Probing Holographic Superfluids with Solitons

Sean Nowling Nordita

GGI Workshop on AdS4/CFT3 and the Holographic States of Matter

work in collaboration with: V. Keränen, E. Keski-Vakkuri, and K.P.Yogendran 0906.5217 0911.1866 0912.4280

1

Friday, November 5, 2010

AdS / CM

- There has been much recent effort to construct strongly coupled phases of matter using the AdS/CFT correspondence
 - superfluidity
 - superconductivity
- Really want to push on these systems and say how like/unlike known systems
 - probe calculations might be telling you about the probe, not the ground state
- Want an observable which is more intrinsic to the superfluid
 - use solitons

Outline

- Holographic Superfluids
- Holographic Solitons
 - construct "dark solitons" and vortices
- Lessons From Real World Solitons
 - suggests how organize our exploration of holographic solutions
- Outlook

Holographic Superfluids

- Many recent attempts to use gauge/gravity duality to study 2+1 dim. condensed matter system
- Focus on spontaneous breaking of an Abelian symmetry

Hartnoll, et. al. [0803.3295 and 0810.1563]

AdS₄ Einstein-Maxwell-Higgs

$$\sqrt{-g}\mathcal{L} \sim \sqrt{-g}\left((R - 12\Lambda)/2 - \frac{\kappa_4^2}{q^2} \left(F^2/4 + |D\Psi|^2 + m^2 |\Psi|^2 \right) \right)$$

• probe limit:
$$\frac{\kappa_4}{q} \to 0$$
 (Schw-AdS b.h.)

$$ds^{2} = L^{2} \left(-\frac{fdt^{2}}{z^{2}} + \frac{dz^{2}}{fz^{2}} + \frac{d\vec{x}^{2}}{z^{2}} \right), \ f(z) = 1 - z^{3}$$

• Begin with $m^2 = -2/L^2$, gauge fixed e.o.m.

$$fR'' + f'R' - zR + \partial_x^2 R + \frac{A_t^2}{f}R = 0$$
$$fA_t'' + \partial_x^2 A_t - R^2 A_t = 0$$

- use rescaled fields $R \equiv \sqrt{2} \frac{\Psi}{z}$
- asymptotic solution:

$$R \sim R^{(1)}(x) + zR^{(2)}(x) + \dots$$
$$A_t \sim A_t^{(0)}(x) + zA_t^{(1)}(x) + \dots$$

• for this bulk mass we may use Neumann or Dirichlet boundary conditions:

$$\begin{aligned} R^{(1)} &\sim \langle \mathcal{O}_1 \rangle, \quad R^{(2)} = 0 \qquad \text{or} \qquad R^{(1)} = 0, \quad R^{(2)} &\sim \langle \mathcal{O}_2 \rangle \\ A^{(0)}_t &\sim \mu, \qquad A^{(1)}_t &\sim \rho_{\text{tot}} \qquad \qquad A^{(0)}_t &\sim \mu, \qquad A^{(1)}_t &\sim \rho_{\text{tot}} \end{aligned}$$

- both boundary conditions display spontaneous symmetry breaking (at fixed temperature) for $\mu \ge \mu_c$
 - charged operator has an expectation value as all charged external sources are removed
- can study how the order parameter behaves near μ_c

$$\left\langle \mathcal{O}_i \right\rangle \Big|_{\mu \to \mu_c} \sim \sqrt{\frac{\mu}{\mu_c} - 1}$$

- can use linear response to study sound modes, probe fermions,...
- Can we find an observable outside linear response theory which know about the some of the short distance physics?
 - a soliton's cores carry information about the short distance physics even at the mean field level

• Try to find "dark soliton" solutions to gravity equations

$$fR'' + f'R' - zR + \partial_x^2 R + \frac{A_t^2}{f}R = 0$$
$$fA_t'' + \partial_x^2 A_t - R^2 A_t = 0$$

- want kink scalar field profiles external to black hole
- cannot be stable
 - we will disallow any dependence on the coordinate along the soliton
 - can add this dependence later and study the soliton's decay
 - justified because real world kink solitons can be long lived

Aside on Numerical Methods

- Outside the horizon, the equations of motion are elliptic
 - like Poisson equation

$$-\nabla^2 \phi_0 = \rho$$

• "Relaxation": extend to a diffusion equation with new variable $t \in [0, \infty)$

$$(\partial_t - \nabla^2)\phi(t) = \rho$$

- now have a simple initial value problem: there is a flow to solution of Poisson equation
 - the error decreases monotonically in time

$$\mathcal{E}(t) \sim \phi_0 - \phi(t) \sim e^{-tk^2}$$

- the "relaxation" scheme may be implemented on a lattice
- topological information is contained in flow's initial conditions

- Soliton for lower dimension scalar has a greater core depletion of the charge density
 - The fact that the depletion is not going to zero means that one cannot simply use a simple Landau-Ginzberg description

- Soliton for lower dimension scalar has a greater core depletion of the charge density
 - The fact that the depletion is not going to zero means that one cannot simply use a simple Landau-Ginzberg description

- Soliton for lower dimension scalar has a greater core depletion of the charge density
 - The fact that the depletion is not going to zero means that one cannot simply use a simple Landau-Ginzberg description

- Soliton for lower dimension scalar has a greater core depletion of the charge density
 - The fact that the depletion is not going to zero means that one cannot simply use a simple Landau-Ginzberg description

