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1.  Quantum impurities and AdS2

         Quantum spin coupled to a CFT

2.  Phases of the Kondo lattice
   Fermi liquids (FL), 
   Fractionalized Fermi liquids (FL*), 
   and the Luttinger theorem

3.  A mean field theory of a fractionalized Fermi liquid
   A marginal Fermi liquid and AdS2 x R2

Outline
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Ground state has long-range Néel order 

Square lattice antiferromagnet

H =
�

�ij�

Jij
�Si · �Sj

Order parameter is a single vector field �ϕ = ηi
�Si

ηi = ±1 on two sublattices

��ϕ� �= 0 in Néel state.

4Saturday, November 6, 2010



Square lattice antiferromagnet

H =
�

�ij�

Jij
�Si · �Sj

J

J/λ

Weaken some bonds to induce spin 
entanglement in a new quantum phase
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Square lattice antiferromagnet

H =
�

�ij�

Jij
�Si · �Sj

J

J/λ

Ground state is a “quantum paramagnet”
with spins locked in valence bond singlets

=
1√
2

����↑↓
�
−

��� ↓↑
��

6Saturday, November 6, 2010



λλc

M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev.B 65, 014407 (2002).

Quantum critical point with non-local 
entanglement in spin wavefunction
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λλc

Z =

�
Dϕa(r, τ) exp

�
−
�

d2rdτ Lϕ

�

Lϕ =
1

2

�
(∂τϕ

a)2 + v2(∇ϕa)2 + s(ϕa)2
�
+

u

4

�
(ϕa)2

�2

s ∼ λ− λc

CFT3

Description using Landau-Ginzburg field theory
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Z =

�
Dϕa(r, τ)Dna(τ)δ([na(τ)]2 − 1) exp

�
−
�

dτ Limp −
�

d2rdτ Lϕ

�

Limp =
i

2
Aa dn

a

dτ
+ Jna(τ)ϕa(0, τ)

where Aa is any function of na(τ) obeying �abc(∂Ab/∂nc) = na.

At the critical point J ⇒ J∗, a universal fixed point

CFT

Quantum impurity coupled to a CFT
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Frustrated antiferromagnet with full square lattice symmetry 
and one S=1/2 per unit cell 

Neel

Valence
Bond 
Solid 
(VBS)
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Low energy degrees of freedom:

• An electrically neutral complex scalar
with spin S = 1/2: a ‘spinon’ zα

• An emergent U(1) gauge field Aµ

Frustrated antiferromagnet with full square lattice symmetry 
and one S=1/2 per unit cell 

Neel

Valence
Bond 
Solid 
(VBS)
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Spinless collective mode: the emergent “photon” Aµ
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Electrically neutral spinon zα:
Carries the U(1) charge of the emergent ‘photon’ Aµ

23Saturday, November 6, 2010



Z =

�
Dzα(r, τ)DAµ(r, τ) exp

�
−
�

d2rdτ Lz

�

Lz = |(∂µ − iAµ)z
α|2 + s|zα|2 + u(|zα|2)2 + 1

2w2
(�µνλ∂νAλ)

2

Frustrated antiferromagnet with full square lattice symmetry 
and one S=1/2 per unit cell 
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Z =

�
Dzα(r, τ)DAµ(r, τ)Dχ(τ) exp

�
−
�

dτ Limp −
�

d2rdτ Lz

�

Limp = χ†
�

∂

∂τ
− iAτ (0, τ)

�
χ

χ: spinless localized fermion measuring presence of impurity

CFT

Quantum impurity coupled to a CFT
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S =

�
d3rdτ LSYM +

�
dτ Limp

Limp = χ†
b

∂χb

∂τ
+ iχ†

b

�
(Aτ (0, τ))

b
c + vI (φI(0, τ))

b
c

�
χc

S. Kachru, A. Karch, and S. Yaida, Phys. Rev. D 81, 026007 (2010)

CFT

Quantum superspin coupled to SYM4
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• The correlations of the impurity fermion, or impurity spin,
decay with a power-law in time, wtih non-trivial ‘impurity’
exponents.

