

Holographic C-theorems

with A. Sinha (arXiv:1006.1263 & in progress)

Overview:

- 1. Introductory remarks on c-theorem
- 2. Holographic c-theorem I: Einstein gravity
- 3. Holographic c-theorem II: Quasi-topological gravity
- 4. a_d^* , Entanglement Entropy and Beyond
- 5. Concluding remarks

Zamolodchikov c-theorem (1986):

• renormalization-group (RG) flows can seen as one-parameter motion $\frac{d}{dt} \equiv -\beta^{i}(g) \frac{\partial}{\partial a^{i}}$

in the space of (renormalized) coupling constants $\{g^i, i = 1, 2, 3, \dots\}$ with beta-functions as "velocities"

- for unitary, renormalizable QFT's in two dimensions, there exists a positive-definite real function of the coupling constants c(g):
 - 1. monotonically decreasing along flows: $\frac{d}{dt}c(g) \leq 0$
 - 2. "stationary" at fixed points $g^i = (g^*)^i$:

$$\beta^i(g^*) = 0 \iff \frac{\partial}{\partial g^i}c(g) = 0$$

3. at fixed points, it equals central charge of corresponding CFT $c(g^*)\,=\,c$

Zamolodchikov c-theorem (1986):

• renormalization-group (RG) flows can seen as one-parameter motion $\frac{d}{dt} \equiv -\beta^{i}(g) \frac{\partial}{\partial a^{i}}$

in the space of (renormalized) coupling constants $\{g^i, i = 1, 2, 3, \dots\}$ with beta-functions as "velocities"

• for unitary, renormalizable QFT's in two dimensions, there exists a positive for any RG flow: 1. mond 2. "stati 3. at fix $C_{UV} > C_{IR}$ nding CFT

- in 4 dimensions, have three central charges: c, a, a'
 do any of these obey a similar "c-theorem" under RG flows?
 <u>a'-theorem</u>: a' is scheme dependent (not globally defined)
- $\times c$ -theorem: there are numerous counter-examples

d=2:
$$\langle T_{\mu}{}^{\mu} \rangle = -\frac{c}{12}R$$

d=4: $\langle T_{\mu}{}^{\mu} \rangle = \frac{a}{16\pi^2}E_4 - \frac{a}{16\pi^2}E_4 - \frac{c}{16\pi^2}R$

 $I_4 = C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma}$ and $E_4 = R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} - 4R_{\mu\nu} R^{\mu\nu} + R^2$

- in 4 dimensions, have three central charges: c, a, a'
- do any of these obey a similar "c-theorem" under RG flows?
 - <u>*a*-theorem</u>: proposed by Cardy (1988)
 - numerous nontrivial examples, eg, perturbative fixed points (Jack & Osborn), SUSY gauge theories (Anselmi et al)

d=2:

$$\langle T_{\mu}{}^{\mu} \rangle = -\frac{c}{12}R$$
d=4:

$$\langle T_{\mu}{}^{\mu} \rangle = \frac{a}{16\pi^2} I_4 - \frac{a}{16\pi^2} E_4 - \frac{a}{16\pi^2} \nabla R$$

 $I_4 = C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma}$ and $E_4 = R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} - 4R_{\mu\nu} R^{\mu\nu} + R^2$

- in 4 dimensions, have three central charges: c, a, a'
- do any of these obey a similar "c-theorem" under RG flows?

<u>*a*-theorem</u>: proposed by Cardy (1988)

- numerous nontrivial examples, eg, perturbative fixed points (Jack & Osborn), SUSY gauge theories (Anselmi et al)
 - holographic field theories with gravity dual

d=2:
$$\langle T_{\mu}{}^{\mu} \rangle = -\frac{c}{12}R$$

d=4: $\langle T_{\mu}{}^{\mu} \rangle = \frac{a}{16\pi^2}E_4 - \frac{a}{16\pi^2}R$

 $I_4 = C_{\mu\nu\rho\sigma}C^{\mu\nu\rho\sigma} \text{ and } E_4 = R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} - 4R_{\mu\nu}R^{\mu\nu} + R^2$

- in 4 dimensions, have three central charges: c, a, a'
- do any of these obey a similar "c-theorem" under RG flows?

