

Monte Carlo Tools

Frank Krauss

Institute for Particle Physics Phenomenology Durham University

GGI, 24.&26.9.2007

イロト イ団ト イヨト イヨト

æ

IPPP

F. Krauss Monte Carlo Tools

イロト イ団ト イヨト イヨト

Simulation's paradigm

Basic strategy

Divide event into stages, separated by different scales.

• Signal/background:

Exact matrix elements.

• QCD-Bremsstrahlung:

Parton showers (also in initial state).

Multiple interactions:

Beyond factorization: Modeling.

• Hadronization:

Non-perturbative QCD: Modeling.

Today's lecture: Event Generation in a Nutshell

- Monte Carlo integration
- Parton level event generation
- Parton showers
- Multiple interactions
- Hadronization

イロト イヨト イヨト イヨト

Convergence of numerical integration

• Consider
$$I = \int_{0}^{1} \mathrm{d}x^{D} f(\vec{x}).$$

- Convergence behavior crucial for numerical evaluations.
 For integration (N = number of evaluations of f):
 - Trapezium rule $\simeq 1/N^{2/D}$
 - Simpson's rule $\simeq 1/N^{4/D}$
 - Central limit theorem $\simeq 1/\sqrt{N}$.
- Therefore: Use central limit theorem.

< ロ > < 同 > < 回 > < 回 > < 回

Monte Carlo integration

• Use random vectors $\vec{x_i} \longrightarrow$: Evaluate estimate of the integral $\langle I \rangle$ rather than *I*. $\langle I(f) \rangle = \frac{1}{N} \sum_{i=1}^{N} f(\vec{x_i}).$

(This is the original meaning of Monte Carlo: Use random numbers for integration.)

- Quality of estimate given by error estimator (variance) $\langle E(f) \rangle^2 = \frac{1}{N-1} [\langle I^2(f) \rangle - \langle I(f) \rangle^2].$
- Name of the game: Minimize $\langle E(f) \rangle$.
- Problem: Large fluctuations in integrand f
- Solution: Smart sampling methods

Importance sampling

Basic idea: Put more samples in regions, where f largest

- \implies improves convergence behavior (corresponds to a Jacobian transformation).
- Assume a function g(x) similar to f(x);
- obviously then, f(x)/g(x) is comparably smooth, hence ⟨E(f/g)⟩ is small.

<ロト </p>

Stratified sampling

Basic idea: Decompose integral in M sub-integrals $\langle I(f) \rangle = \sum_{j=1}^{M} \langle I_j(f) \rangle$, $\langle E(f) \rangle^2 = \sum_{j=1}^{M} \langle E_j(f) \rangle^2$ Then: Overall variance smallest, if "equally distributed". \implies Sample, where the fluctuations are.

- Divide interval in bins;
- adjust bin-size or weight per bin such that variance identical in all bins.

Example for stratified sampling: VEGAS

- Assume *m* bins in each dimension of *x*.
- For each bin k in each dimension η ∈ [1, n] assume a weight (probability) α^(η)_k for x_k to be in that bin.

Condition(s) on the weights: $\alpha_{k}^{(\eta)} \in [0, 1], \sum_{k=1}^{m} \alpha_{k}^{(\eta)} = 1.$

• For each bin in each dimension calculate $\langle I_k^{(\eta)} \rangle$ and $\langle E_k^{(\eta)} \rangle$.

Obviously, for all $\eta,~\langle I\rangle=\sum_{k=1}^m\langle I_k^{(\eta)}\rangle,$ but error estimates different.

In each dimensions, iterate and update the $\alpha_k^{(\eta)}$; example for updating:

$$\alpha_k^{(\eta)}(\mathsf{rm new}) \propto \alpha_k^{(\eta)}(\mathsf{rm old}) \left(rac{E_k^{(\eta)}}{E_{\mathrm{tot.}}(\eta)}
ight)^{\kappa}.$$

 Problem with this simple algorithm: Gets a hold only on fluctuations || to binning axes.

