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AdS/CFT correspondence: Fascinating link between conformal quantum field
theories without gravity and string theory a theory with gravity (both classical and
quantized)

Two major (recent) developments in the maximal susy AdS5/CFT, system:

4d max. susy Yang-Mills theory < Superstring theory on AdS5 x S° I

Q Integrability in AdS/CFT:

o Scaling dimensions alias string spectrum from Bethe equations
= (close) to solution of the spectral problem

@ Scattering amplitudes in maximally susy Yang-Mills

o Generalized unitarity methods and recursion relations

= all tree-level amplitudes and many high-loop/high-multiplicity results available
o Relation to light-like Wilson loops/strongly coupled string description

= emergence of dual superconformal or Yangian symmetry

This talk: Review some of the progress and show how to connect the two
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Outline

@ Introduction

@ Trees: Complete analytic result and relation to massless QCD

[Dixon, Henn, JP, Schuster; JHEP 1101, arXiv:1012]

© Symmetries: Superconformal, dual conformal and Yangian invariance

[Drummond, Henn, JP; JHEP 0905, arXiv:0902]

@ Loops: Overview and novel Higgs regulator

[Alday, Henn, JP, Schuster; JHEP 1001, arXiv:0908]
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N = 4 super Yang Mills: The simplest interacting 4d QFT

o Field content: All fields in adjoint of SU(N), N x N matrices
o Gluons: A,, 1=0,1,2,3, A=1
o 6 real scalars: @7, I =1,...,6, A=1
o 4 x 4 real fermions: ¥, 4, & 0,6 =1,2. A=1,2,3,4, A=3/2
o Covariant derivative: D, = 0, —i[A,,*], A =1
@ Action: Unique model completely fixed by SUSY

S =

— /d4:c Te[4F2, + 1 (D,u®)? - §[01,@,][@1, @)+

VAoSPDI W 4 — §Wq 407 Be [0 Wy ) — 104 40P e [0 @BB]]

o | Byyy = 0]: Quantum Conformal Field Theory, 2 parameters: N & A = gym>N

@ Shall consider 't Hooft planar limit: N — oo with A fixed.
@ Is the 4d interacting QFT with highest degree of symmetry!

= “H-atom of gauge theories”
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Superconformal symmetry

e Symmetry: s50(2,4) ® 50(6) C psu(2,2|4)

Poincaré:  p®® = p, (6")%,  map, Mg

Conformal:  kqa, d (c : central charge)
R-symmetry: 74p

Poncaré Susy: q"‘A,(ﬁi Conformal Susy: saA,EQ

@ 4 + 4 Supermatrix notation A = (a, | A)

i maﬁ_%§g(d+%0) . 1kaﬁ 1 5‘?‘3
JAB: paﬁ ma/3+§(ig(d—56) (jaB
qAﬁ S 3 —TAB — %1(530

o Algebra:

A5, €Y =68 T4, — (—1)(AHIBNCIHDDGA 5O o
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Gauge Theory Observables

@ Scaling dimensions:
Local operators O, (z) = Tr)WVy Wa ... W, ] with W; € {Dkq),Dk\IJ,DkF}

5ab

(z1 — 22)

(Ou(1) Os(22)) = g A=Y XAy
=0

@ Wilson loops:

We = <TrPexpi7{ ds (i A, +il2| 67 @I)>
C

@ Scattering amplitudes:

Al ) = §

helicities:  h; € {0, 3, £1}

UV-finite
IR-divergent
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Superstring in AdS5 x S°

5
mn

I=VA / dr do [Gﬁ,{}gsw D XM X" 4+ G5 9, Y ™Y ™ + fermions

da3, | + dz?

o dshg = R? 2 has boundary at z =0

o V= g—? , classical limit: v/A — oo, quantum fluctuations: O(1/v/))

e AdS5 x S® is max susy background (like R and plane wave)

@ Quantization unsolved!

