, Zee).   

For certain fillings, there are even candidate states that 
have quasi-particle excitations that obey nonabelian 
statistics (Moore-Read).
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I'd like to describe two different sets of remarkable 
experiments by the Eisenstein group who studied 
properties of the 2 DEG at filling fractions           .  

We shall not discuss a theory that explains the first.  

Rather, we mention it in order to contrast the behavior 
found in the second experiment and to partially 
motivate the construction of the theoretical model I'll 
describe in the bulk of the talk.  

Further, certain transport properties observed in the 
second experiment will have overlap with the theory I 
wish to describe.

Recent Experiments

ν > 2
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“Experiment 1” at ν = 5/2

In the late 90s and early (20)00s, Lilly et al. found 
nematic behavior of the 2 DEG when an in-plane 
magnetic field was turned on for filling 
fractions                       .  SO(2) rotation symmetry is 
broken by the in-plane field and is reflected in 
anisotropic longitudinal conductivities,                 .

ν = (2n + 1)/2

σxx �= σyy

To be specific, let us discuss the experiments performed 
at              .ν = 5/2
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When an in-plane        field is turned on, it is found:B||

--  the longitudinal resistivities can differ by a factor on 
the order of 10.

--  for sufficiently large       ,                                         , 
the plateau is destroyed, where B is the large magnetic 
field transverse to the two-dimensional plane on which 
the electrons move,

B|| θ = tan−1(B||/B) = 60◦

Rxx(kΩ)

Xia et al.
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More recently (March of 2010), Xia et al. have found that 
when            :θ ∼ 76◦

--  SO(2) invariance of the longitudinal resistivities is 
restored!

--  the plateau is still destroyed, BUT

Xia et al.
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The phase diagram looks like the following:

Xia et al.
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An explanation can be given in terms of mixing of 
various Landau levels.  

I do not want to enter into the interesting discussion of 
the physics responsible for the re-entrant behavior.  I 
only want to infer the following naive conclusion:

Although the in-plane field explicitly breaks SO(2) 
rotation invariance from the ``lab frame," from the 2 
DEG perspective, it might be more accurately acounted 
for by spontaneous symmetry breaking. It is this 
viewpoint -- that the system spontaneously breaks SO(2) 
after a sufficiently strong in-plane field is applied -- that 
we shall adopt in what follows.
Caveat: This can’t strictly be true since the magnitude of 
the longitudinal conductivities is tied to the direction of 
the in-plane field.
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“Experiment 2” at ν = 7/3
Near the               plateau lives the                 plateau.  
Again, the effects of an in-plane magnetic field were 
studied by Xia et al.  They found:

ν = 7/3ν = 5/2

-- the Hall plateau persists, i.e., the quantization of the 
Hall conductance is not destroyed.

--  as       is increased (                       ), the longitudinal 
conducitivities show nematic behavior, BUT

B|| θ ∼ 45◦ − 65◦

Xia et al.
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It is this phenomena: 

(1) quantized Hall conductance with 

(2) nematic or anisotropic longitudinal conductivities 

that we would like to explain.  

Instead of computing the finite temperature DC 
conductivities, we calculate the T=0, finite frequency 
conductivities.  Nevertheless, we will find that our 
theory shows both nematic behavior and quantized Hall 
conductance.

Objective
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To do this, we first review a theory that describes the 
usual QHE and then deform it in such a way to obtain a 
theory with anisotropic longitudinal conductivities.  

What’s Ahead:

(1) CS Description of the FQHE

(2) The Deformation of the CS Theory

(3) General Properties of the Deformed Theory

(4) Transport Properties of the Deformed Theory

(5) A Matching of Effective and Microscopic Parameters

Thursday, October 7, 2010



CS Theory Description of the FQHE

For our purposes, we shall understand the QHE in terms 
of an effective ``hydrodynamic" theory (Zee).  

The number current of the two-dimensional electrons is 
conserved.  

A conserved current in 2+1 d implies the existence of a 
gauge field:

∂µjµ = 0⇒ jµ =
1
2π

�µνρ∂
νaρ.
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We now construct an effective action for the gauge field 
by writing down the leading operators constructed out 
of      .  

A mass        term is not allowed since this breaks the 
U(1) gauge invariance.  

The leading operator is the Chern-Simons form,

aµ

a2

L0 =
k

4π

�
�µνρaµ∂νaρ,

It's okay that       breaks P, T because the background 
magnetic field in the physical system breaks these 
symmetries.  

L0
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It is standard to take the leading irrelevant operator to 
be the Maxwell term,

L1 =
�

1
2Λ

�
e2 − b2

�

where      is an UV cutoff, 

                       , and 

                 .   