イロト イヨト イヨト イヨト

Multichannel sampling

Basic idea: Use a sum of functions $g_i(\vec{x})$ as Jacobian $g(\vec{x})$. $\implies g(\vec{x}) = \sum_{i=1}^{N} \alpha_i g_i(\vec{x});$ \implies condition on weights like stratified sampling; ("Combination" of importance & stratified sampling).

Algorithm for one iteration:

- Select g_i with probability $\alpha_i \rightarrow \vec{x_j}$.
- Calculate total weight $g(\vec{x}_j)$ and partial weights $g_i(\vec{x}_j)$
- Add $f(\vec{x}_j)/g(\vec{x}_j)$ to total result and $f(\vec{x}_j)/g_i(\vec{x}_j)$ to partial (channel-) results.
- After N sampling steps, update a-priori weights.

< ロ > < 同 > < 回 > < 回 > < 回

This is the method of choice for parton level event generation!

Selecting after sampling: Unweighting efficiency

Basic idea: Use hit-or-miss method;

Generate \vec{x} with integration method, compare actual $f(\vec{x})$ with maximal value during sampling; \implies "Unweighted events".

Comments:

- unweighting efficiency, $w_{eff} = \langle f(\vec{x}_j) / f_{max} \rangle$ = number of trials for each event.
- Good measure for integration performance.
- Expect log₁₀ w_{eff} ≈ 3 − 5 for good integration of multi-particle final states at tree-level.

• Maybe acceptable to use $f_{\max,eff} = Kf_{\max}$ with K < 1. Problem: what to do with events where $f(\vec{x}_j)/f_{\max,eff} > 1$? Answer: Add $\inf[f(\vec{x}_j)/f_{\max,eff}] = k$ events and perform hit-or-miss on $f(\vec{x}_j)/f_{\max,eff} - k$.

イロト イ団ト イヨト イヨト

Particle physics example: Evaluation of cross sections

Simple example:
$$t \rightarrow bW^+ \rightarrow b\bar{l}\nu_l$$
:

$$\left|\mathcal{M}\right|^{2} = \frac{1}{2} \left(\frac{8\pi\alpha}{\sin^{2}\theta_{W}}\right)^{2} \frac{p_{t} \cdot p_{\nu} p_{b} \cdot p_{l}}{(p_{W}^{2} - M_{W}^{2})^{2} + \Gamma_{W}^{2} M_{W}^{2}}$$

$$\begin{split} & \text{Phase space integration (5-dim)} \\ & \Gamma = \frac{1}{2m_t} \frac{1}{128\pi^3} \int \mathrm{d} \rho_W^2 \frac{\mathrm{d}^2 \Omega_W}{4\pi} \frac{\mathrm{d}^2 \Omega}{4\pi} \left(1 - \frac{\rho_W^2}{m_t^2} \right) \left| \mathcal{M} \right|^2 \end{split}$$

イロト イヨト イヨト イヨト

Advantages

- Throw 5 random numbers, construct four-momenta (\Longrightarrow full kinematics, "events")
- Apply smearing and/or arbitrary cuts.
- Simply histogram any quantity of interest no new calculation for each observable

Stating the problem(s)

- Multi-particle final states for signals & backgrounds.
- Need to evaluate $d\sigma_N$:

$$\int_{\text{tuts}} \left[\prod_{i=1}^{N} \frac{\mathrm{d}^{3} q_{i}}{(2\pi)^{3} 2 E_{i}} \right] \delta^{4} \left(p_{1} + p_{2} - \sum_{i} q_{i} \right) \left| \mathcal{M}_{p_{1} p_{2} \to N} \right|^{2}$$

- Problem 1: Factorial growth of number of amplitudes.
- Problem 2: Complicated phase-space structure.
- Solutions: Numerical methods.