@ String coupling constant g; = ﬁ — 0 in 't Hooft limit

@ Isometries: s0(2,4) x s0(6) C psu(2,2[4)

@ Include fermions: Formulate as —Solggli)(i’g‘é)@ supercoset model [Metsaev, Tseytlin]

16/33]



Gauge Theory - String Theory Dictionary of Observables

Aq(A) spectrum of N o E()) string excita- | ?)

scaling dimensions tion spectrum

Wilson loop W¢ minimal surface

IR

—1/m, 7 M D3-branes

l

An({pi, hi, ai}; A) (<) open string amps

- D/mb AAAAAA
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Scattering amplitudes in ' = 4 SYM

o Consider n-particle scattering amplitude

hnf 1

hy,

@ Planar amplitudes most conveniently expressed in color ordered formalism:

An({pi, hi ai}) = sz S g R after . g0e]

0ESN/Zn
X An({Poys Moy bs oo+ s APoys Roy 15 A = 92 N)

A,,: Color ordered amplitude. Color structure is stripped off.

Helicity of ith particle: h; = 0 scalar, h; = £1 gluon, h; = j:% gluino
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Spinor helicity formalism

@ Express momentum and polarizations via commuting spinors A%, \“:

pPY = (0")"p, =AY & p,pt =detp™® =0

@ Choice of helicity determines polarization vector € of external gluon

h=+1 £ = Aff i) = edﬁj\dﬁe
(A i)

h=-1 g4 = oA Ap) = eap \p°
(Am)

1, [t arbitrary reference spinors.

e E.g. scalar products: 2p; - pa = (A1, Aa2) [:\2,5\1] = (1,2) [2,1]
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Trees



Gluon Amplitudes and Helicity Classification

Classify gluon amplitudes by # of helicity flips
@ By SUSY Ward identities: A,(17,2%,....n")=0=A,(17,27,...,n")
true to all loops

e Maximally helicity violating (MHV) amplitudes

. 4
+ ) u + = (4) . <’L,j> arke, Taylor|
Ap(17 i, ,...n") =20 (% i) 1,2)(2.3) ... (n1) [Parke, Taylor]

° Next—to—maximally helicity amplitudes (NkMHV) have more involved structure!

N N
\ /' Ny /’

MHV / Apm s gy g™

[Picture from T. McLoughlin]
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On-shell superspace

@ Augment X\ and 5\? by G~rassmann variables 77;4 A=1,23,4 [Nair]
@ On-shell superspace (/\?,)\d,n{‘) with on-shell superfield:
1 1 _
®(p,1) = G*(p) + 0" Tal®) + 50" 0" San(p) + 010 eapenl” ()

1 _
+ ZnAnB nn” eapcpG~ (p)
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On-shell superspace

@ Augment X\ and 5\? by G~rassmann variables 77;4 A=1,23,4 [Nair]
@ On-shell superspace (/\?,)\d,n{‘) with on-shell superfield:
1 1 _
®(p,1) = G*(p) + 0" Tal®) + 50" 0" San(p) + 010 eapenl” ()

1 _
+ ZnAnB nn” eapcpG~ (p)

@ Superamplitudes: <<I>(/\1, A, m) (g, A2, n2) ... P(A\n, s nn)>

+1/2

Packages all n-parton gluon*-gluino -scalar amplitudes

@ General form of tree superamplitudes:

_ 5(4)(Zi Ai 5‘1) 5(8)(Zi Ai1i)
" (1,2)(2,3)...(n,1)

Pu({X; Xis i)

Conservation of super-momentum: 6 (3", A%n) = (32, A*nh)®
o n-expansion of P, yields N¥MHV-classification of superamps as h(n) = —1/2

Pn — ,PQ/IHV + 774 ’PQIMHV + 778 PqI;INMHV 4.+ n4n78 fPTIYIHV
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Superamplitudes and BCFW recursion

o Efficient way of constructing tree-level amplitudes via BCFW recursion

[Britto,Cachazo,Feng+Witten '04,05]

” _ZAH-l P2 n 2+1 Z

e N-point amplitudes are obtained recursively from lower-point amplitudes
o All amplitudes are on-shell
o Special cases can be solved analytically, e.g. split-helicity amplitudes
A<—, ceey Ty +7 ey +) [Roiban,Spradlin,Volovich]
@ Reformulation of recursion relations in on-shell superspace via shift in (A;, \)

and un [Elvang et al, Arkani-Hamed et al, Brandhuber et al]

@ Super BCFW recursion is much simpler and can be solved analytically!