<u>*a*-theorem</u>: proposed by Cardy (1988)

- numerous nontrivial examples, eg, perturbative fixed points (Jack & Osborn), SUSY gauge theories (Anselmi et al)
- holographic field theories with gravity dual (a = c)
- no completely general proof
- counterexample proposed: Shapere & Tachikawa, 0809.3238

Counterexample to a-theorem:

- flow between two N = 2 superconformal gauge theories
 - UV: gauge group SU(N_c +1) with N_f =2 N_c fundamental hyper's
 - **IR:** gauge group SU(N_c) with $N_f=2N_c$ fundamental hyper's (m=0)

$$a_{UV} - a_{IR} = \frac{1}{72} \left(19 N_c - 7 N_c^2 + 15 \right) \quad (\le 0 \text{ for } N_c \ge 4)$$

- loophole: accidental U(1) symmetry appears in the IR limit
- counterexample is not valid: UV fixed point does not exist for $N_f>2$ invalidating previous analysis

(Seiberg & Tachikawa)

d=2:
$$\langle T_{\mu}{}^{\mu} \rangle = -\frac{c}{12}R$$

d=4: $\langle T_{\mu}{}^{\mu} \rangle = \frac{a}{16\pi^2}E_4 - \frac{a}{16\pi^2}R$

 $I_4 = C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma}$ and $E_4 = R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} - 4R_{\mu\nu} R^{\mu\nu} + R^2$

- in 4 dimensions, have three central charges: c, a, a'
- do any of these obey a similar "c-theorem" under RG flows?

<u>*a*-theorem</u>: proposed by Cardy (1988)

- numerous nontrivial examples, eg, perturbative fixed points (Jack & Osborn), SUSY gauge theories (Anselmi et al)
- holographic field theories with gravity dual (a = c)
- no completely general proof

counterexample proposed: Shapere & Tachikawa, 0809.3238

(Freedman, Gubser, Pilch & Warner, hep-th/9904017) (Girardello, Petrini, Porrati and Zaffaroni, hep-th/9810126)

Holographic RG flows:

$$I = \frac{1}{2\ell_P^3} \int d^5 x \sqrt{-g} \left(R + \mathcal{L}_{\text{matter}} \right)$$

• assume stationary points: matter fields fixed and $\mathcal{L}_{\text{matter}} = \frac{12}{L^2} \alpha_i^2$

(eg, scalar field:
$$\mathcal{L}_{matter} = -\frac{1}{2}(\partial\phi)^2 - V(\phi)$$
)

- consider metric: $ds^2 = e^{2A(r)}(-dt^2 + dx_1^2 + dx_2^2 + dx_3^2) + dr^2$
- at stationary points, AdS_5 vacuum: $A(r) = r/\tilde{L}$ with $\tilde{L} = L/\alpha_i$
- RG flows are solutions starting at one stationary point and ending at another

(Freedman, Gubser, Pilch & Warner, hep-th/9904017) (Girardello, Petrini, Porrati and Zaffaroni, hep-th/9810126)

Holographic RG flows:

• for general flow solutions, define: $a(r) \equiv \frac{\pi^2}{\ell_D^3 A'(r)^3}$

$$a'(r) = -\frac{3\pi^2}{\ell_P^3 A'(r)^4} A''(r) = -\frac{\pi^2}{\ell_P^3 A'(r)^4} \left(T^t{}_t - T^r{}_r\right) \ge 0$$

Einstein equations in ull energy condition

- at stationary points, $a(r)
ightarrow a^* = \pi^2 \, {\tilde L}^3/\ell_P^3\,$ and hence

$$a_{UV} \ge a_{IR}$$

• using holographic trace anomaly: $a^* = a$

(e.g., Henningson & Skenderis)

supports Cardy's conjecture

• for Einstein gravity, central charges equal(a = c): $c_{UV} \ge c_{IR}$

(Freedman, Gubser, Pilch & Warner, hep-th/9904017)

