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@ Small review of topological insulators
@ Models for fractional topological insulators

@ Holographic model of FTI
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Why are topological insulators interesting?

@ New class of materials

Effective 2-+1 massless Dirac fermions at the surface
Realized in the lab: Bi;_,Sby, BixTes, BixSez , SbyTbs
Unusual Quantum Hall Effect (half-integer)

Robust against disorder

@ Topological classification of theories with fermions
(of which 3+1 topological insulators are an example)

@ Some theories related by dimensional reduction

@ Map to stable D-brane configurations (K-theory)

Review: [Hasan & Kane, 1002.3895]
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Insulators
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Figure: An insulator for a condensed matter physicist (experimentalist)
L= LFF* + 4 (iv"Dy — M)y

Equation: Simplified version for theoretists
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Topological phases of insulators

Consider 241 massless fermions in a magnetic field (7,C broken)
Gapped Landau levels (insulator)

Gapless states at the boundary

Integer Quantum Hall Effect o,, = ne—h2

= topologically inequivalent to normal insulators (where oy, = 0)
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Figure: Hall resistivity as a function of the magnetic field
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3+1 Topological Insulators

Consider an insulator in 34+1 dimensions:
EM = %F;WFMV +@(VYMD/L - M)¢
We can make M complex

Myp — | M|e™5%4) = [M] cos ¢ ) + i| M| sin ¢ st

Under T: v1) even, 151 odd

Time reversal invariance requires ¢ = 0, 7 (real mass)

Normal insulator ¢ = 0

Topological insulator ¢ = 7

Topologically protected by 7:
M| — 0 in order to change the phase of the mass

C. Hoyos (UW) FTI GGl, Oct 14,2010 6/ 21



Topological Effective Theories

o An axial rotation ¢ — e~"59/2y) shifts M — e~ "5 M

@ The mass is now real and positive, but the ABJ anomaly gives a theta
term to the action 6 = ¢.

@ After integrating out the fermions the effective theory is

Lrer = YR F 4 20 cwelF L F s J

@ The f-term ~ 0 E - B is 7-odd.
@ BUT: the quantum theory is invariant under § — 6 + 27
o Two 7-symmetric values: § = 0,7

@ Normal insulator: 6 =0 J

@ Topological insulator: 6 =
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Normal/Topological insulator interface

Massive Dirac fermions with space-dependent mass M(x)

positive, x>0
negative x <0

M(x) = {

7 -symmetry implies M is real, so M(x =0) =0
Massless fermions at the interface:
e 2+1 dimensions: Operator ): 7-odd
@ 7-symmetric mass needs two flavors: m(i111 — V100)
e Normal/Topological insulator: odd number of flavors at the interface
°

Robustnees, 7-symetric deformations do not lift massless excitations
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Normal/Topological insulator interface

Gauge theory with space-dependent theta term (axion) 6(x)
0(x) = 0 , x>0
A, x<0
In the 7-symmetric case A = 0, 7. The 34+1 eom'’s are

2
OuF"™ + 45" 00,000A5 = 0
T

Since 0,0 = ABJ(x)0}, the effective 241 theory at the interface is

1 . 2k ..
L= 3 FyFY = EGUkA;ij

With a Chern-Simons level k =2 =1 = o, = ke?/h.

= half-integer QHE J
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Fractional Topological Insulator

Effective theory:
e Gauge theory: U(1)em X SU(N¢), N¢ odd (baryon is a fermion)
o F = Ful+gfT?
@ Quarks: fundamental representation, charge g = e/ N,
@ Baryon: charge e, composite electron
ABJ axial anomaly: Ly = 325 Tr (e*F,,F o)
Symmetry 6 — 6 + 27r

U(1) part Lyg= N2 N2 327T2

B, Fop

Oor = N . T-symmetric values Oog = 0, 7/Nc, - -

o Interface: Chern-Simons level k = 1/(2/N.),--

1 e
oN: h

[N)

e Hall conductivity o, =

[Maciejko, Qi, Karch & Zhang, 1004.3628]
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Why an AdS/CFT model?

A lot is known about weakly coupled Tls: Complete classification using
free fermions, there are no fractional Tls

[Schnyder, Ryu, Furusaki & Ludwig 2008-10; Kitaev 2009]

@ Non-Abelian gauge theories could be used as models

@ Problem # 1: Charge carriers with fractional charge should be
deconfined [swingle Barkeshi,McGreevy,Senthil, 1005.1076]

@ Solution # 1: Use a CFT, like ' =4 SYM

@ We could use a weakly coupled description, like field theories on
D-branes

@ Problem # 2: A model describing an interface breaks conformal
invariance (and supersymmetry)

@ With D-branes one needs to bend or rotate the D-brane: generically
unstable, non-perturbative problems in the field theory?

