

02.05.2011

Large-N expansions and equivalences

Gabriele Veneziano (Collège de France)

(To Giuliano Toraldo di Francia, remarkable man and teacher)

From my talk here June 2008

Is the time ripe for a large-N workshop at the GGI?

Outline

- * Prehistory (= pre 't Hooft)
- * History
- * Orientifold planar equivalence
 - * Arguments, counter-arguments, dust-settling
 - * SUSY relics in QCD?

* Large-N volume independence (EK-reduction)

- * KUY's proposal
- * Further developments
- * A 2D toy model
- * Outlook

w/ apologies for so many topics left out...

Prehistory (1970-'74)

Di Giacomo, Fubini, Sertorio, GV (1970)

- Implementing unitarity in Dual Resonance Models (DRM) looked like "mission impossible".
- In QFT resonances get a width only after resumming an infinite number of bubble diagrams.
 But in DRM bubble and non-bubble diagrams come together.
- Idea: isolate a minimal subclass of diagrams giving finite widths while preserving some simple topology.
- Then add more complicated topologies.

Simplest topology: planar diagrams

- => Planar unitarity (for $q\bar{q}$ mesons)
- => Regge trajectory, with $\alpha_R(0) \sim 1 d < n > / dy < 1$

Next to simplest topology: cylinder diagrams

• Cylinder topology => (bare, soft) Pomeron with $\alpha_P(0) = 1$ up to correlations (Huan Lee, GV ~1973)

Higher topologies => Gribov's RFT (Ciafaloni, Marchesini & GV, 1974)

- Hard to sell...
- Then came 't Hooft's $1/N_{\rm c}$...
- Topological reasoning in DRM reinterpreted in terms of a $1/N_{\rm f}$ expansion (GV 1974).
- ... but then I basically gave up on hadronic string and switched to QCD...

Large-N expansions in QCD

Planar & quenched limit ('t Hooft, 1974)

 $1/N_c$ expansion @ fixed $\lambda = g^2 N_c$ and N_f leading diagrams

Corrections: $O(N_f/N_c)$ from q-loops, $O(1/N_c^2)$ from higher-genus diagrams

Properties at leading order

- 1. Resonances have zero width
- 2. U(1) problem not solved, WV @ NLO
- 3. Multiparticle production not allowed Theoretically appealing: should give the tree level of some kind of string theory Proven hard to solve, except in D=2....

Planar limit = Topological Expansion (GV, 1976) = 1/N expansion at fixed g²N <u>and</u> N_f /N_c Leading diagrams planar but include "empty" q-loops Corrections: O(1/N²) from non-planar diagrams

First discussion of necessity & properties^{*)} of glueballs @ large N?

*) e.g. mixing of glueballs and mesons

Properties at leading order

- 1. Widths are O(1)
- 2. U(1) problem solved to leading order, no reason for WV to be good (small N_f/N_c ?)
- 3. Multiparticle production allowed
 - => Bare Pomeron & Gribov's RFT
- 4. Phase transitions at critical values of N_f/N_c (conformal windows, loss of AF)

Perhaps phenomenologically more appealing than 't Hooft's but even harder to solve... But there is a third possibility...

Generalize QCD to N \neq 3 (N = N_c hereafter) in other ways by playing with matter rep. The conventional way, QCD_F, is to keep the quarks in (N + N^{*}) rep.

Another possibility, called for stringy reasons QCD_{OR} , is to assign quarks to the 2-index-antisymm. rep. of SU(N) (+ its c.c.).

As in 't Hooft's exp. (and unlike in TE), N_f is kept fixed ($N_f < 6$, or else AF lost at large N).

NB: For N = 3 this is still good old QCD!

Leading diagrams are planar, include "filled" q-loops since there are $O(N^2)$ guarks Widths are zero, U(1) problem solved, no p.pr. Phenomenologically interesting? Better manageable? In some cases, I will claim... QCD_{OR} as an interpolating theory: 1. Coincides with pure YM (AS fermions decouple) @ N=2 2. Coincides with QCD @ N=33.... and at large N?

Armoni-Shifman-GV claim (2003)

At large-N a bosonic sector of QCD_{OR} is equivalent to a corresponding sector of QCD_{Adj} i.e. of QCD with N_f Majorana fermions in the adjoint representation.

- NB: Expected accuracy 1/N hopefully improved by interpolation w/ N=2 case (Cf. N_f/N_c of 'tH!)
- ASV gave both perturbative and NP arguments

Sketch of non-perturbative argument (ASV '04, A. Patella, '05 + thesis '08) • Integrate out fermions (after having included masses,

- Integrate out termions (atter naving included masses, bilinear sources)
- Express Trlog(Ø+m+J) in terms of Wilson-loops using world-line formulation (expansion convergent?)
- Use large-N to write adjoint and AS Wilson loop as products of fundamental and/or antifundamental Wilson loops (e.g. $W_{adj} = W_F \times W_{F^*} + O(1/N^2)$)
- Use symmetry relations between F and F* Wilson loops and their connected correlators

An example: <W⁽¹⁾ W⁽²⁾>_{conn}

Key ingredient is C!