Orientation MC integration Matrix elements Parton showers Hadronization Underlying Event Upshot

Parton level simulations

Factorial growth: $e^+e^- \rightarrow q\bar{q} + ng$

Basic ideas of efficient ME calculation

Need to evaluate $|\mathcal{M}|^2 = \left|\sum_i \mathcal{M}_i\right|^2$

- Obvious: Traditional textbook methods (squaring, completeness relations, traces) fail
 - \implies result in proliferation of terms $(\mathcal{M}_i \mathcal{M}_i^*)$
 - \implies Better: Amplitudes are complex numbers,
 - \implies add them before squaring!
- Remember: spinors, gamma matrices have explicit form could be evaluated numerically (brute force)
 But: Rough method, lack of elegance, CPU-expensive

(日) (同) (日) (日)

Helicity method

- Introduce basic helicity spinors (needs to "gauge"-vectors)
- Write everything as spinor products, e.g. $\bar{u}(p_1, h_1)u(p_2, h_2) = \text{complex numbers.}$

• Also:
$$(p+m) \implies \frac{1}{2} \sum_{h} \left[\left(1 + \frac{m^2}{p^2} \right) \bar{u}(p, h) u(p, h) + \left(1 - \frac{m^2}{p^2} \right) \bar{v}(p, h) v(p, h) \right]$$

(completeness relation)

Find other genuine expressions:

all complex-valued functions of momenta & helicities.

Taming the factorial growth in the helicity method

- Reusing pieces: Calculate only once!
- Factoring out: Reduce number of multiplications!

Implemented as a-posteriori manipulations of amplitudes.

Recursion methods (off-shell)

Basic idea: Recursively build one-particle off-shell currents (various versions of this: Berends-Giele, Alpha etc.)."Classical" example: *n*-gluon amplitudes:

Start with two on-shell gluons, represented by their polarization vectors, hence the currents associated with them are J^ν(k) = ε^ν(k).

• Then the two-gluon current reads (no colors) $J^{\mu}(k = k_1 + k_2) = \frac{ig_3}{(k_1 + k_2)^2} V^{\mu\nu\rho} J_{\nu}(k_1) J_{\rho}(k_2).$

From this, larger and larger currents can be built recursively.

 For quarks, the currents are given by spinors, and similar reasoning applies for the construction of the one-particle off-shell currents.

• Treatment of color: Color-ordering the amplitudes $\implies C^{(1, \dots, n)} = \operatorname{Tr} [T^{a_1} \dots T^{a_n}]$, where T^a are color matrices in fundamental representation.

Problem: Need to sum over all allowed permutations.

・ロト ・聞ト ・ヨト ・ヨト

Integration methods: Multi-channeling

Basic idea: Translate Feynman diagrams into channels \implies decays, *s*- and *t*-channel props as building blocks.

R.Kleiss and R.Pittau, Comput. Phys. Commun. 83 (1994) 141

Integration methods: "Democratic" methods

Rambo/Mambo: Flat & isotropic

R.Kleiss, W.J.Stirling and S.D.Ellis, Comput. Phys. Commun. 40 (1986) 359,

• HAAG: Follows QCD antenna pattern

A.van Hameren and C.G.Papadopoulos, Eur. Phys. J. C 25 (2002) 563.

イロト イヨト イヨト イヨト

Limitations of parton level simulation

Factorial growth

... persists due to the number of color configurations

(e.g. (n-1)! permutations for *n* external gluons).