@ Solution # 2: Use AdS/CFT with probe branes, the configuration is
fixed by the boundary conditions
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Holographic model

N =4 SU(N.) SYM: gauge theory — AdSs x S° dual

Hypermultiplet in the fundamental representation:
quasiparticles/quarks — probe D7 brane

U(1) global flavor symmetry:
U(1)em weakly coupled — U(1) gauge field on the D7

Charge quasiparticles g, = e = charge electron g. = Nce

@ Chern-Simons level k = N./2 (equivalent)
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Holographic model

Interface between normal and topological insulator

dr? + r2d03 + dp? + p2d¢?

2 2 2
ds? = (r* + p*)rpudx’dx” + 21 2

D7 embedding: wraps {x*, 3, r} directions. Profile p(r,x),
o lim, oo p(r,x) =~ M(x) + c(x)/r* +---
e M(x) ~ quark mass
@ c(x) ~ quark condensate

Real mass: ¢ =0or¢p =7

dp® + p?d¢? — dX? +dY?, X =0, Y =p

limyx—o0o M(x) = My positive mass (¢ = 0)

limy— oo M(x) = —Mjy negative mass (¢ = )
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Topological term at the interface

e Background five-form flux: [s Fs = 2r3, TN

@ Induced Chern-Simons term in D7 action
1 1
Swz = —2(27ro/)2T7/F5 NANF = —2(27r0z/)2T7/F5/ ANF
tyz

Where F5 ~ dQ3 A dO A do

We are now considering the embedding as 6 = (r, x), ¢ = ApO(—x)
The embedding covers 6 € [0, 7). Real mass implies A¢ = .

Then, [Fs =52 [ Fs =3 [s Fs

Chern-Simons term

Swz=—%ftyzA/\F, k:%
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Embedding: linearized solution

DBI action for the ansatz

_ 3 (0xY)?
Lpgr=r \/1+(3ry)2+(r2+y2)2

Scaling symmetry Y, r — Y, &r, x — x/€
Expanding to second order

£ = f(a Y)? 4 i(a Y)?
2 2r

Solution:
M()XI’
1+ (xr)?

lim Yo(x, r) = sign(x)My = M(x)

Yo(r,x) =
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Embedding: beyond linear order

Series solution:

Y(r,x) = Mo Y (Mox)*"fo(xr) = Yo(r, x) + Mgx®fi(xr) + - --
n=0

Regularity conditions fix f,(xr)
Accurate for r > My, Mox < 1
Mass: M(x) = sign (x)Mo + O(M3x?)

Condensate follows from dimensional analysis

o0

c(x) = sign (x)% Z cn(Mox)2"
n=0

Issues: wrong behavior as r — 0, 9,Y(0,x) # 0 — conical defect

C. Hoyos (UW) FTI GGl, Oct 14,2010 16 / 21



Embedding: numerical solution

Numerical problem: relaxation to the ground state
0-Y(r,x,7)=—0LppI [Y,0:Y,0x Y]]

As 7 — o0, [0Lppi| — 0 so Y(r,x, o) satisfies the eom'’s
e Initial condition Y'(r,x,0) = Yo(r,x)
@ Boundary conditions (r =0) 9,Y(0,x,7) =0
e Boundary conditions (rc =20Mp) Y(rc,x,7) = Yo(re, x)
e Boundary conditions (xc = 4/My) Y (r,£xc,7) = Yo(re, £xc)
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Embedding: numerical solution
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Embedding: numerical solution
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Other string theory constructions

@ Stable D-brane intersections (K-theory classification)

[Ryu & Takayanagi, 1007.4234]

@ Holographic FTl in 2+1 and 141 dimensions
[Karch, Maciejko & Takayanagi, 1009.2991]

o D3/D5 2+1 intersection/probe D5 in AdS; x S?
T-symmetric, Spin Hall Effect U(1)g ~ spin symmetry
Shulk = %I(AR/\F+A/\FR)

o D3/D5 1+1 intersection/probe D5 in AdS; x S3
C-symmetric, boundary charge density (holographic model unstable)
Shulk = % f F = Sinterface = % fAt

e D3/D3 141 intersection/probe D3 in AdS; x S?
T-symmetric, boundary spin density
Sbulk = ch FR = Sinterface = chAtR
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Conclusions and future directions

There is a complete classification of Tl at weak coupling
At strong coupling there could be new classes, as the fractional Tl

AdS/CFT models can be used to explore these new possibilities

We have constructed an explicit example of 341 Tl with fractional
Hall conductivity at the interface oy, = 1/(2N.)e?/h

Other examples in 241 and 141 have been found using holography

Are there fractional versions of all weakly coupled Tls? What are the
possible cases?
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