• The impurity response to a uniform external field is char-
acterized by an impurity susceptiblity which has a Curie
form χimp = C/T , where C is a non-trivial universal num-
ber This response is that of an ‘irrational’ free spin, because
C �= S(S + 1)/3, with 2S an integer.

• There is a finite ground state entropy, Simp, at T = 0. This
entropy is also ‘irrational’ because Simp �= kB ln(an integer).

Common features
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Common features

The SYM case is related in the large N 
limit to a AdS2 geometry

• The correlations of the impurity fermion, or impurity spin,
decay with a power-law in time, wtih non-trivial ‘impurity’
exponents.

• The impurity response to a uniform external field is char-
acterized by an impurity susceptiblity which has a Curie
form χimp = C/T , where C is a non-trivial universal num-
ber This response is that of an ‘irrational’ free spin, because
C �= S(S + 1)/3, with 2S an integer.

• There is a finite ground state entropy, Simp, at T = 0. This
entropy is also ‘irrational’ because Simp �= kB ln(an integer).
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1.  Quantum impurities and AdS2

         Quantum spin coupled to a CFT

2.  Phases of the Kondo lattice
   Fermi liquids (FL), 
   Fractionalized Fermi liquids (FL*), 
   and the Luttinger theorem

3.  A mean field theory of a fractionalized Fermi liquid
   A marginal Fermi liquid and AdS2 x R2

Outline
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Kondo lattice model

�

i<j

JH(i, j)�Si · �Sj
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Kondo lattice model
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i<j

JH(i, j)�Si · �Sj

Conduction

electrons�

k

εkc
†
kαckα
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i<j
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Conduction

electrons�
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εkc
†
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Kondo
exchange

JK
�

i
�Si
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Kondo lattice model

�

i<j

JH(i, j)�Si · �Sj

Conduction

electrons�

k

εkc
†
kαckα

Large Fermi surface Fermi liquid (FL)

Kondo
exchange

JK
�

i
�Si

· c†iα�σαβciβ
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Kondo lattice model

�

i<j

JH(i, j)�Si · �Sj

Spin liquid 
of localized
electrons
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Kondo lattice model

�

i<j

JH(i, j)�Si · �Sj

Conduction

electrons�

k

εkc
†
kαckα

Kondo
exchange

perturbative

Fractionalized
Fermi liquid (FL*)

T. Senthil, S. Sachdev, and M. Vojta, Phys. Rev. Lett. 90, 216403 (2003).
T. Senthil, M. Vojta, and S. Sachdev, Phys. Rev. B 69, 035111 (2004).
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Kondo lattice model

�

i<j

JH(i, j)�Si · �Sj

Spin liquid 
of localized
electrons
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Theory of spin liquid

Electrically neutral spinons fα coupled to emergent gauge field Aµ

Lf = f†
α

�
∂

∂τ
− iAτ − εf (k−A) + µf

�
fα
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Theory of spin liquid

Electrically neutral spinons fα coupled to emergent gauge field Aµ

Lf = f†
α

�
∂

∂τ
− iAτ − εf (k−A) + µf

�
fα

Lb =

����

�
∂

∂τ
− iAτ

�
b

����
2

+
1

2mb
|(∇− iA− ieAext) b|2

+ s|b|2 + u|b|4

Electrically charged bosons b in a Mott-insulating state
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Theory of spin liquid
Transport in a spin liquid

Jf = σfE

Jb = σb (E+Eext)

Equation of motion of emergent gauge field:

δS

δA
= 0 ⇒ Jf + Jb = 0 ⇒ E = − σb

σf + σb
Eext

Net electrical current:

Jb =
σfσb

σf + σb
Eext

Because σb = 0 in gapped boson state, we obtain zero con-
ductivity in a finite density state. Note the key role of
U(1)×U(1) structure in obtaining this result.
(cf. Deconstructing holographic liquids, Dominik Nickel and
Dam T. Son, arXiv:1009.3094)
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Kondo lattice model