- Solution: Sampling over colors, but correlations with phase space
 Best recipe not (yet) found.
- New scheme for color: color dressing

(C.Duhr, S.Hoche and F.Maltoni, JHEP 0608 (2006) 062)

A (10) N (10)

Limitations of parton level simulation

Factorial growth

• Off-shell vs. on-shell recursion relations:

Final	BG		BCF		CSW	
State	CO	CD	CO	CD	CO	CD
2g	0.24	0.28	0.28	0.33	0.31	0.26
3g	0.45	0.48	0.42	0.51	0.57	0.55
4g	1.20	1.04	0.84	1.32	1.63	1.75
5g	3.78	2.69	2.59	7.26	5.95	5.96
6q	14.2	7.19	11.9	59.1	27.8	30.6
7q	58.5	23.7	73.6	646	146	195
89	276	82.1	597	8690	919	1890
9q	1450	270	5900	127000	6310	29700
10g	7960	864	64000	-	48900	-

Time [s] for the evaluation of 10^4 phase space points, sampled over helicities & color.

arton showers

< ロ > < 同 > < 回 > < 回 > < 回

Limitations of parton level simulation

Efficient phase space integration

- Main problem: Adaptive multi-channel sampling translates "Feynman diagrams" into integration channels
 hence subject to growth.
- But it is practical only for 1000-10000 channels.
- Therefore: Need better sampling procedures
 - \implies open question with little activity.

(Private suspicion: Lack of glamour)

Upshot

Limitations of parton level simulation

General

- Fixed order parton level (LO, NLO, ...) implies fixed multiplicity
- No control over potentially large logs (appear when two partons come close to each other).
- Parton level is parton level experimental definition of observables relies on hadrons.

Therefore: Need hadron level event generators!

<ロト <問ト < 臣ト < 臣

Orientation MC integration Matrix elements Parton showers Hadronization Underlying Event Upshot

Motivation: Why parton showers?

Some more refined reasons

- Experimental definition of jets based on hadrons.
- But: Hadronization through phenomenological models

(need to be tuned to data).

• Wanted: Universality of hadronization parameters

(independence of hard process important).

• Link to fragmentation needed: Model softer radiation

(inner jet evolution).

• Similar to PDFs (factorization) just the other way around

parton shower connects high with low scale).

- **(())) (())) ())**

Motivation: Why parton showers?

Common wisdom

- Well-known: Accelerated charges radiate
- QED: Electrons (charged) emit photons Photons split into electron-positron pairs
- QCD: Quarks (colored) emit gluons Gluons split into quark pairs
- Difference: Gluons are colored (photons are not charged) Hence: Gluons emit gluons!
- Cascade of emissions: Parton shower

- **(())) (())) ())**

- $e^+e^-
 ightarrow$ jets
 - Differential cross section:

$$\frac{\mathrm{d}\sigma_{ee \to 3j}}{\mathrm{d}x_1 \mathrm{d}x_2} = \sigma_{ee \to 2j} \frac{C_F \alpha_s}{\pi} \frac{x_1^2 + x_2^2}{(1 - x_1)(1 - x_2)}$$

Singular for $x_{1,2} \rightarrow 1$.

• Rewrite with opening angle θ_{qg} and gluon energy fraction $x_3 = 2E_g/E_{c.m.}$:

$$\frac{\mathrm{d}\sigma_{ee \to 3j}}{\mathrm{d}\cos\theta_{qg}\mathrm{d}x_3} = \sigma_{ee \to 2j}\frac{C_F\alpha_s}{\pi}\left[\frac{2}{\sin^2\theta_{qg}}\frac{1+(1-x_3)^2}{x_3}-x_3\right]$$

Singular for $x_3 \rightarrow 0$ ("soft"), sin $\theta_{qg} \rightarrow 0$ ("collinear").

<ロト < 回 > < 回 > < 回 > < 回 >

Occurrence of large logarithms

Collinear singularities

Use

$$\frac{2\mathrm{d}\cos\theta_{qg}}{\sin^2\theta_{qg}} = \frac{\mathrm{d}\cos\theta_{qg}}{1-\cos\theta_{qg}} + \frac{\mathrm{d}\cos\theta_{qg}}{1+\cos\theta_{qg}} = \frac{\mathrm{d}\cos\theta_{qg}}{1-\cos\theta_{qg}} + \frac{\mathrm{d}\cos\theta_{\bar{q}g}}{1-\cos\theta_{\bar{q}g}} \approx \frac{\mathrm{d}\theta_{qg}^2}{\theta_{qg}^2} + \frac{\mathrm{d}\theta_{\bar{q}g}^2}{\theta_{\bar{q}g}^2}$$

