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How does Fermi Liquid Theory Breakdown!
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General Result

1.) one critical length scale €._>

2.) charge carriers are critical

3.) charge conservation
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Polchinski, Shankar, others
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No relevant short-range 4-Fermi terms in d > 2
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No relevant short-range 4-Fermi terms in d > 2
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How does this break down?
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total weight=1+x= # of ways electrons
can be added in lower band

intensity of lower band=# of electrons the
band can hold

no problems yet!
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dynamical spectral weight transfer

CivCio) > 0
1+:z;+at/Ua7<\ l —or— «

Intensity>1+x

4

New non-electron degrees of freedom

Can this system be a Fermi liquid?
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number of fermionic qp ways to add a particle
< number of bare but not an electron

electrons=> FL theory (gapped spectrum)
breaks down

breakdown of electron quasi-particle picture: Mottness
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A Critique of Two Metals

R. B. Laughlin

idea is either missing or improperly understood. Another
indicator that something is deeply wrong is the inability
of anyone to describe the elementary excitation spectrum
of the Mott insulator precisely even as pure phenomenol-
ogy. Nowhere can one find a quantitative band struc-
ture of the elementary particle whose spectrum becomes
gapped. Nowhere can one find precise information about
the particle whose gapless spectrum causes the param-
agnetism. Nowhere can one find information about the
interactions among these particles or of their potential
bound state spectroscopies. Nowhere can one find precise
definitions of Mott insulator terminology. The upper and
lower Hubbard bands, for example, are vague analogues
of the valence and conduction bands of a semiconduc-
tor, except that they coexist and mix with soft magnetic
excitations no one knows how to describe very well.
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Beliefs:
Mott gap is heresy!?

HF is the way!
No UHB and LHB!
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Key idea: similar o Bohm/Pines

Extend the Hilbert space:
Associate with U-scale new

Fermionic oscillators
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Exact IR Lagrangian

bare fields have no dynamics
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determine spectral density
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Extend the Hilbert space:
Associate with U-scale a new
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Graf, et al. PRL vol. 98, 67004 (2007).

Two bands!!

SrCu02

0.3 I 0.3

Spin-charge
separation?




Origin of two bands
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La, Sr CuQO, 4 Ono,etal, Phys.Rev. B 75,024515
- (2007)
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exponentially suppressed: confinement
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strange metal: breakup (deconfinement) of
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fermions in RN Ads_{d+1} coupled to a gauge field
through a dipole interaction
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Finite Temperature Mott transition

vanadium oxide
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quasi-normal modes: where are the peaks?
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no leaking to +Im\omega: no instability
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