= | Po({\i, \i;7:}) known in closed analytical form at tree-level [Drummond,Henn]
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The Drummond-Henn solution

‘P, expressed as sums over R-invariants determined by paths on rooted tree

NFMHYV _ {L2}:{U2} {Lp}hi{Up}
Pn - Z L Rn,a1b1 ’ Rn,{lz},a,gbg Tt Rn,{lp},apbp
all paths
of length k&

Z Rn,alln

1<ai,bi<n

= Z Rn;alln X

1<ai,bi<n

0;a1b1
|: Z Rn§b1a1;a252

a1<az,ba<by

a1b1;0
+ Z Rn;(l,ng :|
b1<az,ba<n

‘ Goal: Project onto component field amplitudes [Dixon, Henn, Plefka, Schuster]
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Region momenta or dual coordinates

i<j
Ti— Tit1 = P; Tij (=X —Tj = P+ DPiv1+ -+ Dj

o All amplitudes expressed via momentum invariants 2

i and the scalar quantities:

(najag . ..agla) := (N|Tna, Taras - - - Tayp_1ax|@)

; b
= Ag(ﬂﬁnm)aﬁ'(xamz)ﬁ7 - (Tap_1ay) " Aap

o Building blocks for amps: R invariants and path matrix =5

Anie L (oa—1)) (v(b— 1) |
ni{I};ab * 22, (n{I}bala) (n{I}bala — 1) (n{I}ablb) (n{I}ablb—1)’

(nco) (ncy) .o {nep)
(En), (En)ily, o B,
Eflath C= = <o = \c1 Cp
(H”){Iz}»lhbz <H”>{12}7a2b2 T (H”){Iz},azln
— — N
<:‘n)?}p}?apbp (:'nﬁh};apbp U (Hn){l} }apbp
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All gluon-gluino trees in A/ = 4 SYM [Dixon, Henn, Plefka, Schuster]

o MHV g|u0n amphtudes [Parke, Taylor]

(co Cl>4
AMHV(CO )= W (p )<1 2)(23)...(n 1)

o NPMHV gluon amplitudes:

ANPMHV(C— ) = 5(4)(79)_ Z HRL“R (det 2)*
n 0T T 12y L (n ) nithidiaib

all paths i=1
of length p
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All gluon-gluino trees in A/ = 4 SYM [Dixon, Henn, Plefka, Schuster]

o MHV g|u0n amp||tudes [Parke, Taylor]

(co 01>4
AMHV(CO )= W (p )<1 2)(23)...(n 1)

o NPMHV gluon amplitudes:

3% (p)
NPMHV / — — _ LiR; —\4
AN ) = T ) > HRn{I}a” (det =)
all paths i=1
of length p

@ MHV gluon-gluino amplitudes (single flavor)

ADL"HV(a_, by, Cq) = 54 @)M

(12)...(n1)
@ NPMHV gluon-gluino amplitudes:
NPMHV -
A(qq)k’n(”'7ckj""’(Cai)q7"'7<cﬂ]) )=
3™ (p)sign(7) - pLiRi 3
X RS ] (detE detZ(q <> q)|.
(12)(23)...(n1) aughs -1 {lisaibi ( ‘q) ‘q
of length p
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From N = 4 to massless QCD trees

e Differences in color: SU(N) vs. SU(3); Fermions: adjoint vs. fundamental
Irrelevant for color ordered amplitudes, as color d.o.f. stripped off anyway. E.g.
single quark-anti-quark pair

