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Overview:
1. Introductory remarks on c-theorem
2. Holographic c-theorem I: Einstein gravity
3. Holographic c-theorem II: Quasi-topological gravity
4. a4, Entanglement Entropy and Beyond

5. Concluding remarks



Zamolodchikov c-theorem (1986):

e renormalization-group (RG) flows can seen as one-parameter
motion d 9
N OF
in the space of (renormalized) coupling constants{g¢*, i =1,2,3,---}
with beta-functions as “velocities”

o for unitary, renormalizable QFT’s in two dimensions, there exists
a positive-definite real function of the coupling constants c(g):

. . d
1. monotonically decreasing along flows: Ec(g) <0

2. “stationary” at fixed points ¢’ = (3°)" :

8'(g") = 0 5gic(9) =0

3. at fixed points, it equals central charge of corresponding CFT
c(g”) = c



Zamolodchikov c-theorem (1986):

e renormalization-group (RG) flows can seen as one-parameter
motion d 9
N OF
in the space of (renormalized) coupling constants{g¢*, i =1,2,3,---}
with beta-functions as “velocities”

o for unitary, renormalizable QFT’s in two dimensions, there exists

a positivi sc(g):
Consequence for any RG flow:
1. mon(

2. “statl UV

3. at fix ding CFT

CUv > CIR



C-theorems in higher dimensions??
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« in 4 dimensions, have three central charges: ¢, a, @’
» do any of these obey a similar “c-theorem” under RG flows?

x a' -theorem: «’ is scheme dependent (not globally defined)

X c -theorem: there are numerous counter-examples
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/ e+ numerous nontrivial examples, eg, perturbative fixed
points (Jack & Osborn), SUSY gauge theories (Anselmi et al)

/ « holographic field theories with gravity dual (a = ¢)
* no completely general proof

XK - counterexample proposed: Shapere & Tachikawa, 0809.3238



(Shapere & Tachikawa, 0809.3238)
Counterexample to a-theorem:

* flow between two N = 2 superconformal gauge theories
UV: gauge group SU(N.+1) with N.=2N_ fundamental hyper’s
IR: gauge group SU(N,) with N(=2N_ fundamental hyper’s (m=0)

1
aUV—aIR:E(19NC—7N3—I—15) (<0 for N.>4)

 loophole: accidental U(1) symmetry appears in the IR limit

e counterexample is not valid: UV fixed point does not exist for
N2 invalidating previous analysis

(Seiberg & Tachikawa)



C-theorems in higher dimensions??
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(Freedman, Gubser, Pilch & Warner, hep-th/9904017)
(Girardello, Petrini, Porrati and Zaffaroni, hep-th/9810126)

Holographic RG flows:

1
I = 33 d5£U vV —g (R + »Cmatter)
203,
. . . . 12
e assume stationary points: matter fields fixed and Lmatter = ﬁa?

. 1
(eg, scalar field: Liatrer = —5(06)* = V(9) )
« consider metric: ds® = > (—dt? + dz? + dx2 + da2) + dr?

e at stationary points, AdS; vacuum: A(r) = r/L with L = L/,

* RG flows are solutions starting at one stationary point and
ending at another >

V(g) 1Y




(Freedman, Gubser, Pilch & Warner, hep-th/9904017)
(Girardello, Petrini, Porrati and Zaffaroni, hep-th/9810126)

Holographic RG flows:

2

. . _ Yy
o for general flow solutions, define: a(r) = EA()?
372 2
/ — A// — _ Tt _TTT >O
= gaey O Ay T 2
Einstein equationsJ null energy conditionJ

- at stationary points, a(r) — a* = 7% L*/¢3 and hence

[abv > a}R]

« using holographic trace anomaly: a™ = a
(e.g., Henningson & Skenderis)

—> supports Cardy’s conjecture
o for Einstein gravity, central charges equal(a — c) CUV = CIR



(Freedman, Gubser, Pilch & Warner, hep-th/9904017)

Holographic RG flows:
I = % /dd+1x vV—9 (R + Luatter)
204
« same story is readily extended to (d+1) dimensions

d/2

T'(d/2) (LpA'(r))™
B d/2
s A ) = e
['(d/2) e A'(r)? ['(d/2)tp " A'(r)
Einstein equations J null energy conditionJ

e defining: aq(r) =

d/2

a(r) =

(T —T7,) 2 0

. at stationary points, a(r) = a* = 792 /T'(d/2) (L/¢p)?* ' and so

[a?ﬂ/ > G?R]