Holographic RG flows:

$$I = \frac{1}{2\ell_P^{d-1}} \int d^{d+1}x \sqrt{-g} \left(R + \mathcal{L}_{\text{matter}}\right)$$

same story is readily extended to (d+1) dimensions

• defining:
$$a_d(r) \equiv \frac{\pi^{d/2}}{\Gamma(d/2) (\ell_P A'(r))^{d-1}}$$

 $a'(r) = -\frac{(d-1)\pi^{d/2}}{\Gamma(d/2) \ell_P^{d-1} A'(r)^d} A''(r) = -\frac{\pi^{d/2}}{\Gamma(d/2) \ell_P^{d-1} A'(r)^d} (T^t_t - T^r_r) \ge 0$
Einstein equations I null energy condition

• at stationary points, $a(r) \rightarrow a^* = \pi^{d/2} / \Gamma(d/2) \, (\tilde{L}/\ell_P)^{d-1}$ and so

$$\left[a_{UV}^* \ge a_{IR}^*\right]$$

• using holographic trace anomaly: $a^* \propto \text{central charges}$ (for even d! what about odd d?) (e.g., Henningson & Skenderis)

Improved Holographic RG Flows:

- add higher curvature interactions to bulk gravity action
 - -----> provides holographic field theories with, eg, $a \neq c$ so that we can clearly distinguish evidence of a-theorem (Nojiri & Odintsov; Blau, Narain & Gava)
 - more generally broadens class of dual CFT's

Higher Curvature Terms in Derivative Expansion

• in strings, sugra action corrected by higher curvature terms

lpha' corrections: $lpha'/L^2 \simeq 1/\sqrt{\lambda}$ string loops: $g_s \simeq \lambda/N_c$

- perturbing sugra theory with higher curvature terms provides insight into finite $N_c, \ \lambda$ corrections in gauge theory
- here I want to go beyond perturbative framework to study RG flows (i.e., want to consider finite values of new couplings)
- if we go to finite parameters where one of the higher curvature terms is important, expect all are important
- ultimately one needs to fully develop string theory for interesting holographic backgrounds

Higher Curvature Terms without Derivative Expansion

- instead consider "toy models" with finite Rⁿ interactions (where we can maintain control of calculations)
- with AdS/CFT, higher curvature couplings become dials to adjust parameters characterizing the dual CFT
- note that any one Rⁿ interaction implicitly determines an infinite number of couplings in T_{ab} correlators
- construct models to maintain control of calculations

What about the swampland?

- constrain gravitational couplings with consistency tests (positive fluxes; causality; unitarity) and keep fingers crossed!
- seems an effective approach with Lovelock gravity (eg, Brigante, Liu, Myers, Shenker & Yaida)

(Myers & Robinsion, 1003.5357)

Quasi-Topological gravity:

$$I = \frac{1}{2\ell_P^3} \int d^5 x \sqrt{-g} \left[\frac{12}{L^2} + R + L^2 \frac{\lambda}{2} \chi_4 + L^4 \frac{7\mu}{4} Z_5 \right]$$

with $\chi_4 = R^{abcd} R_{abcd} - 4R_{ab} R^{ab} + R^2$
 $\mathcal{Z}_5 = R^{\ c}_{a\ b} R^{\ e}_{d\ c} R^{\ e}_{e\ f} R^{\ a}_{e\ f} b^{\ b} + \frac{1}{56} \left(21R_{abcd} R^{abcd} R - 72R_{abcd} R^{abc}_{\ e} R^{de} + 120R_{abcd} R^{ac} R^{bd} + 144R^{\ b}_{a} R^{\ c}_{b} R^{\ c}_{c} - 132R^{\ b}_{a} R^{\ a}_{b} R + 15R^3 \right)$

• three dimensionless couplings, L/ℓ_P , λ , μ , allow us to explore dual CFT's with most general three-point function $\langle T_{ab} T_{cd} T_{ef} \rangle$

"maintain control of calculations"

- analytic black hole solutions
- linearized eom in AdS₅ are second order (in fact, Einstein eq's!)
- can be extended to higher dimensions (D≥7)

(Myers & Robinsion, 1003.5357)