�

i<j
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Conduction
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εkc
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Lb =

����

�
∂

∂τ
− iAτ + µ

�
b

����
2

+
1

2mb
|(∇− iA− ieAext) b|2

+ s|b|2 + u|b|4

Theory of FL*

Electrically neutral spinons fα coupled to emergent gauge field Aµ

Lf = f†
α

�
∂

∂τ
− iAτ − εf (k−A) + µf

�
fα

Electrically charged bosons b in a Mott-insulating state

Lc = c†α

�
∂

∂τ
− εc(k+ eAext) + µ

�
cα

+
�

JK
�
b†c†αfα + bf†

αcα
�

Electrically charged conduction electrons cα in a small Fermi surface

49Saturday, November 6, 2010



Kondo lattice model

�

i<j

JH(i, j)�Si · �Sj

Conduction

electrons�

k

εkc
†
kαckα

Kondo
exchange

perturbative

Fractionalized
Fermi liquid (FL*)

T. Senthil, S. Sachdev, and M. Vojta, Phys. Rev. Lett. 90, 216403 (2003).
T. Senthil, M. Vojta, and S. Sachdev, Phys. Rev. B 69, 035111 (2004).

50Saturday, November 6, 2010



Theory of spin liquid
Transport in a spin liquid

Jf = σfE

Jb = σb (E+Eext)

Equation of motion of emergent gauge field:

δS

δA
= 0 ⇒ Jf + Jb = 0 ⇒ E = − σb

σf + σb
Eext

Net electrical current:

Jb =
σfσb

σf + σb
Eext

Because σb = 0 in gapped boson state, we obtain zero con-
ductivity in a finite density state. Note the key role of
U(1)×U(1) structure in obtaining this result.
(cf. Deconstructing holographic liquids, Dominik Nickel and
Dam T. Son, arXiv:1009.3094)
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Theory of FL*
Transport in FL*

Jf = σfE

Jb = σb (E+Eext)

Jc = σcEext

Equation of motion of emergent gauge field:

δS

δA
= 0 ⇒ Jf + Jb = 0 ⇒ E = − σb

σf + σb
Eext

Net electrical current:

Jb + Jc =

�
σfσb

σf + σb
+ σc

�
Eext

Note the key role of U(1)×U(1) structure in obtaining
this result
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�
i<j

JH(i, j)�Si · �Sj

JH(i, j) Gaussian random variables.
A quantum Sherrington-Kirkpatrick

model of SU(N) spins.

A mean-field theory of a spin liquid

S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993).

A. Georges, O. Parcollet, and S. Sachdev, Phys. Rev. B 63, 134406 (2001).
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�
i<j

JH(i, j)�Si · �Sj

JH(i, j) Gaussian random variables.
A quantum Sherrington-Kirkpatrick

model of SU(N) spins.

A mean-field theory of a spin liquid

Described by the quantum
mechanics of a spin
fluctuating in a
self-consistent

time-dependent magnetic
field: a realization the finite

entropy density
AdS2 ×Rd state

S. Sachdev, Physical Review Letters 105, 151602 (2010) 
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AdS2 realization in the quantum SK model

S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993).

A. Georges, O. Parcollet, and S. Sachdev, Phys. Rev. B 63, 134406 (2001).

Focus on a single �S spin, and represent its imaginary time fluc-
tuations by a unit vector �S = �n(τ)/2 which is controlled by the
partition function

Z =

�
D�n(τ) δ(�n2(τ)− 1) exp (−S)

S =
i

2

� 1

0
du

� 1/T

0
dτ �n ·

�
∂�n

∂u
× ∂�n

∂τ

�
−
� 1/T

0
dτ �h(τ) · �n(τ)

The first term is a Wess-Zumino term, with the “extra dimension”
u defined so that �n(τ, u = 1) ≡ �n(τ) and �n(τ, u = 0) = (0, 0, 1).