AN (14,24,3,...,0) =¢" 2 Y (T%® .. Twm),n

oESH_2
A'tnree(lqv 2f1’ 0(3)7 cee 7J(n))

Color ordered AY®®(17,24,3,...,n) from two-gluino-(n — 2)-gluon amplitude.
@ For more than one quark-anti-quark pair needs to accomplish:

(1) Avoid internal scalar exchanges (due to Yukawa coupling)

(2) Allow all fermion lines present to be of different flavor

//—\\
() -+—r+ = I—OH
N //

- Q+ 1- 1+ —K’:X+ 1- 1+
(2a) ¢ = Q (2b) ¢ ) = Q
- TNy - P - 2+ 2-
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From N = 4 to massless QCD trees

Tt Tyt O T
(3a) ——‘\—»—\p—+ 1—Q1+ (3b) +4\_._‘r_ _ 2+Q2_

-y 1- 1+ - - 1+

—Ne Tt 1- 1+ —/\<’>(+ 1- 1+
(Be) +4——r- = 2+Qz— Bd) +7 - 3+Q2—
SA 9 _/D\_C; 3— ot

- -~yt - - +
<X 1 1+ 1 2
(3e) +/D C\+ 1+ + - 1+ 2+
7
= 1- - 2= 2-

@ Also worked out explicitly for 4 quark-anti-quark pairs.

e Conclusion: | Obtained all (massless) QCD trees from the N' =4 SYM trees
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GGT: Mathematica package for analytic gluon-gluino tree

amplitudes [Dixon, Henn, Plefka, Schuster, 2010] gft.physik.hu-berlin.de

ngr= GGTgluon[7, {3, 5}]
(315)*
(112)(2]3)(314)(415)(516)(6]7)(71]1)

Out[9]=

In[i2)= GGTgluon[6, {3, 5, 6}]
(2 11)(413)(52,4(6]3)(6]5)+(6]5)(6|Xe,ql|xXq,]3))*

S2,4 (6 | X6,2 | X2,4 | 3) (6| Xe,2 | Xa,4 | 4) (6| Xe,a|Xq,211)(6]|Xg,a|ZXs,2]2)

Out[12]=

(21 1)(514) (52,5¢(613)(6[5)+(6]5)(6]Xe,5]|xs5,2]3))*

S2,5 (6 | X6,2 | X2,5 | 4) (6| Xe,2 | X2,5 | 5) (6| X¢,5 | X5,2 | 1) (6| Xg,5 | X5,2 | 2)
(312)(5]4) (83,5¢(6[3)(6[5)+(6]5)(6]Xe,5]xs,3]3))* ]/
S3,5 (6 | X6,3 | X3,5 | 4) (6 | X¢,3 | X3,5 | 5) (6 | X¢,5 | X5,3 | 2) (6| Xg,5 | X5,3 | 3)

((112)(213)(314)<415)(516)(6]1))

- GGTfermionS[7, {1, 7}, {3, 4}, {5, 6}]

outite = ({211 €413y <6 15)(T11)<4|%,4|%7,217) (7| %X7,4|%a,2]3)
(S2,884,6 (7T | 1) (7T [5) (7| 6)+82,4(7|1)(7|6)(7|x1,6]%6,453)/
(82,484,6 (7 | X7,2 | X2,4 | 3) (7 | X7,2 | X2,4 | 4) (7 | X7, | Xg,2 | 1) (7| X7,4|
X4,2 1 2) (7 1 X7,4 | Xa,6 | 5) (7T | X7,4 | X4,6 1 6) (7| X7,6|Xe,alX2,4|X7,217))+
(s3,6¢211)(312)¢6[5)(7[1)>(7]6)°
(=T [ 1) (7| %7,6 | X6,2 1 4) (7 |%x7,6|Xe,21%2,3|X3,6]3)+
(T11) (7| %76 %6,213)(7|%7,6|Xe,21%2,3]%3,614))
T 1 :\2\[]/8/3..3] o e P VY

Vi . 1 ee .