Quasi-Topological gravity:

$$I = \frac{1}{2\ell_P^3} \int d^5x \sqrt{-g} \left[\frac{12}{L^2} \alpha^2 + R + L \frac{\lambda}{2} \chi_4 + L^4 \frac{\mu}{4} \mathcal{Z}_5 \right]$$

with $\chi_4 = R^{abcd}R_{abcd} - 4R_{ab}R^{ab} + R^2$

$$\mathcal{Z}_{5} = R_{a\ b}^{\ c\ d}R_{d\ c}^{\ e\ f}R_{e\ f}^{\ a\ b} + \frac{1}{56} \left(21R_{abcd}R^{abcd}R - 72R_{abcd}R^{abc}_{\ e}R^{de} + 120R_{abcd}R^{ac}R^{bd} + 144R_{a\ b}^{\ b}R_{b}^{\ c}R_{c}^{\ a} - 132R_{a\ b}^{\ b}R_{b}^{\ a}R + 15R^{3}\right)$$

- so calculate!
- curvature in AdS₅ vacuum: $\frac{1}{\tilde{L}^2} = \frac{f_{\infty}}{L^2}$,

where
$$\alpha^2 - f_\infty + \lambda f_\infty^2 + \mu f_\infty^3 = 0$$

• holographic trace anomaly:

(Myers, Paulos & Sinha, 1004.2055)

$$a = \pi^2 \frac{\tilde{L}^3}{\ell_P^3} \left(1 - 6\lambda f_\infty + 9\mu f_\infty^2 \right) \,, \quad c = \pi^2 \frac{\tilde{L}^3}{\ell_P^3} \left(1 - 2\lambda f_\infty - 3\mu f_\infty^2 \right)$$

• consider metric: $ds^2 = e^{2A(r)}(-dt^2 + dx_1^2 + dx_2^2 + dx_3^2) + dr^2$

→ AdS₅ vacua:
$$A(r) = r/\tilde{L}$$

• natural to define "flow functions":

$$a(r) \equiv \frac{\pi^2}{\ell_P^3 A'(r)^3} \left(1 - 6\lambda L^2 A'(r)^2 + 9\mu L^4 A'(r)^4\right)$$
$$c(r) \equiv \frac{\pi^2}{\ell_P^3 A'(r)^3} \left(1 - 2\lambda L^2 A'(r)^2 - 3\mu L^4 A'(r)^4\right)$$

where at stationary points: a(r) = a, c(r) = c

$$a(r) \equiv \frac{\pi^2}{\ell_P^3 A'(r)^3} \left(1 - 6\lambda L^2 A'(r)^2 + 9\mu L^4 A'(r)^4\right)$$
$$c(r) \equiv \frac{\pi^2}{\ell_P^3 A'(r)^3} \left(1 - 2\lambda L^2 A'(r)^2 - 3\mu L^4 A'(r)^4\right)$$

where at stationary points: a(r) = a, c(r) = c

• in general flows:

gravitational equations of motion

$$a(r) \equiv \frac{\pi^2}{\ell_P^3 A'(r)^3} \left(1 - 6\lambda L^2 A'(r)^2 + 9\mu L^4 A'(r)^4\right)$$
$$c(r) \equiv \frac{\pi^2}{\ell_P^3 A'(r)^3} \left(1 - 2\lambda L^2 A'(r)^2 - 3\mu L^4 A'(r)^4\right)$$

where at stationary points: a(r) = a, c(r) = c

• in general flows:

$$a'(r) = -\frac{3\pi^2}{\ell_P^3 A'(r)^4} A''(r) \left(1 - 2\lambda L^2 A'(r)^2 - 3\mu L^4 A'(r)^4\right)$$

$$= -\frac{\pi^2}{\ell_P^3 A'(r)^4} \left(T^t{}_t - T^r{}_r\right) \ge 0$$

$$c'(r) = -\frac{3\pi^2}{\ell_P^3 A'(r)^4} A''(r) \left(1 - \frac{2}{3}\lambda L^2 A'(r)^2 - \mu L^4 A'(r)^4\right)$$

$$= -\frac{\pi^2}{\ell_P^3 A'(r)^4} \frac{1 - \frac{2}{3}\lambda L^2 A'(r)^2 - \mu L^4 A'(r)^4}{1 - 2\lambda L^2 A'(r)^2 - 3\mu L^4 A'(r)^4} \left(T^t{}_t - T^r{}_r\right) ??$$