Λ

ei = ∂iat − ∂tai

b = �ij∂iaj
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From the effective action,                , we can calculate 
the response to an external gauge field by minimally 
coupling a background field to the current           .

Thus, our full action is:

L0 + L1

jµAµ

L =
�

k

4π
�µνρaµ∂νaρ +

1
2Λ

�
e2 − b2

�
+ jµAµ.
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Response functions are determined from current-
current correlation functions.  

Equivalently, we may determine the response of the 
system to the external perturbation by integrating out 
the internal gauge field,       , to obtain an action for the 
background field,

aµ

Leff =
�

AµKµν(ω, q)Aν .

The response matrix         should have the following 
properties:
Re(K) should be symmetric while Im(K) should be anti-
symmetric.  Further, gauge invariance,                           , 
implies

Kµν

Aµ → Aµ + ∂µα

ωK0µ + qiKiµ = 0.
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The theory described by L is quadratic so it's 
straightforward to integrate out       .  Let me not write 
down K explicitly (but trust me, it obeys the above 
constraints).  I will only describe a few of its long 
wavelength and low energy properties.

aµ

The compressibility,                        , is determined by K:

Thus, we find, C = 0.  This means the fluid is 
incompressible.

C =
∂n

∂µ

C = lim
q→0

lim
ω→0

K00.
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What about charge transport?  We find:

σxx = σyy ∼
i

2πk

ω/ωc

1− ω2/ω2
c

,

σxy =
1

2πk

1
1− ω2/ω2

c

,

where                          is the cyclotron frequency.  The 
pole in                    corresponds to inter-Landau level 
excitations.

ωc = Λ ∼ B/me

σxx, σxy
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Lifshitz-Chern-Simons Theory

We now ask what deformations of this theory can lead 
to anisotropic longitudinal conductivities.  

Consider the Hamiltonian of the theory where all 
operators are given arbitrary coefficients:

Unfortunately, letting the coefficients of            and         
be different is not a significant enough deformation to 
alter the real part of the longitudinal conductivities.  We 
must do something more drastic.

H =
1

2g2
ex

e
2
x +

1
2g2

ey

e
2
y +

1
2g

2
b

b
2
.

e2
x e2

y
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To see what to do, it is helpful re-write the Lagrangian in 
first-order phase space form:

In the above, the electric field e, is treated as an 
independent field variable.  

We can recover the usual Maxwell-CS Lagrangian 
written before if we integrate out e using its equation of 
motion.

L =
�

1
g2

�
ei(∂iat − ∂tai)−

r

2
e2 − 1

2
b2

�
+

k

4π
�µνρaµ∂νaρ.
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Recall that        was the leading irrelevant operator to 
the Chern-Simons form if we assumed a z=1 dynamical 
critical exponent, under which

and

However, the CS Lagrangian is topological -- so at the 
very least, it's consistent with any dynamical exponent z.  

e2

t→ λt, xi → λxi

at → λ−1at, ai → λ−1ai, ei → λ−2ei.
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Let's choose z=2.  

Then we may ask, in the first-order form of the 
Lagrangian, what are the leading operators consistent 
with the following z=2 scale invariance:

and

t→ λ2t, xi → λxi

at → λ−2at, ai → λ−1ai, ei → λ−1ei.

If we maintain the shift symmetry of                       , 
then there exists only the marginal deformation:

e→ e + const.

δL = −κ2

2

�
(∂iej)2.
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e2
Alternatively, we may say that this theory is obtained by 
first fine-tuning the coefficient of the     
operator             . 

We then need to add in the leading higher dimension 
operators, from the perspective of z=1 scaling, to the 
theory.  

There are two possibilities.  The first is          above; it is 
the leading operator quadratic in e.  In addition,     can 
be added, but it turns out to be marginally irrelevant, 
assuming its coefficient is consistent with vacuum 
stability.  Because neither we nor any real system are 
ever precisely at the critical point at r=0, we will keep 
the quartic        operator around in our analysis.

r → 0

δL

e4

e4

Thursday, October 7, 2010



Thus, the full theory we shall study is described by

We will refer to this theory as Lifshitz-Chern-Simons 
theory.  At r=0, it has z=2 dynamical scale invariance and 
has a one-dimensional space of relevant deformations 
parameterized by r.  

L =
�

1
g2

�
ei(∂iat − ∂tai)−

r

2
e2 − κ2

2
(∂iej)2 −

1
2
b2

�
− λ

4
(e2)2 + k�µνρaµ∂νaρ.

Phase structure is the following:
-- r>0, the theory is equivalent to Maxwell-CS theory at 
long distances and so is in the QH regime,
-- r=0, the theory has z=2 scale invariance and is 
classically critical,
-- r<0, the theory is unstable; the e field wants to 
condense at a non-zero value.  
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Note that we have already computed the response of 
this theory in the r>0 phase to perturbations by an 
(external) background gauge field.  