 Clear from our NP proof that C-invariance is necessary. Kovtun, Unsal and Yaffe have argued that it is also sufficient

• U&Y (see also Barbon & Hoyos) have also shown that C is spontaneously broken if the theory is put on $\mathbb{R}^3 \times \mathbb{S}^1$ w/ small enough \mathbb{S}^1 . PE doesn't (was never claimed to) hold in that case

• Numerical calculations (De Grand and Hoffmann) have confirmed this, but also shown that C is restored for large radii and in particular on \mathbb{R}^4

• Lucini, Patella & Pica have shown (analyt.lly & numer.lly) that SB of C is also related to a non-vanishing Lorentz-breaking F#-current generated at small R but disappearing as well as R is increased Uncontroversial formulation of PE? Provided that C is not spontaneously broken, the C-even bosonic sector of QCD_{OR} (with N_f Dirac fermions in the 2-index AS or S representation) is planar-equivalent to the corresponding sector of QCD_{Adj} i.e. of QCD with N_f Majorana fermions in the adjoint representation.

Corollary: for $N_f = 1$ and m = 0, QCD_{OR} is planar-equivalent to supersymmetric Yang-Mills (SYM)theory

Some properties of the latter should show up in oneflavour QCD... if N = 3 is large enough.

But PE has even more interesting consequences...

Incidentally...

Irrespectively of PE, it would be interesting to study (unquenched) QCD_{adj} for its own sake, e.g.

- As one varies $N_{\rm f},$ the singlet PS mass should grow like $N_{\rm f}$ & coincide with the singlet S mass at $N_{\rm f}$ =1, m=0
- For N_f=1, m≠0 one should recover the behaviour of SYM when SUSY and Z_{2N} are softly broken (degeneracy of N-vacua is lifted, multiplets split etc.)
- Last but not least: to check volume independence (see below)

SUSY relics in one-flavour QCD

Approximate bosonic parity doublets:

 $m_S = m_P = m_F \text{ in SYM} \Rightarrow m_S \sim m_P \text{ in QCD}$

Looks ~ OK if can we make use of:

i) WV for $m_P (m_P \sim \sqrt{2(180)^2/95} \text{ MeV} \sim 480 \text{ MeV})$,

ii) Experiments for m_s (σ @ 600MeV w/ quark masses)

Lattice work by Keith-Hynes & Thacker also support this approximate degeneracy

Approximate absence of "activity" in certain chiral 2 correlators In SYM, a well-known WI gives $\langle \lambda \lambda(x) \lambda \lambda(y) \rangle = const., \langle \lambda \lambda(x) \lambda \lambda(y) \rangle \neq const.$ PE then implies that, in the large-N limit: $\langle \bar{\Psi}_R \Psi_L(x) \bar{\Psi}_R \Psi_L(y) \rangle = const., \langle \bar{\Psi}_R \Psi_L(x) \bar{\Psi}_L \Psi_R(y) \rangle \neq const.$

Of course the constancy of the former is due to an exact cancellation between intermediate scalar and pseudoscalar states.

The quark condensate in N_f=1 QCD
Using
$$\langle \bar{\lambda} \lambda \rangle_{\mu} = -\frac{9}{2\pi^2} \mu^3 \lambda_{\mu}^{-2} exp\left(-\frac{1}{\lambda_{\mu}}\right) \qquad \lambda_{\mu} = \alpha_s(\mu)N/2\pi$$

and vanishing of quark cond. at N=2, we get
 $\sqrt[5]{\psi}\psi\rangle_{\mu} = -\frac{3}{2\pi^2} \mu^3 \lambda_{\mu}^{-1578/961} exp(-\frac{27}{31\lambda_{\mu}}) k(1/3)$
 $< (g^2)^{12/31} \bar{\psi}\psi > = -1.1k(1/3)\Lambda_{st}^3 \qquad 1\pm 0.3?$
 $\Lambda_{st} = \mu exp\left[-\frac{N}{\beta_0\lambda_{\mu}}\right] \left(\frac{2N}{\beta_0\lambda_{\mu}}\right)^{\beta_1/\beta_0^2}$

N_f=1 condensate "measured"? DeGrand, Hoffmann, Schaefer & Liu, hep-th/0605147 (using dynamical overlap fermions and distribution of low-lying eigenmodes)

Extension to N_f >1 (Armoni, G. Shore and GV, '05)

- Take OR theory and add to it $n_{\rm f}$ flavours in N+N* .
- At N=2 it's n_f -QCD, @ N=3 it's N_f (= n_f +1)-QCD.
- At large N cannot be distinguished from OR (fits SYM β -functions even better at $n_f = 2$: e.g. same β_0)
- Vacuum manifold, NG bosons etc. are different!
- Some correlators should still coincide in large-N limit. In above paper it was argued how to do it for the quark condensate

Volume Independence (KUY 0702.021)

Kovtun, Unsal & Yaffe have made the interesting claim that QCD_{adj} , at small enough mass and unlike YM, QCD_F or QCD_{OR} , suffers no phase transition as an Eguchi-Kawai volume-reduction is performed at large-N.