$$a(r) \equiv \frac{\pi^2}{\ell_P^3 A'(r)^3} \left(1 - 6\lambda L^2 A'(r)^2 + 9\mu L^4 A'(r)^4\right)$$
$$c(r) \equiv \frac{\pi^2}{\ell_P^3 A'(r)^3} \left(1 - 2\lambda L^2 A'(r)^2 - 3\mu L^4 A'(r)^4\right)$$

where at stationary points: a(r) = a, c(r) = c

• in general flows:

$$a'(r) = -\frac{3\pi^2}{\ell_P^3 A'(r)^4} A''(r) \left(1 - 2\lambda L^2 A'(r)^2 - 3\mu L^4 A'(r)^4\right)$$
$$= -\frac{\pi^2}{\ell_P^3 A'(r)^4} \left(T_t^t - T_r^r\right) \ge 0$$

- can try to be more creative in defining c(r) but we were unable to find a expression where flow is guaranteed to be monotonic
- our toy model seems to provide support for Cardy's "a-theorem" in four dimensions

Higher Dimensions: $D = d + 1 \ (d \ge 6)$

- straightforward to reverse engineer "a-theorem" flows
- eq's of motion:

$$T^{t}{}_{t} - T^{r}{}_{r} = (d-1) A^{\prime\prime}(r) \left(1 - 2\lambda L^{2} A^{\prime}(r)^{2} - 3\mu L^{4} A^{\prime}(r)^{4}\right)$$

• expression with natural flow:

$$a_{d}(r) \equiv \frac{\pi^{d/2}}{\Gamma(d/2) (\ell_{P}A'(r))^{d-1}} \left(1 - \frac{2(d-1)}{d-3} \lambda L^{2}A'(r)^{2} - \frac{3(d-1)}{d-5} \mu L^{4}A'(r)^{4} \right)$$
$$\implies a_{d}'(r) = -\frac{\pi^{d/2}}{\Gamma(d/2)\ell_{P}^{d-1}A'(r)^{d}} \left(T^{t}{}_{t} - T^{r}{}_{r} \right) \ge 0$$

assume null energy condition

Higher Dimensions: $D = d + 1 \ (d \ge 6)$

- straightforward to reverse engineer "a-theorem" flows
- eq's of motion:

$$T^{t}_{t} - T^{r}_{r} = (d-1) A^{\prime\prime}(r) \left(1 - 2\lambda L^{2} A^{\prime}(r)^{2} - 3\mu L^{4} A^{\prime}(r)^{4}\right)$$

• expression with natural flow:

$$a_d(r) \equiv \frac{\pi^{d/2}}{\Gamma(d/2) \left(\ell_P A'(r)\right)^{d-1}} \left(1 - \frac{2(d-1)}{d-3} \lambda L^2 A'(r)^2 - \frac{3(d-1)}{d-5} \mu L^4 A'(r)^4\right)$$
$$\implies a'_d(r) = -\frac{\pi^{d/2}}{\Gamma(d/2) \ell_P^{d-1} A'(r)^d} \left(T^t{}_t - T^r{}_r\right) \ge 0$$

- flow between stationary points (where $a_d^*\equiv a_d(r)|_{AdS}$) $(a_d^*)_{UV}\geq (a_d^*)_{IR}$

What is a_d^* ??

What is a_d^* ??

$$a_d^* = \frac{\pi^{d/2} \tilde{L}^{d-1}}{\Gamma(d/2) \ell_P^{d-1}} \left(1 - \frac{2(d-1)}{d-3} \lambda f_\infty - \frac{3(d-1)}{d-5} \mu f_\infty^2 \right)$$

where AdS curvature: $\frac{1}{\tilde{L}^2} = \frac{f_\infty}{L^2}, \quad \alpha^2 - f_\infty + \lambda f_\infty^2 + \mu f_\infty^3 = 0$

- a_d^* is NOT C_T , coefficient of leading singularity in $\langle T_{ab}(x) T_{cd}(0) \rangle = \frac{C_T}{r^{2d}} \mathcal{I}_{ab,cd}(x)$
- a_d^* is NOT C_S , coefficient in entropy density: $s = C_S T^{d-1}$

What is a_d^* ??