The field �h(τ) represents the “environment”, which which we take
to be a Gaussian random variable with the correlation

�
�h(τ) · �h(0)

�
= A

����
πT

sin(πT τ)

����
γ
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AdS2 realization in the quantum SK model

S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993).

A. Georges, O. Parcollet, and S. Sachdev, Phys. Rev. B 63, 134406 (2001).

Solution of Z for such an �h(τ) yields

��n(τ) · �n(0)� = B

����
πT

sin(πT τ)

����
h

with the exponent h = 2 − γ. The self-consistency condition for
the infinite-range model requires that the two-point correlation of
�h is proporionaly to that of �n. This leads to h = γ, which implies
h = γ = 1.
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�
i<j

JH(i, j)�Si · �Sj

JH(i, j) Gaussian random variables.
A quantum Sherrington-Kirkpatrick

model of SU(N) spins.

A mean-field theory of a spin liquid

S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993).

A. Georges, O. Parcollet, and S. Sachdev, Phys. Rev. B 63, 134406 (2001).
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�
i<j

JH(i, j)�Si · �Sj

JH(i, j) Gaussian random variables.
A quantum Sherrington-Kirkpatrick

model of SU(N) spins.

A mean-field theory of FL*

Conduction

electrons�

k

εkc
†
kαckα

Kondo
exchange

perturbative

S. Burdin, D. R. Grempel, and A. Georges, Phys. Rev. B 66, 045111 (2002)
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Effective low energy theory for conduction electrons

The operators acting on the low energy subspace are ci and �Sfi.

For the ci we have the effective theory

Sc =

�
ddk

(2π)d

�
dτ

�
c†kσ

�
∂

∂τ
− εk

�
ckσ − V F †

kσckσ − V c†kσFkσ

�

Here the Fiσ are strongly renormalized operators on the f orbitals,

which project onto the low energy theory as

Fiσ ∼ 1

U

�
�τσσ� · �Sfi

�
ciσ�
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Effective low energy theory for conduction electrons

The operators acting on the low energy subspace are ci and �Sfi.

For the ci we have the effective theory

Sc =

�
ddk

(2π)d

�
dτ

�
c†kσ

�
∂

∂τ
− εk

�
ckσ − V F †

kσckσ − V c†kσFkσ

�

Here the Fiσ are strongly renormalized operators on the f orbitals,

which project onto the low energy theory as

Fiσ ∼ 1

U

�
�τσσ� · �Sfi

�
ciσ�

From this we obtain the conduction electron self energy

Σc(τ) ∼
�

πT

sin(πT τ)

�h+1

This is the marginal Fermi liquid form for h = 1.
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Connection to holographic metals
• The quantum SK model has z = ∞ conformal spin corre-

lations and a finite ground state entropy density: similar to

AdS2×R
d
.

• The conduction electrons are ‘probe fermions’ coupling to the

SK model by

Sc =

�
ddk

(2π)d

�
dτ

�
c†kσ

�
∂

∂τ
− εk

�
ckσ−V F †

kσckσ−V c†kσFkσ

�

where Fiσ are operators probing the z = ∞ correlations of

AdS2×R
d
(T. Faulkner and J. Polchinski, arXiv:1001.5049.)

Fiσ ∼ 1

U

�
�τσσ� · �Sfi

�
ciσ�

• This leads to a ‘probe fermion’ self energy which is identical

to the theory of the holographic metal (T. Faulkner, H. Liu,

J. McGreevy and D. Vegh, arXiv:0907.2694.)
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There is a close correspondence between 
the theory of holographic metals and the 
fractionalized Fermi liquid phase of the 
Anderson/Kondo lattice.

This correspondence is quite precise in the 
z = ∞ theories of the Sherrington-
Kirkpatrick-Kondo model and the extremal 
Reissner-Nordstrom black hole

Good prospects for establishing 
correspondence at finite z

Conclusions
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