When r>0, the newly added operators with couplings 
and       are irrelevant in the IR.  The theory reduces to 
the Maxwell-CS theory we described in the previous 
section.  

Thus, we're already a third of the way done with 
determining the physical properties of the theory!

κ2

λ

It remains to calculate the response at the r=0 point and 
in the r<0 phase.  
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Before we do this, however, I would like to mention a 
few properties of the z=2 critical point at r=0.  The 
reason is because this is a situation where the 
deformation to the CS term is marginal.  As we've seen, 
the Maxwell operator deformation is irrelevant and so 
decouples in the IR.  We will find some new behavior 
when instead this marginal operator is present.

Properties of the Critical r=0 Theory

Below I will discuss three properties of the Lifshitz-CS 
theory: its (1) canonical quantization, (2) edge states, and 
(3) ground state degeneracy.
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Recall that the single fluctuation described by the gauge 
field of Maxwell-CS theory is massive and has spin-1 
(Jackiw et al.).  
The Chern-Simons term imparts a tree-level mass to the 
photon.  (In terms of the QHE, the massive photon is 
related to inter-Landau level transitions.)  
Because of the Chern-Simons term, the rotation 
generator is modified from its naive Noether form; the 
modification of the operator is such that the massive 
photon has unit eigenvalue under the rotation.    

Canonical Quantization

As you might expect, without any dimensionful 
parameters, the excitation described by the Lifshitz-CS 
theory is massless.  Indeed, canonical quantization of the 
theory bears this out.  
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H =
1
2

�
κ

2
g
2(∂iΠj

T )2 +
� 1

g2
+

κ
2
k

2
g
2

4π

�
(∂ia

j
T )2,

where                                  is the canonical 
momentum and the subscript T refers to the fact that 
the fluctuations are transverse --             .
Hamilton’s equations say that       is gapless and has 
quadratic dispersion             .

Πi = ei/g2 +
k

4π
�ijaj

qia
i = 0

ai

ω2 ∼ q4

The proper definition of the rotation generator is 
trickier in this non-relativistic setting.  In the Maxwell-CS 
case, the full SO(2,1) non-abelian Lorentz group fixed 
the appropriate operator.  We do not have this 
symmetry.  There does, however, exist a RG flow via the      
     operator that takes us to the Maxwell-CS theory in 
the IR.  It is possible to define the UV rotation generator 
by its Lorentz invariant IR limit.

e2
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When CS theory is studied on a a manifold with 
boundary, it is well known that the action is invariant up 
to a boundary term (Callan and Harvey, Wen, Stone).  

Edge Modes

δLCS

δα
=

�

∂

e

2π
�µνFµν ,

where     is the gauge transformation parameter and  
run over the directions of the two-dimensional 
boundary.

α µ, ν

To make the full theory well defined, it is necessary to add 
in boundary degrees of freedom that cancel the above 
anomalous term.  These gapless chiral modes are the so-
called edge modes.
Their existence is entirely due to the presence of the 
Chern-Simons term.  Neither the Maxwell or Lifshitz 
terms transform anomalously so only the CS term 
contributes to the anomalous transformation above.
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Ground State Degeneracy

We now study the Lifshitz-CS theory on the 3-manifold                  
            where      is some Riemann surface of genus g.  
Actually, it's sufficient to take             , the 2-torus.  

Being interested in the ground state, we can set all 
momenta to zero, thus we reduce the problem to a 
quantum mechanical one.  But from the above 
expression for the Hamiltonian, we see that it precisely 
vanishes at zero momentum.

R× Σ Σ
Σ = T 2

We have forgotten to keep the quartic      operator.  It is 
marginally irrelevant, but on a compact space, the size of 
the space cuts off the running of this operator and so it 
must be kept in the Lagrangian.

e4
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Re-inserting it, we find 

H = λ

�
((Πi −

k

4π
�ijaj)2)2.