GGT: Mathematica package for analytic gluon-gluino tree

amplitudes [Dixon, Henn, Plefka, Schuster, 2010] gft.physik.hu-berlin.de

@ Similar solutions for all gluon-gluino-scalar trees in N' =4 SYM also available
from the Mathematica package BCFW [Bourjaily, 2010]

@ Makes use of Grassmannian approach and momentum twistors [Arkani-Hamed et al]
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Symmetries



u(2,2|4) invariance

e Superamplitude: (i =1,...,n)

45(4)(21‘ /\?5‘?) 5(8)(21' /\zqu)
(1,2)(2,3)...(n,1)

AT ({ N, Aoy }) = i(2) Po({is Ay i })

@ Realization of psu(2,2|4) generators in on-shell superspace, e.g. [Witten]

n 5 n

p** = Z AS A ¢4 = Z A 7724 =- obvious symmetries
i=1 i=1
n

g 0
koo = — = less obvious sym
7% ; )\;)c (9/\? Za)\a 87’]1 Viou Y

o Invariance: | {p, k,m,m,d,r,q,q,s,5, ¢ } AT, A, ) =0
@ N.B.: Local invariance h; A, =1-A,

Helicity operator: h; = — )\0‘8 +3 )\0‘8 + 2 771 Oia=1-—¢;
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su(2,2[4) invariance

o The su(2,2[4) generators acting in on-shell superspace (A%, A%, n):

Pt =D NN Koo = D Diadicc,

Mo = D Mitadigy, Mag =3 Nitalis)

d= Z[%ZA?% + 5AT 06 + 1], rip = EZ:[—UZA@‘B + 3035 i,
= S 7= o,

Sad = Z Diadia, 54 = Z i Oic

c= Z[l + %A?&m — %X?am — %nf‘am] .

i
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su(2,2[4) invariance

e The su(2,2|4) generators acting in on-shell superspace (A%, S\f‘, 77{'4)3
- i

Mep = Z S‘i(dazﬂ')v Map = Z Aia9ig) »
d=> (300 + 3A00ia + 1], rp = [-n{'0is + 150 dicl,
¢t = A i =) A,
i i
Sad = Y Diadia, 4= 1O,

c=Y [+ 2A0jo — $A{0is — 31 0ia].
i
@ N.B: For collinear momenta picks up important additional length changing
terms, due to holomorphic anomaly 6% ﬁ = 27l 02 ((\, 1))
[Bargheer, Beisert, Galleas, Loebbert,McLoughlin]

[Korchemsky, Sokatchev] [Skinner,Mason][Arkani-Hamed, Cachazo, Kaplan]
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Dual Superconformal symmetry

@ Planar MHV amplitudes are dual conformal SO(2,4) invariant in dual space z;
[Drummond,Korchemsky,Sokatchev]
@ Derives from Scattering amplitude/Wilson Loop duality

[Alday, Maldacena;Drummond,Korchemsky,Sokatchev]
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Dual Superconformal symmetry

@ Planar MHV amplitudes are dual conformal SO(2,4) invariant in dual space z;
[Drummond,Korchemsky, Sokatchev]

@ Derives from Scattering amplitude/Wilson Loop duality
[Alday, Maldacena;Drummond,Korchemsky,Sokatchev]

@ May be extended to dual superconfromal invariance of tree-level
superamplitudes: Introduce dual on-shell superspace [prummond, Henn, Korchemsky, Sokatchey]

(; — Ti41)"Y = AF A (0; — 0i11)** = A0
@ Dual special conformal generator:

. s a0 . o
Ko‘a:Zx?Bm‘?ﬁ—. Rl

p ox’P

7
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Dual Superconformal symmetry

@ Planar MHV amplitudes are dual conformal SO(2,4) invariant in dual space z;
[Drummond,Korchemsky, Sokatchev]

@ Derives from Scattering amplitude/Wilson Loop duality
[Alday, Maldacena;Drummond,Korchemsky,Sokatchev]