- Soliton for lower dimension scalar has a greater core depletion of the charge density
 - The fact that the depletion is not going to zero means that one cannot simply use a simple Landau-Ginzberg description

- Seek vortex solutions which carry nontrivial winding
 - must include angular component of gauge field A_{θ} , ($\Longrightarrow 0$)

 $z \rightarrow 0$

- dual to the superfluid current density $\langle j_s
 angle$
- now have 3 coupled nonlinear PDE's

$$0 = f\partial_z^2 R + \partial_z f\partial_z R - zR + \frac{1}{\rho}\partial_\rho(\rho\partial_\rho R) - R(-\frac{1}{f}A_t^2 + \frac{(A_\theta - n)^2}{\rho^2})$$

$$0 = f\partial_z^2 A_t + \frac{1}{\rho}\partial_\rho(\rho\partial_\rho A_t) - R^2 A_t$$

$$0 = \partial_z(f\partial_z A_\theta) + \rho\partial_\rho(\frac{1}{\rho}\partial_\rho A_\theta) - R^2(A_\theta - n)$$

Lessons From (non-Rel.) Fermionic Superfluids

- modeled with a non-relativistic 4-Fermi interaction
 - may study in ϵ expansion without keeping the dimensionful scale ($ak_f \Rightarrow \infty)$
 - in this expansion we are tuning the scaling dimensions of fields
 - solitons in these systems remember the microscopic structure even at the mean field level

Solitons in the Crossover

- Non-Relativistic BCS -BEC crossover
 - display "dark soliton" solutions
 - unstable -- but observable
 - variable depletion fraction, bos. superfluid is near 100%, ferm. superfluid is much smaller
 - has oscillations which know about k_f on the BCS side

Dark Solitons

Soliton solution to gap equation

Dark soliton: BEC (dot-dashed), unitarity (cont.), and BCS (dashed) (from Antezza, et. al. [0706.0601])

Solitons in the Crossover

Vortices

- Non-Relativistic BCS -BEC crossover
 - display "dark soliton" solutions
 - display vortex solutions
 - variable depletion fraction
 - same core and tail scales in BEC, different for BCS
 - also knows about k_f on BCS side

Vortex Profiles: BEC ("1") and BCS ("-1") (from Sensarma, et. al. [cond-mat/0510761])

Solitons in the Crossover

Vortices

- Non-Relativistic BCS -BEC crossover
 - display "dark soliton" solutions
 - display vortex solutions
 - variable depletion fraction
 - same core and tail scales in BEC, different for BCS
 - also knows about k_f on BCS side

Vortex Profiles: BEC ("1") and BCS ("-1") (from Sensarma, et. al. [cond-mat/0510761])

Things To Look For

- Suggests that we should study solitons as a function of the scaling dimension
- Number of independent lengthscales
- Friedel oscillations

- Vary scaling dimension
 - monotonic dependence in charge density depletion on Δ
 - Multiple lengthscales in condensate (vortex)
 - temp. dependence ratio of lengthscales changes with Δ
 - Friedel oscillations
 - would give a measure of k_f without using a fermion probe
 - but.....

- Vary scaling dimension
 - monotonic dependence in charge density depletion on Δ
 - Multiple lengthscales in condensate (vortex)
 - temp. dependence ratio of lengthscales changes with Δ
 - Friedel oscillations
 - would give a measure of k_f without using a fermion probe
 - but.....

- Vary scaling dimension
 - monotonic dependence in charge density depletion on Δ
 - Multiple lengthscales in condensate (vortex)
 - temp. dependence ratio of lengthscales changes with Δ
 - Friedel oscillations
 - would give a measure of k_f without using a fermion probe
 - but.....

- Vary scaling dimension
 - monotonic dependence in charge density depletion on Δ
 - Multiple lengthscales in condensate (vortex)
 - temp. dependence ratio of lengthscales changes with Δ
 - Friedel oscillations
 - would give a measure of k_f without using a fermion probe
 - but.....

- Vary scaling dimension
 - monotonic dependence in charge density depletion on Δ
 - Multiple lengthscales in condensate (vortex)
 - temp. dependence ratio of lengthscales changes with Δ
 - Friedel oscillations
 - would give a measure of k_f without using a fermion probe
 - but.....

- Vary scaling dimension
 - monotonic dependence in charge density depletion on Δ
 - Multiple lengthscales in condensate (vortex)
 - temp. dependence ratio of lengthscales changes with Δ
 - Friedel oscillations
 - would give a measure of k_f without using a fermion probe
 - but.....

- Vary scaling dimension
 - monotonic dependence in charge density depletion on Δ
 - Multiple lengthscales in condensate (vortex)
 - temp. dependence ratio of lengthscales changes with Δ
 - Friedel oscillations
 - would give a measure of k_f without using a fermion probe
 - but..... not visible (at least for $T/T_c \sim .5$)

Summary and Outlook

- Presented dark soliton and vortex solutions in holographic superfluid
 - the core charge density depletion is a strong function of m^2
- Holographic solitons are have features which are reminiscent solitons in the BCS-BEC crossover
 - suggests that we might vary the condensate type by changing the value of m^2
 - what is the analog of the crossover's "unitarity" regime?
 - but no evidence of Friedel oscillations yet
- Follow-up:
 - try to see any fermionic characteristics
 - cooling to lower temperatures or may need to use external probes
 - gravitational backreaction, transport properties, instabilities, nonrelativistic symmetries...