This is just the square of the Hamiltonian for a particle 
in a magnetic field of strength         .  Indeed the energy 
levels are indexed by an integer,             for large n, and 
have a degeneracy equal to k.  For a Riemann surface of 
genus g, the degeneracy is      .

k/2π

E ∼ n2

kg
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Transport at r=0

Using the techniques described previously, it is straight 
forward to obtain the leading (        ) transport at the 
r=0 critical point.  We find:

λ = 0

Re σxx(ω) = Im σxx(ω) = 0
Re σxy(ω) = Im σxy(ω) = 0

while the compressibility is finite,

C =
g2

8π2(1 + κ2)(k/2π)2

It's remarkable that the apparent critical point is more 
insulating that the r>0 QH regime.  The intuitive reason 
for this is that we are interested in the long distance  
limit.  But the Lifshitz term vanishes in this limit and so 
no finite frequency term can survive.

q → 0
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Transport in the r<0 Phase

For r<0, the Hamiltonian

is minimized  at                        . 
Without loss of generality, we can choose the SO(2) 
symmetry-breaking vacuum to be given by  
We expand about this point by writing
and substitute this into H, thereby obtaining

g
2
H[e, a] = − |r|

2
e
2
i +

κ
2

2
(∂iej)2 +

λ

4
(e2

i )
2 + b

2

e2
i =

|r|
λ

, ai = 0

ei = (
�

|r|/λ, 0)
ei = (

�
|r|/λ + ẽx, ey)

H[e, a] = |r|ẽ
2
x +

κ
2

2
(∂iey)2 + b

2 + O(e3) .
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The corresponding action is

S =
�

dt d2x

�
1
g2

�
ẽx∂tax − |r|ẽ2

x − (∂yax − ∂xay)2 + at∂iei

+ ey∂tay − κ2

2 (∂iey)2
�

+ k
4π �µνλaµ∂νaλ

�
.

The theory looks like the Maxwell theory along the x-
direction and while it is Lifshitz-like along the $y-
$direction.  

If impurities in the system can be ignored, we find the 
following response:

σxx(ω) = 0

σyy(ω) =
g4r

8π
δ(ω) +

ig4r

8π2ω
σxy(ω) = 0.
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The compressibility which follows from        is finite or 
zero depending upon how the zero momentum limit is 
taken.

K00

To determine the meaning of the delta function it is 
useful to include interactions.  Because any real system 
will have some amount of ``dirt", we consider adding in 
the effects of impurities.  This, indeed, modifies the 
response, σxx(ω) = 1

8π2
ig4ω

g8k̃2r+i(ωτ)2

σyy(ω) = 1
8π2

g4r ω τ2

g8k̃2r+i(ωτ)2

σxy(ω) = 1
2πk · 1

1+i(ωτ)2/g8k̃2r
,

where     is the scattering time between impurities.  
Indeed, as the impurities are removed                , we 
recover the results for the clean system.  Further, the 
compressibility vanishes as long as      is finite.
 

τ

τ
τ →∞
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Notice the following behavior as             :ω → 0

σxy →
1

2πk
,

Re(σxx) ∼ ω,
Re(σyy) ∼ ω3.

Thus, we have a system that might be called a quantum 
Hall nematic: it has quantized Hall conductivity and 
longitudinal conductivities that vary differently at finite 
frequency!

Note, however, that the inclusion of disorder was crucial.  
This should be contrasted with the quantized Hall 
coefficient in the r>0 phase.  Somehow, both disorder 
and interactions are crucial for this effect.
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Relation to a Microscopic Theory

So far, our discussion has been purely in terms of an 
effective field theory.  The parameters in our model are 
necessarily phenomenological.  Perhaps a more 
microscopic realization would be useful?

Indeed there exists a more microscopic description of 
the quantum Hall effect.  This is provided by the so-
called Chern-Simons/Landau Ginzburg description of the 
Hall effect.  It was developed by Zhang, Hansson, and 
Kivelson in the early 90s after motivating work by Girvin 
and MacDonald (a related fermionic theory was 
developed by Fradkin and Lopez).
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Unfortunately, there is not enough time today to explain 
the precise relation.  
However, one makes use of the CS/LG description of the 
Hall effect and relates this theory, via particle-vortex 
duality (Fisher, Fisher and Lee), to the “hydrodynamic 
theory we have been studying.  
The relation between the parameters is the following:

κ2 = 4cρ�eV0,
g2 = 4π2/eV0,

|r| = 8|b|ρ�eV0,

where      is the density,      is the pair potential,      is the 
unit of electric charge and         are two constants 
specifying certain terms in the QM kinetic energy.

ρ� V0

b, c

e
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Conclusion

•First, I reviewed various experiments by the Eisenstein 
group on a 2 DEG at filling fraction          .
•I noted the possible existence of a new state with 
quantized Hall conductivity, but anisotropic DC longitudinal 
conductivity at finite temperature. 
•Then I introduced a model, Lifshitz-Chern-Simons theory, 
whose transport at finite frequency and zero temperature 
shows, in the disordered regime, quantized Hall conductivity 
and anisotropic longitudinal conductivity.
•We are currently studying a more microscopic realization 
of the model that shares the same transport properties.
•We hope that we will be able to have a better 
understanding of the theory in order to know whether or 
not it is related to the above experiment, or is simply an 
interesting toy theory (waiting to be discovered!)

ν > 2
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