@ May be extended to dual superconfromal invariance of tree-level
superamplitudes: Introduce dual on-shell superspace [prummond, Henn, Korchemsky, Sokatchey]

(i = i)™ = AT XS (0= O0) 7 = X !
@ Dual special conformal generator:
. s .. 0 . o
K& — Qﬂ Qﬁ i QB HQB
Z T X 8x65 + T 7 89253

i i

i—1 i—1
. ad a Yo aA _ a A
@ Translate to on-shell superspace: z;” = E AJ AT and 077 = g AS
j=1

J=1

_|_ $O¢OL

4B ya af Ja 9 &
ZJL S —+ af A — =T +)\ emaB

Nonlocal structure!
[21/33]



Yangian symmetry of scattering amplitudes in N’ = 4 SYM

@ Superconformal + Dual superconformal algebra = Yangian algebra

Y[pﬁu(Q 2’4)] [Drummond, Henn, Plefka)
[J, O g 0)} fab J(O) conventional superconformal symmetry
[0, Jél)} = fut JW from dual conformal symmetry

with nonlocal generators

= bea Z Jz b j,c

1<j<i<n

and super Serre relations (representation dependent). [Dolan, Nappi, Witten]
o To define “inverted’ f, needs to extend to u(2,2[4) for nondegen. metric

@ In particular: Bosonic invariance psc.z A, = 0] with

1
p,(;ui Kad + AKao'z
1 ' ‘ ) .
~2 > "m0 0% + 15, 670) — di 616)) pj i + Girac @ — (i 4 )
i<j
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Yangian symmetry of scattering amplitudes in N’ = 4 SYM

@ Implies an infinite-dimensional symmetry algebra for tree-level N' =4 SYM
scattering amplitudes! < spin chain picture

JABoAnzo J(l)ABoAnzo

@ Including correction terms arising from collinear momenta this symmetry is
constructive: Unambiguously fixes tree-level amplitudes.

[Bargheer, Beisert, Galleas, Loebbert,McLoughlin; Korchemsky, Sokatchev]
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Loops



Status of higher loop/leg calculations in N/ = 4 SYM

+ @ @ O 0O 0 0 0 O - AdS/CFT
§ 2 ©
° 5 ‘@/ Bern-Dixon-Smirnov ansatz / dual conformal symmetry
° @ restrictions from dual conformal symmetry
5+ 0 e
4+ @ © /
3+~ @ O
24+ ©e @ @ O O
1- o o o000 0 o unitarity
0+ e @ o @ 0o 0 0 © BCFW recursion
| | | | } } |
4 5 6 7 8 9 external legs

@ Diagram has three important ingredients:
analytic properties, symmetries (+IR structure), AdS/CFT
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Higher loops and Higgs regulator

@ Beyond tree-level: Conformal and dual conformal symmetry is broken by IR
divergencies = {4, 4, K, Y, 5, (O}

o Need for regularization: Standard method Dim reduction 10 — 4 — ¢
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Higher loops and Higgs regulator

@ Beyond tree-level: Conformal and dual conformal symmetry is broken by IR

divergencies = {4 £ K K, 5 @}

o Need for regularization: Standard method Dim reduction 10 — 4 — ¢
o Alternative method: Higgs regulator U(N + M) — U(N) x U(1)M

[Alday, Henn, Plefka, Schuster]

Best way to understand dual conformal symmetry in the field theory:

= Inspired by AdS/CFT [Alday, Maldacena; Schabinger, 2008; Sever, McGreevy]
= IR divergences regulated by masses, at least for large IV

= Conjecture: Existence of an extended dual conformal symmetry

[Alday, Henn, Plefka, Schuster]

= Lots of supporting evidence [Naculich, Henn, Schnitzer, Spradiin; Boels, Bern, Dennen, Huang]
= Now essentially proven through 6D SYM [Caron-Huot, OConnel; Dennen, Huang, 2010]
= Heavily restricts the loop integrand/integrals!

o Related development: (Unregulated) planar integrand has Yangian symmetry
[Arkani-Hamed et al, 2010]
Higgs regulator and its exact dual conformal symmetry is used to justify
transition to regulated integrand
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Higgs regularization [Alday, Henn, Plefka, Schuster]

M D3-branes

@ Take string picture serious:

o/ v

(a)
o Field Theory: Higgsing U(N + M) — U(N) x U(1)™. One brane for every
scattered particle, N > M.