• Independent evolution of two jets $(q \text{ and } \bar{q})$:

$$\mathrm{d}\sigma_{ee\to 3j} \approx \sigma_{ee\to 2j} \sum_{j\in\{q,\bar{q}\}} \frac{C_F \alpha_s}{2\pi} \frac{\mathrm{d}\theta_{jg}^2}{\theta_{jg}^2} P(z) \; ,$$

where
$$P(z) = \frac{1+(1-z)^2}{z}$$
 (DGLAP splitting function)

イロト イヨト イヨト イヨト

Occurrence of large logarithms

Expressing the collinear variable

- Same form for any $t \propto \theta^2$:
- Transverse momentum $k_{\perp}^2 pprox z^2(1-z)^2 E^2 heta^2$
- Invariant mass $q^2 pprox z(1-z)E^2 heta^2$

$$rac{\mathrm{d} heta^2}{ heta^2}pprox rac{\mathrm{d}k_\perp^2}{k_\perp^2}pprox rac{\mathrm{d}q^2}{q^2}$$

Parton resolution

- What is a parton? Collinear pair/soft parton recombine!
- Introduce resolution criterion $k_{\perp} > Q_0$.

• Combine virtual contributions with unresolvable emissions: Cancels infrared divergences \implies Finite at $\mathcal{O}(\alpha_s)$

(Kinoshita-Lee-Nauenberg, Bloch-Nordsieck theorems)

• Unitarity: Probabilities add up to one $\mathcal{P}(\text{resolved}) + \mathcal{P}(\text{unresolved}) = 1.$

=1

イロト 不得下 イヨト イヨ

The Sudakov form factor

- Diff. probability for emission between q^2 and $q^2 + dq^2$: $d\mathcal{P} = \frac{\alpha_s}{2\pi} \frac{dq^2}{q^2} \int_{Q_0^2/q^2} dz P(z) =: \frac{dq^2}{q^2} \bar{P}(q^2).$
- No-emission probability $\Delta(Q^2, q^2)$ between Q^2 and q^2 .

Evolution equation for Δ : $-\frac{\mathrm{d}\Delta(Q^2, q^2)}{\mathrm{d}q^2} = \Delta(Q^2, q^2)\frac{\mathcal{P}}{\mathrm{d}q^2}$.

$$\Rightarrow \Delta(Q^2, q^2) = \exp\left[-\int\limits_{q^2}^{Q^2} \frac{dk^2}{k^2} \bar{P}(k^2)\right].$$

< ロ > < 同 > < 回 > < 回 > < 回

Many emissions

Iterate emissions (jets)

Maximal result for $t_1 > t_2 > \ldots t_n$:

• • • • • • • • • • • •

• How about Q²? Process-dependent!

Use of DGLAP evolution

DGLAP evolution:

PDFs at (x, Q^2) as function of PDFs at (x_0, Q_0^2) . Backward evolution:

start from hard scattering at (x, Q^2) and work down

in q^2 and up in x.

Change in algorithm:

 $\frac{\Delta_i(q^2)}{\Delta_i(q^2)/f_i(x_i, q^2)}.$

Orientation MC integration Matrix elements Parton showers Hadronization Underlying Event Upshot

Inclusion of quantum effects

Running coupling

• Effect of summing up higher orders (loops): $\alpha_s \rightarrow \alpha_s(k_{\perp}^2)$

Much faster parton proliferation, especially for small k²_⊥.
 Must avoid Landau pole: k²_⊥ > Q²₀ ≫ Λ²_{QCD} ⇒ Q²₀ = physical parameter.