« using holographic trace anomaly: a* o central charges
(for even d! what about odd d?) (e.9., Henningson & Skenderis)




Improved Holographic RG Flows:

 add higher curvature interactions to bulk gravity action

—— provides holographic field theories with, eg, a # ¢
so that we can clearly distinguish evidence of a-theorem

(Nojiri & Odintsov; Blau, Narain & Gava)

—> more generally broadens class of dual CFT’s



Higher Curvature Terms in Derivative Expansion

* in strings, sugra action corrected by higher curvature terms
o/ corrections: o /L2 ~ 1/V/\
string loops: g5 =~ A\/N,

* perturbing sugra theory with higher curvature terms provides
Insight into finite N., A corrections in gauge theory

* here | want to go beyond perturbative framework to study
RG flows (i.e., want to consider finite values of new couplings)

o if we go to finite parameters where one of the higher
curvature terms is important, expect all are important

e ultimately one needs to fully develop string theory for
Interesting holographic backgrounds



Higher Curvature Terms without Derivative Expansion

e instead consider “toy models” with finite R" interactions
(where we can maintain control of calculations)

» with AdS/CFT, higher curvature couplings become dials to
adjust parameters characterizing the dual CFT

* note that any one R" interaction implicitly determines an
Infinite number of couplings in T_, correlators

e construct models to maintain control of calculations

What about the swampland?
 constrain gravitational couplings with consistency tests
(positive fluxes; causality; unitarity) and keep fingers crossed!

» seems an effective approach with Lovelock gravity
(eg, Brigante, Liu, Myers, Shenker & Yaida)



' : : Myers & Robinsion, 1003.5357
Qua5|-TopoIog|caI gravity: (My )

A T
[ = Prv/—g|—= + R+ L? L*2 z
2@ x [ + R+ L5 xa+ L' 2
with X4 = R“Rupeq — 4R R + R?
1
Zs = ROIRSIRAY+ — (21Rupea RR — T2Rgpea R% R

56
+120Rapca R R + 144R) R, R — 132R R R + 15R?)

e three dimensionless couplings,L/¢p, A, u, allow us to explore
dual CFT’s with most general three-point function (Top Teqd Te s )

“maintain control of calculations”
 analytic black hole solutions

* linearized eom in AdS; are second order (in fact, Einstein eq’s!)
 can be extended to higher dimensions (D=7)



' : : Myers & Robinsion, 1003.5357
Qua5|-TopoIog|caI gravity: (My )

I = d°z\/—g [%—F R+ L@x4 + L @25]

253
with xa = R™“Rupeq — 4R, R + R?

1
25 = RSOR{RS+ oo (A Rabea R R — T2Rapea R, R
+120Rupea R R + 144R) R, R — 132R R, R + 15R?)
SO calculate!
. t in AdS - i — fﬁ
curvature in £ vacuum: = = T2

where  o? — foo + Af2 +pufl =0

 holographic trace anomaly: (Myers, Paulos & Sinha, 1004.2055)

0=l (oAt onf2) . e=mh (- —aup2)
63 00 Hloo) s €3P o0 o0



RG flows in Quasi-Topological gravity:

« consider metric: ds® = e*4) (—dt? + da? + dr3 + dx3) + dr’
-> AdS; vacua: A(r)=r/L

e natural to define “flow functions”:

2
(1= 6ALA(r)2 + 9L A’ (r)")

CL(T) = E%A/(TP (
= (1= 2XL°A'(r)? = 3uL*A'(r)*)

7

C\T) =
"= G
where at stationary points: a(r) =a, c(r) =c




RG flows in Quasi-Topological gravity:

71.2

a(r) = BAT (1 — 6AL2A(r)* + 9,uL4A’(7“)4)
c(r) = 83132’2(7‘)3 (1 —2AL2A (r)? — 3uL*A'(r)*)

where at stationary points: a(r) =a, c(r) =c

* in general flows:
, 37
alr) = -—
"= TBae

,n.2

. t  mpr
=~ agpy TT)TO

assume null energy condition

- A"(r) (1 - 2AL?A'(r)? — 3uL* A’ (r)*)

gravitational equations of motion



RG flows in Quasi-Topological gravity:

,n.2

a(r) = BAT (1 — 6AL2A(r)* + 9,uL4A’(7“)4)
c(r) = B%X/Q(T)S (1 —2AL2A (r)? — 3uL*A'(r)*)

where at stationary points: a(r) =a, c(r) =c

* in general flows:

/ 3 7 2 A1/ N\2 4 A1/ N4
= — A 1 —2)\L°A — 3ul*A
) = gy A0) (- DA ) = 3L A )Y
w2 ;
= T, —=T",.) >
63]314’(7")4 ( t ) =0
/ 37T2 17 2 2 Al 2 4 4/ 4
= — A 1 — =MNL°A —ul*A
c (T> E%A/(T)zl (T) 3)\ (Ir) /’L (T)

_ w2 1 — %)\LQA/(T)Q — LA A’ (r)? (Tt g ) or
K%A’(T)‘l 1 — 2AL2A/(r)2 — 3uLl4 A ()4 t r) 7




RG flows in Quasi-Topological gravity:

WQ

a(r) = BAT (1 — 6AL2A(r)* + 9,uL4A’(7“)4)
c(r) = B%X/Q(T)S (1 —2AL2A (r)? — 3uL*A'(r)*)

where at stationary points: a(r) =a, c(r) =c

* in general flows:

/ 371-2 /! 2 Al 2 4 A/ 4
= — A 1 —2)\L°A — 3ul*A
() = gy A (L= LA = LA (r)')
w2 ;
- — T, —=T",.) >
63]314’(7")4 ( t ) =

e can try to be more creative in defining c(r) but we were unable
to find a expression where flow is guaranteed to be monotonic

e our toy model seems to provide support for Cardy’s “a-theorem”
In four dimensions



Higher Dimensions: D =d+1 (d > 6)
o straightforward to reverse engineer “a-theorem” flows
e eg’s of motion:
T —T" = (d—1) A"(r) (1 —2AL?A'(r)? = 3uL*A'(r)")
« expression with natural flow:

_ /2 2(d=1) 1oy o 3d=1) —y . 4
") = T a72) (A () <1_ i—3 AU et A(T))
) ()= e (7" —T",) >0

T(d/2) A ()

|

assume null energy condition



Higher Dimensions: D =d+1 (d > 6)
o straightforward to reverse engineer “a-theorem” flows
e eg’s of motion:
T —T" = (d—1) A"(r) (1 —2AL?A'(r)? = 3uL*A'(r)")
« expression with natural flow:

_ /2 2(d=1) 1oy o 3d=1) —y . 4
") = T a72) (A () (1_ i—3 AU et A(T))
) (1) = e (7" —T",) >0

T(d/2) A ()

« flow between stationary points (where aj; = aq(r)| 449)

(GJZZ)UV > (GZ)IR

What is a; ?7?



What is aj; ??

d/2fd—1 2(d — 1 d—1
af=— (1— ( )Afoo—3<_5)uf§o>

I'(d/2)¢% ! d—3 d
1 o0
where AdS curvature: 77 = ];—2 0% — foo AL 4 ufS =0

« ay is NOT Cr, coefficient of leading singularity in

<Tab(x) Tcd<0) > — " od Iab,cd(aj)

. aj is NOT Cgs, coefficient in entropy density: s = Cg 79}



What is aj; ??

d/2d-1 2(d — 1 d—1
0= (1- 2= - g )

I'(d/2)¢% ! d—3 d
1 o0
where AdS curvature: 77 = ];—2 0% — foo AL 4 ufS =0

o trace anomaly for CFT’s with even d:
(T,") = Z B;(Weyl invariant); — 2(—)% @Euler density)q

o verify that we have precisely reproduced central charge

a;=A

(Henningson & Skenderis; Nojiri & Odintsov; Blau, Narain & Gava,;
Imbimbo, Schwimmer, Theisen & Yankielowicz)

—> agrees with Cardy’s proposal (1988)



What is aj; ??

d/2d-1 2(d — 1 3(d—1
4§ = S (1— | ))‘foo_ ( )uffo>
T(d/2)6% d—3 d—5
L £

where AdS curvature: — = —,
2 L2

o — foo + ML+ pfS =0

o trace anomaly for CFT’s with even d:
(T,") = Z B;(Weyl invariant); — 2(—)% @Euler density)q

o verify that we have precisely reproduced central charge

a;=A

(Henningson & Skenderis; Nojiri & Odintsov; Blau, Narain & Gava,;
Imbimbo, Schwimmer, Theisen & Yankielowicz)

What is a; for odd d?? (One moment!)



