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Why are topological insulators interesting?

Experiment:

New class of materials

Effective 2+1 massless Dirac fermions at the surface

Realized in the lab: Bi1−xSbx , Bi2Te3, Bi2Se3 , Sb2Tb3

Unusual Quantum Hall Effect (half-integer)

Robust against disorder

Theory:

Topological classification of theories with fermions
(of which 3+1 topological insulators are an example)

Some theories related by dimensional reduction

Map to stable D-brane configurations (K-theory)

Review: [Hasan & Kane, 1002.3895]
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Insulators

Figure: An insulator for a condensed matter physicist (experimentalist)

LM = 1
4FµνF

µν + ψ (iγµDµ −M)ψ

Equation: Simplified version for theoretists
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Topological phases of insulators

Consider 2+1 massless fermions in a magnetic field (T ,C broken)
Gapped Landau levels (insulator)
Gapless states at the boundary
Integer Quantum Hall Effect σxy = n e2

h
⇒ topologically inequivalent to normal insulators (where σxy = 0)

Figure: Hall resistivity as a function of the magnetic field
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3+1 Topological Insulators

Consider an insulator in 3+1 dimensions:

LM = 1
4FµνF

µν + ψ (iγµDµ −M)ψ

We can make M complex

Mψψ → ψ|M|e iγ5φψ = |M| cosφψψ + i |M| sinφψγ5ψ

Under T : ψψ even, ψγ5ψ odd

Time reversal invariance requires φ = 0, π (real mass)

Normal insulator φ = 0

Topological insulator φ = π

Topologically protected by T :
|M| → 0 in order to change the phase of the mass
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Topological Effective Theories

An axial rotation ψ → e−iγ5φ/2ψ shifts M → e−iγ5φM

The mass is now real and positive, but the ABJ anomaly gives a theta
term to the action θ = φ.

After integrating out the fermions the effective theory is

LTET = 1
4FµνF

µν + e2θ
32π2 ε

µναβFµνFαβ

The θ-term ∼ θ E · B is T -odd.

BUT: the quantum theory is invariant under θ → θ + 2π

Two T -symmetric values: θ = 0, π

Normal insulator: θ = 0

Topological insulator: θ = π
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Normal/Topological insulator interface

Massive Dirac fermions with space-dependent mass M(x)

M(x) =

{
positive, x > 0
negative x < 0

T -symmetry implies M is real, so M(x = 0) = 0
Massless fermions at the interface:

2+1 dimensions: Operator ψψ: T -odd

T -symmetric mass needs two flavors: m(ψ1ψ1 − ψ2ψ2)

Normal/Topological insulator: odd number of flavors at the interface

Robustnees, T -symetric deformations do not lift massless excitations
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Normal/Topological insulator interface

Gauge theory with space-dependent theta term (axion) θ(x)

θ(x) =

{
0 , x > 0
∆θ , x < 0

In the T -symmetric case ∆θ = 0, π. The 3+1 eom’s are

∂µF
µν +

e2

4π2
εµναβ∂µθ∂αAβ = 0

Since ∂νθ = ∆θδ(x)δxν , the effective 2+1 theory at the interface is

Lk =
1

4
FijF

ij − e2k

4π
εijkAiFjk

With a Chern-Simons level k = ∆θ
2π = 1

2 ⇒ σxy = ke2/h.

⇒ half-integer QHE
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Fractional Topological Insulator

Effective theory:

Gauge theory: U(1)em × SU(Nc), Nc odd (baryon is a fermion)

Fµν = e
Nc

Fµν1 + gf a
µνTa

Quarks: fundamental representation, charge q = e/Nc

Baryon: charge e, composite electron

ABJ axial anomaly: Lθ = θ
32π2 Tr

(
εµναβFµνFαβ

)
Symmetry θ → θ + 2π

U(1) part: Lθ = Nc
e2

N2
c

θ
32π2 ε

µναβFµνFαβ

θeff = θ
Nc

: T -symmetric values θeff = 0, π/Nc , · · ·
Interface: Chern-Simons level k = 1/(2Nc), · · ·
Hall conductivity σxy = 1

2Nc

e2

h

[Maciejko, Qi, Karch & Zhang, 1004.3628]
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Why an AdS/CFT model?

A lot is known about weakly coupled TIs: Complete classification using
free fermions, there are no fractional TIs
[Schnyder, Ryu, Furusaki & Ludwig 2008-10; Kitaev 2009]

Non-Abelian gauge theories could be used as models

Problem # 1: Charge carriers with fractional charge should be
deconfined [Swingle,Barkeshli,McGreevy,Senthil,1005.1076]

Solution # 1: Use a CFT, like N = 4 SYM

We could use a weakly coupled description, like field theories on
D-branes

Problem # 2: A model describing an interface breaks conformal
invariance (and supersymmetry)

With D-branes one needs to bend or rotate the D-brane: generically
unstable, non-perturbative problems in the field theory?