Orientation MC integration Matrix elements **Parton showers** Hadronization Underlying Event Upshot

Inclusion of quantum effects

Soft logarithms : Angular ordering

- Soft limit for single emission also universal
- Problem: Soft gluons come from all over (not collinear!) Quantum interference? Still independent evolution?
- Answer: Not quite independent.
 - Assume photon into e^+e^- at θ_{ee} and photon off electron at θ
 - Energy imbalance at vertex: $k_{\perp}^{\gamma} \sim zp\theta$, hence $\Delta E \sim k_{\perp}^{2}/zp \sim zp\theta^{2}$.
 - Time for photon emission: $\Delta t \sim 1/\Delta E$.
 - ee-separation: $\Delta b \sim \theta_e e \Delta t > \Lambda/\theta \sim 1/(zp\theta)$
 - Thus: $\theta_{ee}/(zp\theta^2) > 1/(zp\theta) \implies \theta_{ee} > \theta$
- Thus: Angular ordering takes care of soft limit.

<ロト </p>

Inclusion of quantum effects

G.Marchesini and B.R.Webber, Nucl. Phys. B 238 (1984) 1.

<ロト </p>

Orientation MC integration Matrix elements **Parton showers** Hadronization Underlying Event Upshot

Inclusion of quantum effects

Soft logarithms : Angular ordering

Experimental manifestation:

 ΔR of 2nd & 3rd jet in multi-jet events in pp-collisions

Inclusion of quantum effects

Resummed jet rates in $e^+e^- \rightarrow$ hadrons

S.Catani et al. Phys. Lett. B269 (1991) 432

• Use Durham jet measure (k_{\perp} -type):

$$k_{\perp,ij}^2 = 2\min(E_i^2, E_j^2)(1 - \cos \theta_{ij}) > Q_{jet}^2$$
.

Remember prob. interpret. of Sudakov form factor:

$$\mathcal{R}_2(Q_{\text{jet}}) = \left[\Delta_q(E_{\text{c.m.}}, Q_{\text{jet}})\right]^2$$

 $\mathcal{R}_{3}(Q_{\text{jet}}) = 2\Delta_{q}(E_{\text{c.m.}}, Q_{\text{jet}})$ $\cdot \int dq \left[\alpha_{s}(q) \bar{P}_{q}(E_{\text{c.m.}}, q) \frac{\Delta_{q}(E_{\text{c.m.}}, Q_{\text{jet}})}{\Delta_{q}(q, Q_{\text{jet}})} \Delta_{q}(q, Q_{\text{jet}}) \Delta_{g}(q, Q_{\text{jet}}) \right]$

F. Krauss Monte Carlo Tools

æ

イロト イ団ト イヨト イヨト

Effect of naive parameterizations

• Use parameterization to "guesstimate" hadronization effects:

$$\begin{split} E &= \int_0^Y \mathrm{d}y \mathrm{d}p_\perp^2 \,\rho(p_\perp^2) p_\perp \cosh y = \lambda \sinh Y \\ P &= \int_0^Y \mathrm{d}y \mathrm{d}p_\perp^2 \,\rho(p_\perp^2) p_\perp \sinh y = \lambda (\cosh Y - 1) \approx E - \lambda \\ \lambda &= \int \mathrm{d}p_\perp^2 \,\rho(p_\perp^2) p_\perp = \langle p_\perp \rangle \,. \end{split}$$

- Estimate $\lambda \sim 1/R_{\rm had} \approx m_{\rm had}$, with $m_{\rm had}$ 0.1-1 GeV.
- Effect: Jet acquire non-perturbative mass $\sim 2\lambda E$ ($\mathcal{O}(10 \text{GeV})$ for jets with energy $\mathcal{O}(100 \text{GeV})$).

• • • • • • • • • • • •

Implementation of naive parameterizations

• Feynman-Field independent fragmentation.