P2

Renders amplitudes IR finite.
Have light (m; —m;) and heavy
m; fields

=

183



Extended dual conformal symmetry: The string picture

o Consider the string description of the IR-regulated amplitude in the T-dual
theory: The radial coordinates are related by

l/Jz=r=m

@ The SO(2,4) isometry of AdSs in T-dual theory is generated by Jysn with
embedding coordinates M = —1,0,1,2, 3, 4.
In Poincaré coordinates (7, z*) we have
J_1’4 =70, + l’”au = ﬁ
Jop—J 1y =0 = PM
Jap+J-1 =2x,(x,0” +710,) — (x2 + 7‘2)8“ = Ku

@ Expectation: Amplitudes regulated by Higgsing should be invariant exactly
under extended dual conformal symmetry KH and D with 7 — m!
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Higgsing N’ = 4 Super Yang-Mills

@ Action
. 1 . 1 . 2 ..
UN+M 2 2, 9 2
SN(=4 ) = /d4xTr(—Z Py, — §(DM<I>1) + T (@7, D] —|—ferms> ,
@ Decompose into N + M blocks
A - ((Au)ab (Au)aj) b, = (((I)I)ab (P1)aj )
P \Aia (Apii) (®r)ia 019 5 0ij + (®1)i

ab=1,....N, i,j=N+1,....N+M,
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Higgsing N’ = 4 Super Yang-Mills

o Action

GU(N+M) 4 L.y 1, o5 g% . -
SN=4 :/d xTr(_ZFNV_ﬁ(D“@I) +Z[¢[,¢J] +ferms>,

@ Decompose into N + M blocks

A (A )a (A )a' 5 ((I)I)ab ((I)I)a'
Au = ((Ai)i: (Al;)ij) ’ ¢ = (((I)I)ia d19 "2+ 0ij +](q)1)z‘j)

ab=1,....N, i,j=N+1,....N+M,

e Add R¢ gauge fixing and ghost terms. Quadratic terms (Aps := (A, ®1))

Sar=1

quad = /d41’{ B %Tr(auAM)Q - %(mz - mj)2 (AM)ij (AM)ji
_ m? (Arr)ia (AM)M- + ferms }

@ Plus novel bosonic 3-point interactions proportional to m;
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One loop test of extended dual conformal symmetry 1

o Consider the (special) purely scalar amplitude:

Ag = (©4(p1) ©5(p2) ©4(pa) ©5(pa)) = ighys (1 + A1 (s,t.m0) + O(a?))

I(l)(s,t,m@-): Massive box integral in dual variables (p; = x; — x;,1)

— /d4$5 (x5 + (m1 — m3)*) (23, + (m2 —ma)?)
(9”%5 + m%)(fﬂ% + m%)($§5 + mg)(ﬁm + mi)

5(@.M:4)
1 22 22 5 -

1MW (s,t,m;) = 1’133524/d L5259 -3 -2 ~2
Li5L25L35L Y5

Indeed IV (s,¢,m;) is extended dual conformal invariant: KHI(l)(s,t,mi) =0
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Extended dual conformal invariance

o Extended dual conformal invariance
K, IO (s, t,my) =
4
0 0 9 9 O 1
@ m; is the fifth coordinate 2™ = (z*,m).
@ Triangle and bubble graphs are forbidden by extended conformal symmetry!
@ Indeed an explicit one-loop calculation shows the cancelation of triangles.
@ Dual conformal symmetry exists in 6d N' = (1,1) SYM at tree-level.