$$a_d^* = \frac{\pi^{d/2} \tilde{L}^{d-1}}{\Gamma(d/2) \ell_P^{d-1}} \left(1 - \frac{2(d-1)}{d-3} \lambda f_\infty - \frac{3(d-1)}{d-5} \mu f_\infty^2 \right)$$

where AdS curvature: $\frac{1}{\tilde{L}^2} = \frac{f_\infty}{L^2}, \quad \alpha^2 - f_\infty + \lambda f_\infty^2 + \mu f_\infty^3 = 0$

• trace anomaly for CFT's with even d:

 $\langle T_{\mu}{}^{\mu} \rangle = \sum B_i (\text{Weyl invariant})_i - 2(-)^{d/2} A \text{Euler density})_d$

• verify that we have precisely reproduced central charge

$$a_d^* = A$$

(Henningson & Skenderis; Nojiri & Odintsov; Blau, Narain & Gava; Imbimbo, Schwimmer, Theisen & Yankielowicz)

agrees with Cardy's proposal (1988)

What is a_d^* ??

$$a_d^* = \frac{\pi^{d/2} \tilde{L}^{d-1}}{\Gamma(d/2) \ell_P^{d-1}} \left(1 - \frac{2(d-1)}{d-3} \lambda f_\infty - \frac{3(d-1)}{d-5} \mu f_\infty^2 \right)$$

where AdS curvature: $\frac{1}{\tilde{L}^2} = \frac{f_\infty}{L^2}, \quad \alpha^2 - f_\infty + \lambda f_\infty^2 + \mu f_\infty^3 = 0$

• trace anomaly for CFT's with even d:

$$\langle T_{\mu}{}^{\mu} \rangle = \sum B_i (\text{Weyl invariant})_i - 2(-)^{d/2} A \text{Euler density})_d$$

• verify that we have precisely reproduced central charge

$$a_d^* = A$$

(Henningson & Skenderis; Nojiri & Odintsov; Blau, Narain & Gava; Imbimbo, Schwimmer, Theisen & Yankielowicz)

What is a_d^* for odd d?? (One moment!)

Comment:

• "c-theorem" still assume null energy condition

construct a toy model with reasonable physical properties

• natural to consider more general models:

$$I = \frac{1}{2\ell_P^3} \int d^5x \sqrt{-g} \left[-V(\phi) + R + \frac{L^2}{2} \lambda(\phi) \chi_4 + \frac{7L^4}{4} \mu(\phi) \mathcal{Z}_5 \right]$$
$$+ L^2 \gamma(\phi) R^{ab} \partial_a \phi \partial_b \phi + L^4 \gamma'(\phi) R^2 \nabla^2 \phi + \cdots \right]$$

What are the rules??

a_d^* and Entanglement Entropy

- introduce a(n arbitrary) boundary dividing the system in two
- integrate out degrees of freedom in outside region
- remaining dof are described by a density matrix ρ_A

 \longrightarrow entanglement entropy: $S = -Tr \left[\rho_A \log \rho_A \right]$

 $S = \cdots + c_d \log (R/\delta) + \cdots$ for even d

a_d^* and Entanglement Entropy

- in 1003.5357, studied black hole thermodynamics for quasi-topological gravity with various horizons: R^{d-1}, S^{d-1}, H^{d-1}
- allows for the following observation:
- place CFT on hyperbolic hyperplane (ie, R X H^{d-1})

ground-state energy density is now negative

• heat system up until energy density is precisely zero, $ho_E=0$

 \longrightarrow entropy density: $s = (4\pi)^{d/2} \Gamma(d/2) a_d^* T^{d-1}$

$$= \frac{2\pi}{\pi^{d/2}} \Gamma\left(d/2\right) \, \frac{a_d^*}{\tilde{L}^{d-1}}$$

Why entanglement entropy?

a_d^* and Entanglement Entropy

• CFT on hyperbolic hyperplane H^{d-1} at finite T tuned to $\rho_E = 0$

bulk spacetime is pure AdS_{d+1}

$$ds^{2} = \frac{dr^{2}}{\left(\frac{r^{2}}{\tilde{L}^{2}} - 1\right)} - \left(\frac{r^{2}}{\tilde{L}^{2}} - 1\right) dt^{2} + r^{2} d\Sigma_{2}^{d-1}$$