R.D.Field and R.P.Feynman, Nucl. Phys. B 136 (1978) 1

- Recursively fragment $q \rightarrow q'+$ had, where
 - Transverse momentum from (fitted) Gaussian;
 - longitudinal momentum arbitrary (hence from measurements);
 - flavor from symmetry arguments + measurements.
- Problems: frame dependent, "last quark", infrared safety, no direct link to perturbation theory,

Yoyo-strings as model of mesons

B.Andersson, G.Gustafson, G.Ingelman and T.Sjostrand, Phys. Rept. 97 (1983) 31.

- Light quarks connected by string: area law $m^2 \propto area$.
- L=0 mesons only have 'yo-yo' modes:

Dynamical strings in $e^+e^- ightarrow qar q$

B.Andersson, G.Gustafson, G.Ingelman and T.Sjostrand, Phys. Rept. 97 (1983) 31.

- Ignoring gluon radiation: Point-like source of string.
- Intense chromomagnetic field within string: More qq
 pairs created by tunnelling.
- Analogy with QED (Schwinger mechanism): $d\mathcal{P} \sim dx dt \exp(-\pi m_q^2/\kappa)$, $\kappa =$ "string tension".

Preconfinement

- Underlying: Large N_c-limit (planar graphs).
- Follows evolution of color in parton showers: at the end of shower color singlets close in phase space.
- Mass of singlets: peaked at low scales $\approx Q_0^2$.

Primordial cluster mass distribution

- Starting point: Preconfinement;
- split gluons into qq
 -pairs;
- adjacent pairs color connected, form colorless (white) clusters.
- Clusters ("≈ excited hadrons) decay into hadrons

(日) (同) (三) (三)

Cluster model

B.R.Webber, Nucl. Phys. B 238 (1984) 492.

• Split gluons into $q\bar{q}$ pairs, form singlet clusters:

 \implies continuum of meson resonances.

- Decay heavy clusters into lighter ones; (here, many improvements to ensure leading hadron spectrum hard enough, overall effect: cluster model becomes more string-like);
- if light enough, clusters \rightarrow hadrons.
- Naively: spin information washed out, decay determined through phase space only → heavy hadrons suppressed (baryon/strangeness suppression).

Multiple parton scattering?

<ロト <問ト < 臣ト < 臣

Evidence for multiple parton scattering

- Events with γ + 3 jets:
 - Cone jets, R = 0.7, $E_T > 5 \text{ GeV};$ $|\eta_i| < 1.3;$
 - "clean sample": two softest jets with E_T < 7 GeV;

•
$$\sigma_{
m DPS} = rac{\sigma_{\gamma j} \sigma_{j j}}{\sigma_{
m eff}}$$
,
 $\sigma_{
m eff} pprox 14 \pm 4$ mb.

CDF collaboration, Phys. Rev. D56 (1997) 3811.

< ロ > < 同 > < 回 > < 回 > < 回

- Everything apart from the hard interaction including IS showers, FS showers, remnant hadronization.
- Remnant-remnant interactions, soft and/or hard.
- \implies Lesson: hard to define

くらい く コン く ヨン

Model: Multiple parton interactions

• To understand the origin of MPS, realize that

$$\sigma_{\rm hard}(\boldsymbol{p}_{\perp,{\rm min}}) = \int_{\boldsymbol{p}_{\perp,{\rm min}}^2}^{\boldsymbol{s}/4} {\rm d}\boldsymbol{p}_{\perp}^2 \frac{{\rm d}\sigma(\boldsymbol{p}_{\perp}^2)}{{\rm d}\boldsymbol{p}_{\perp}^2} > \sigma_{\boldsymbol{p}\boldsymbol{p},{\rm total}}$$

for low
$$p_{\perp,\min}$$
. Here: $\frac{d\sigma(p_{\perp}^2)}{dp_{\perp}^2} = \int_{0}^{1} dx_1 dx_2 d\hat{t} f(x_1, q^2) f(x_2, q^2) \frac{d\hat{\sigma}_{2 \to 2}}{dp_{\perp}^2} \delta\left(1 - \frac{\hat{t}\hat{y}}{\hat{s}}\right) (f(x, q^2) = \text{PDF}, \hat{\sigma}_{2 \to 2} = \text{parton-parton x-sec})$

•
$$\langle \sigma_{
m hard}(\pmb{p}_{\perp,
m min})/\sigma_{\pmb{pp},
m total}
angle \geq 1$$

• Depends strongly on cut-off $p_{\perp,\min}$ (Energy-dependent)!