Solution # 2: Use AdS/CFT with probe branes, the configuration is
fixed by the boundary conditions
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Holographic model

N = 4 SU(Nc) SYM: gauge theory → AdS5 × S5 dual

Hypermultiplet in the fundamental representation:
quasiparticles/quarks → probe D7 brane

U(1) global flavor symmetry:
U(1)em weakly coupled → U(1) gauge field on the D7

Charge quasiparticles qp = e ⇒ charge electron qe = Nce

Chern-Simons level k = Nc/2 (equivalent)
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Holographic model

Interface between normal and topological insulator

ds2 = (r2 + ρ2)ηµνdxµdxν +
dr2 + r2dΩ2

3 + dρ2 + ρ2dφ2

r2 + ρ2

D7 embedding: wraps {xµ,Ω3, r} directions. Profile ρ(r , x),

limr→∞ ρ(r , x) ' M(x) + c(x)/r2 + · · ·
M(x) ∼ quark mass

c(x) ∼ quark condensate

Real mass: φ = 0 or φ = π

dρ2 + ρ2dφ2 → dX 2 + dY 2, X = 0, Y = ρ

limx→∞M(x) = M0 positive mass (φ = 0)

limx→−∞M(x) = −M0 negative mass (φ = π)
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Topological term at the interface

Background five-form flux:
∫
S5 F5 = 2κ2

10T3Nc

Induced Chern-Simons term in D7 action

SWZ = −1

2
(2πα′)2T7

∫
F5 ∧ A ∧ F = −1

2
(2πα′)2T7

∫
F5

∫
tyz

A ∧ F

Where F5 ∼ dΩ3 ∧ dθ ∧ dφ

We are now considering the embedding as θ = θ(r , x), φ = ∆φΘ(−x)

The embedding covers θ ∈ [0, π). Real mass implies ∆φ = π.

Then,
∫

F5 = ∆φ
2π

∫
S5 F5 = 1

2

∫
S5 F5

Chern-Simons term

SWZ = − k
4π

∫
tyz A ∧ F , k = Nc

2
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Embedding: linearized solution

DBI action for the ansatz

LDBI = r3

√
1 + (∂rY )2 +

(∂xY )2

(r2 + Y 2)2

Scaling symmetry Y , r → ξY , ξr , x → x/ξ
Expanding to second order

L(2) =
r3

2
(∂rY )2 +

1

2r
(∂xY )2

Solution:

Y0(r , x) =
M0xr√

1 + (xr)2

lim
r→∞

Y0(x , r) = sign (x)M0 = M(x)
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Embedding: beyond linear order

Series solution:

Y (r , x) = M0

∞∑
n=0

(M0x)2nfn(xr) = Y0(r , x) + M3
0x2f1(xr) + · · ·

Regularity conditions fix fn(xr)

Accurate for r � M0, M0x � 1

Mass: M(x) = sign (x)M0 + O(M3
0x2)

Condensate follows from dimensional analysis

c(x) = sign (x)
M0

x2

∞∑
n=0

cn(M0x)2n

Issues: wrong behavior as r → 0, ∂rY (0, x) 6= 0 → conical defect
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Embedding: numerical solution

Numerical problem: relaxation to the ground state

∂τY (r , x , τ) = −|δLDBI [Y , ∂rY , ∂xY ] |

As τ →∞, |δLDBI | → 0 so Y (r , x ,∞) satisfies the eom’s

Initial condition Y (r , x , 0) = Y0(r , x)

Boundary conditions (r = 0) ∂rY (0, x , τ) = 0

Boundary conditions (rc = 20M0) Y (rc , x , τ) = Y0(rc , x)

Boundary conditions (xc = 4/M0) Y (r ,±xc , τ) = Y0(rc ,±xc)

C. Hoyos (UW) FTI GGI, Oct 14, 2010 17 / 21



Embedding: numerical solution
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Embedding: numerical solution
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Other string theory constructions

Stable D-brane intersections (K-theory classification)
[Ryu & Takayanagi, 1007.4234]

Holographic FTI in 2+1 and 1+1 dimensions
[Karch, Maciejko & Takayanagi, 1009.2991]

D3/D5 2+1 intersection/probe D5 in AdS4 × S2

T -symmetric, Spin Hall Effect U(1)R ∼ spin symmetry
Sbulk = Nc

4π

∫
(AR ∧ F + A ∧ FR)

D3/D5 1+1 intersection/probe D5 in AdS3 × S3

C-symmetric, boundary charge density (holographic model unstable)
Sbulk = Nc

2

∫
F ⇒ Sinterface = Nc

2

∫
At

D3/D3 1+1 intersection/probe D3 in AdS3 × S1

T -symmetric, boundary spin density
Sbulk = Nc

∫
FR ⇒ Sinterface = Nc

∫
AR

t
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Conclusions and future directions

There is a complete classification of TI at weak coupling

At strong coupling there could be new classes, as the fractional TI

AdS/CFT models can be used to explore these new possibilities

We have constructed an explicit example of 3+1 TI with fractional
Hall conductivity at the interface σxy = 1/(2Nc)e2/h

Other examples in 2+1 and 1+1 have been found using holography

Are there fractional versions of all weakly coupled TIs? What are the
possible cases?
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