RG flows in Quasi-Topological gravity:

Comment:
o “c-theorem” still assume null energy condition

—> construct a toy model with reasonable physical properties

creative
gravity

. 12
V(Cb ) — —ﬁ@Q J
 natural to consider more general models:
. L? 7LA
I = %3 &>z /=g |-V(9) +R+—)\(¢)X4+TM(¢)Z5

L2 () R%0,6 9y + L' (6)R2V26 + - }

What are the rules??



ay; and Entanglement Entropy

e introduce a(n arbitrary) boundary dividing the system in two
e integrate out degrees of freedom in outside region

e remaining dof are described by a density matrix pa

——> entanglement entropy: S = —T'r [pa log p]

B

Abounda’ry
Hd—2

 universal information appears in subleading terms:
S= - 4 cqlog(R/0) + --- forevend

o full result sensitive to UV physics: S = ¢




a; and Entanglement Entropy

 in 1003.5357, studied black hole thermodynamics for
guasi-topological gravity with various horizons: Rd-1, Sd-1 Hd-1
« allows for the following observation:

 place CFT on hyperbolic hyperplane (ie, R X Hd-1)
—> ground-state energy density is now negative
* heat system up until energy density is precisely zero, pg =0

——> entropy density: s = (4m)¥/?T (d/z) a’ 71

2T
= T (/)

L 1

Why entanglement entropy?



ay; and Entanglement Entropy
* CFT on hyperbolic hyperplane Hd1 at finite T tuned to pg =0

—> Dbulk spacetime is pure AdS4,,
2 2
ds® = dr — 7:— — 1) dt® +r? dzg_l
(ﬁ _ ) L?
L2

* SO why Is there entropy at all??

t= const. slice of AdS

r=0c0

e 7 — 0O only reaches half boundary surface

r = const.

 hyperbolic foliation divides boundary sphere
Into two halves and entropy Is entanglement
entropy of system

second asymptotic region



o o a
entropy density: s = -y I'(d/2) .

27T ad

total entropy: S:Wd/2 (d/2) = V(H )ﬁ

_ 2
ds® = L? [ ij” 5 +u’ ng—2]
U
~\ d—2
., 27 D(d/2) L
> = fazam g 2Qd_2<5> t

\ J
|

“area law” for d-dimensional CFT




. 2 aj
entropy density: s = — zjfl
2 ay d—1
total entropy: § = — =5 V(I ﬁ
~ du?
2 T2 2 d—2
ds” =L [1+u2+u = ]
S = - + (=)2 '4a* log (E/d) + --- forevend
o+ (2T 2mal 4 e for odd d

\ J
|

universal contribution

(Note: can be derived with conventional definition of S

entangle)



Conjecture:
 place CFT on S9! X R and divide sphere in half along equator

» entanglement entropy of ground state has universal contribution

< (=) 14a% log(L/5) for even d
univ — g1
a (—) 2 27maj for odd d
(any gravitat_ional action)
« in RG flows between fixed points (any CFT in even d)

(QZ)UV > (GZ)IR
(“unitary” models)

—> gives framework to consider c-theorem for odd or even d

—— behaviour discovered for holographic model but conjecture
that result applies generally (outside of holography)



and Beyond:

e Susskind & Witten: density of degrees of freedom in N=4 SYM
connected to area of holographic screen at large R in AdS;

Vi A(R _ .
Naor ~ N? x 73 ( ) cut-off scale defined R

3 3 ius: - — ——
) EP by regulator radius: 5= 72

e given higher curvature bulk action, natural extension is to
evaluate Wald entropy on holographic screen at large R

OLyy1k

S = —zwj[dd—la; h %z,

aRabcd

o straightforward evaluate:

for any covariant action: Ly = Lyuik (9%, R“bcd, VR4,



Conclusions:

 AdS/CFT correspondence (gauge/gravity duality) has proven
an excellent tool to study strongly coupled gauge theories

e toy theories with higher-R interactions extend class of CFT’s
—> maintain calculational control with LL or quasi-top. gravity
 consistency (causality & positive fluxes) constrains couplings

e provide interesting insights into RG flows
 naturally support Cardy’s version of a-theorem with d even
* suggests extension of a-theorem to d odd

 a; seems to play a privileged role in holography

o further implications for holographic dualities??

Lots to explore!