(日) (同) (日) (日)

Old Pythia model: Algorithm, simplified

T.Sjostrand and M.van Zijl, Phys. Rev. D 36 (1987) 2019.

• Start with hard interaction, at scale Q_{hard}^2 .

• Select a new scale
$$p_{\perp}^2$$

(according to $f = \frac{d\sigma_{2 \rightarrow 2}(\rho_{\perp}^2)}{d\rho_{\perp}^2}$ with $p_{\perp}^2 \in [\rho_{\perp,\min}^2, Q^2]$

- Rescale proton momentum ("proton-parton = proton with reduced energy").
- Repeat until below $p_{\perp,\min}^2$.
- May add impact-parameter dependence, showers, etc..
- Treat intrinsic k_{\perp} of partons (\rightarrow parameter)
- Model proton remnants (→ parameter)

In the following: Data from CDF, PRD 65 (2002) 092002, plots partially from C.Buttar

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

æ

IPPP

	Krauss					
٨.	onte	Carlo	Tools			

Hard component in transverse region

T>0.5 GeV/c

45 50

Energy extrapolation

General facts on current models

• No first-principles approach for underlying event:

Multiple-parton interactions: beyond factorization

Factorization (simplified) = no process-dependence in use of PDFs.

< ロ > < 同 > < 回 > < 回 > < 回

- Models usually based on xsecs in collinear factorization: $d\sigma/dp_{\perp} \propto p_{\perp}^{4-8} \implies$ strong dependence on cut-off p_{\perp}^{\min} .
- "Regularization": $d\sigma/dp_{\perp} \propto (p_{\perp}^2 + p_0^2)^{2-4}$, also in α_s .
- Model for scaling behavior of $p_{\perp}^{\min}(s) \propto p_{\perp}^{\min}(s_0)(s/s_0)^{\lambda}$, $\lambda = ?$

Two Pythia tunes: $\lambda = 0.16$, $\lambda = 0.25$.

- Herwig model similar to old Pythia and SHERPA
- New Pythia model: Correlate parton interactions with showers, more parameters.

- Hard MEs:
 - Theoretically very well understood, realm of perturbation theory.
 - Fully automated tools at tree-level available, $2 \rightarrow 6$ no problem at all.
 - Obstacle(s) for higher multiplicities: factorial growth, phase space integration.
 - NLO calculations much more involved, no fully automated tool, only libraries for specific processes (MCFM, NLOJET++), typically up to 2 → 3.
 - NNLO only for a small number of processes.

- Parton showers:
 - Theoretically well understood, still in realm of perturbation theory, but beyond fixed order.
 - Consistent treatment of leading logs in soft/collinear limit, formally equivalent formulations lead to different results because of non-trivial choices (evolution parameter, etc.).

(日) (同) (三) (三)

- Hadronization
 - Various phenomenological models;
 - different levels of sophistication, different number of parameters;
 - tuned to LEP data, overall agreement satisfying;
 - validity for hadron data not quite clear differences possible (beam remnant fragmentation not in LEP).

• • • • • • • • • • • •

3

- Underlying event
 - Various definitions for this phenomenon.
 - Theoretically not understood, in fact: beyond theory understanding (breaks factorization);
 - models typically based on collinear factorization and semi-independent multi-parton scattering

 \implies very naive;

- models highly parameter-dependent, leading to large differences in predictions;
- connection to minimum bias, diffraction etc.?
- even unclear: good observables to distinguish models.

<ロト <問ト < 臣ト < 臣