Also at loop-level for integrands with 4d momentum measure
[Caron-Huot, OConnel; Dennen, Huang, 2010]

= Proof of extended conformal symmetry for N'= 4 SYM at loop level.
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Extended dual conformal invariance at higher loops

@ At 2 loops: Only one integral is allowed by extended dual conformal symmetry:

i2

Should similarly restrict possible integrals at higher loops.
@ Computed this graph in m; — 0 limit using Mellin-Barnes techniques.
@ No % x € =1 "interference’ as in dimred: Here log(m?) x m? — 0.

@ Has been extended to higher loops & higher multiplicities as well as Regge limit

[Henn, Naculich, Schnitzer, Drummond]
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Extracting the cusp anomalous dimension

o We have Ay = A - M,

2-loops

= exp [FcuSP()‘) x}

where one splits My into Inm? dependent and independent pieces:

In My = Dy + Fy + O(m?)

2
o Defining (%) In My = —Deusp(a) | we find Teysp(a) = 2a — 2 a® + . ..
where a = \/87? in agreement with dim reg.

@ Furthermore for finite piece one has

Fy = %Fcusp(a) [% In2(s/t) + %] + C(a)

with C(a) = a®> /120 + O(a?).
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Summary and Outlook

@ All tree-level amplitudes in ' = 4 SYM known analytically

o Results translate to all massless QCD trees (at least for up to 8 fermions)
o Useful for automated evaluation of loops using unitarity (Blackhat)

Tree level amplitudes are invariant under an infinite dimensional Yangian
symmetry
e Hint for integrability in scattering amplitudes!
o Is form of tree amplitudes fixed by Yangian symmetry?
= Yes, but needs to include collinear limits = length changing effects

[Bargheer,Beisert, Galleas, Loebbert, McLoughlin]

Challenge at weak coupling: Does Yangian symmetry extend to the loop level?

Breaking of dual conformal invariance at loop level under control: Best seen in
Higgs regulator

Restriction of possible integrals at higher loops.

Can breaking of standard conformal invariance at loop level be controlled?
Yes! Perturbative construction [Sever,Vieira] [Beisert, Henn, McLoughlin, Plefkal
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Higgs regulator

Restriction of possible integrals at higher loops.

Can breaking of standard conformal invariance at loop level be controlled?
Yes! Perturbative construction [Sever,Vieira] [Beisert, Henn, McLoughlin, Plefkal

o | Does integrability determine the all loop planar scattering amplitudes?
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Proof of extended dual conformal invariance

: : (1) 2 .2 5. (@Y
o Integral in 5d variables: I'V(s,t,m;) = 27323 [ ’T5-5—5—5 "3
T15T25735% 45
@ 5d inversion on all points:
A ~2 5 4
. T . Tis . d°zs
== = xgj%T%, dPis — o
z Tias T
J
. . . . AQ
Implies in particular: m; — m;/Z;.
@ Then indeed box integral covariant:
(@MY s 0(@M=NEE o 5 5.
P N 5 5 48 522245242
552 52 22 52 710 52 22 22 22 5 V1727374
15725735745 5 T15T25%35%45

IM (s,t,m;) is also 4d translation invariant

= Extended dual conformal invariance: K#I(l)(s,t,m,-) =0
@ Triangles and bubbles are not invariant!



@ Potential problem (geisers;witten): We have singled out particle 1 <
Yangian-generators are not cyclic but color ordered scattering amplitudes are
cyclic??

@ Resolution: Consider the Yangian generators produced by singling out particle 2:
5 0) +(0
Y AT DI
2<j<i<nt1
then one shows

JWAL —JWAL =62 I = =5

e[l

1A

Importantly ¢; A, = 0 locally! Hence level one generators J'*/“ 5 are cyclic

when acting on amplitudes.
o Linked to vanishing Killing form of superalgebra (—1)llf,.% f,4¢ = 0

= [K. Zarembo's talk]