- so why is there entropy at all??
- $r \to \infty$ only reaches half boundary surface
- hyperbolic foliation divides boundary sphere into two halves and entropy is entanglement entropy of system

second asymptotic region

entropy density: $s = \frac{2\pi}{\pi^{d/2}} \Gamma(d/2) \; \frac{a_d^*}{\tilde{r} d-1}$ total entropy: $S = \frac{2\pi}{\pi^{d/2}} \Gamma\left(d/2\right) \frac{a_d^*}{\tilde{L}^{d-1}} V\left(H^{d-1}\right)$ $ds^{2} = \tilde{L}^{2} \left[\frac{du^{2}}{1+u^{2}} + u^{2} d\Omega_{2}^{d-2} \right]$ $S = a_d^* \frac{2\pi}{\pi^{d/2}} \frac{\Gamma(d/2)}{d-2} \Omega_{d-2} \left(\frac{\tilde{L}}{\delta}\right)^{d-2} + \cdots$

"area law" for d-dimensional CFT

entropy density:
$$s = \frac{2}{\pi} \frac{a_d^*}{\tilde{L}^{d-1}}$$

total entropy: $S = \frac{2}{\pi} \frac{a_d^*}{\tilde{L}^{d-1}} V(H^{d-1})$
 $ds^2 = \tilde{L}^2 \left[\frac{du^2}{1+u^2} + u^2 d\Omega_2^{d-2} \right]$

$$S = \dots + (-)^{\frac{d}{2}-1} 4 a_d^* \log \left(\tilde{L}/\delta\right) + \dots \text{ for even d}$$
$$\dots + (-)^{\frac{d-1}{2}} 2\pi a_d^* + \dots \text{ for odd d}$$

universal contribution

(Note: can be derived with conventional definition of S_{entangle})

Conjecture:

- place CFT on S^{d-1} X R and divide sphere in half along equator
- entanglement entropy of ground state has universal contribution

$$S_{univ} = \begin{cases} (-)^{\frac{d}{2}-1} 4 a_d^* \log(L/\delta) & \text{for even } d \\ (-)^{\frac{d-1}{2}} 2\pi a_d^* & \text{for odd } d \end{cases}$$

• in RG flows between fixed points

(any gravitational action) (any CFT in even d)

$$(a_d^*)_{UV} \geq (a_d^*)_{IR}$$

("unitary" models)

behaviour discovered for holographic model but conjecture that result applies generally (outside of holography)

and Beyond:

 Susskind & Witten: density of degrees of freedom in N=4 SYM connected to area of holographic screen at large R in AdS₅

$$N_{dof} \sim N_c^2 \times \frac{V_3}{\delta^3} \sim \frac{A(R)}{\ell_P^3}$$
 cut-off scale defined by regulator radius: $\frac{1}{\delta} = \frac{R}{L^2}$

 given higher curvature bulk action, natural extension is to evaluate Wald entropy on holographic screen at large R

$$S = -2\pi \oint d^{d-1}x\sqrt{h} \ \hat{\varepsilon}^{ab} \ \hat{\varepsilon}_{cd} \ \frac{\partial \mathcal{L}_{bulk}}{\partial R^{ab}_{cd}}$$

• straightforward evaluate:

$$N_{dof} = \frac{2\pi}{\pi^{d/2}} \Gamma(d/2) \ a_d^* \ \frac{V_{d-1}}{\delta^{d-1}}$$

for any covariant action: $\mathcal{L}_{bulk} = \mathcal{L}_{bulk} \left(g^{ab}, R^{ab}{}_{cd}, \nabla_e R^{ab}{}_{cd}, \cdots \right)$

Conclusions:

- AdS/CFT correspondence (gauge/gravity duality) has proven an excellent tool to study strongly coupled gauge theories
- toy theories with higher-R interactions extend class of CFT's
- ----> maintain calculational control with LL or quasi-top. gravity
- consistency (causality & positive fluxes) constrains couplings
- provide interesting insights into RG flows
- naturally support Cardy's version of a-theorem with d even
- suggests extension of a-theorem to d odd
- a_d^* seems to play a privileged role in holography
- further implications for holographic dualities??

Lots to explore!