Reason: adjoint (periodic) fermions help keeping the center symmetry unbroken.

If so, we can get properties of QCD_{adj} at small volume by numerical methods and use them at large volume where the connection to QCD_{OR} can be established (C being unbroken there).

Finally, one would make semi-quantitative predictions for QCD itself (in an interesting range for N_f and quark masses) by extra(inter)polating to N=3.

Bottom line combining PE and VI

Solving QCD_{adj} at infinite N and small volume should provide an $O(1/N_c)$ approximation to QCD with < 6 light flavours

(Some) further developments

Bringoltz & Sharpe (0906.3538)

Found supporting evidence for the KUY conjecture by numerical simulations of QCD on T⁴ with a single Dirac (i.e. 2 Majorana) adjoint fermion(s) N = 8, ... 15, κ = 0.05, ... 0.2 (i.e. around κ = 1/8) Center symmetry looks OK for a single site lattice! see also analytic lattice arguments by: Poppitz & Unsal, 0911.0358 and a review of previous numerical work: Narayanan & Neuberger, 0710.0098

Unsal & Yaffe (1006.2102)

- •Analytic considerations on large-N volume independence of both conformal and confining theories.
- •QCD compactified on $R^{4-k} \times (S^1)^k$ for k = 1,2,3,4 and with a number N_F of adjoint Majorana fermions.
- •In particular: for k = 1 (or 2) discuss center symmetry Z_N (or Z_N^2) and its possible breaking via Wilson lines as a function of the fermion mass m and the size(s) L (L₁, L₂) of the circle(s).
- In confining case with scale Λ : at $\Lambda L \ll 1$ and m=0 volume independence holds for all N_F including SYM (N_F = 1).

- •Interesting observation: in unbroken- Z_N phase the KK modes have spacing 1/NL (instead of usual 1/L) since the non-trivial Wilson lines shift masses in multiples of 1/NL. Some KK modes could be necessary at large N (even for very small ΛL) in order to recover the infinite-V theory. • @ L << 1/NA semiclassical, abelian conf., no VI •@ L >> 1/NA quantum, non-abelian conf., VI •Semiclassical analysis sometimes unreliable. E.g. k=2 with frozen values of the Wilson lines one would break Z_N^2 but quantum effects can lead to tunneling among the different center-symmetry-related semiclassical vacua and fully restore the symmetry.
- •Q: What happens to KK spacing in that case?

A 2D toy model (see also J.Wosiek's talk)

- •D. Dorigoni, J. Wosiek and myself have considered (1010.1200) the dimensional reduction of D=4, N=1 SYM theory down to 2D with the hope that, in the large-N limit, it could reproduce the uncompactified theory.
- •Besides, the model could be interesting per-se and actually several variations of it have been considered in the past.
- •In the case at hand the model has a (2,2) SUSY with 2 bosons and 2 fermions all in the adjoint of SU(N).
- •We have performed a LC gauge-LC quantization of the system and compactified LC space on a circle while preserving the full SUSY.

• The system can be studied numerically by diagonalizing the finite-dimensional LC Hamiltonian, finding eigenvalues and eigenvectors, and by taking eventually the large L limit checking convergence to finite values.

•In principle this can be done for the full Hamiltonian but, for the moment, it was only carried out for a truncated version where only the leading IR terms are kept.

These neatly cancel for colour singlets and lead to a nice string picture for the multiparton bound states with the expected string tension between pairs of neighbour partons along the single-trace of the large-N limit.
In this approximation the parton number p is conserved.

p=2 wave-functions in LC position space

Energy eigenvalues versus average distance

p=3 wave-functions in LC position space

Approximate (2,2) SUSY between p=2 and p=3 spectra

K=∞

- •All this looks very encouraging but then people (e.g. Armoni) asked whether these features survive when we consider the full Hamiltonian, in particular terms that mix different numbers of partons.
- •Naively one might expect small mixing effects but there is a definte chance that, instead, massless fermionic and bosonic loops completely change the IR dynamics e.g. by screening the confining potential (cf. topological expansion at large N_F).
- •Here the phase transition may occur at a small value of the parton masses.
- •Large-N Feynman diagrams can be interpreted either way.

pairwise confining potential

mixing or screening?

NB: wiggly lines are NOT physical partons

Conclusions

- Almost 40 years after the idea of large-N came into particle physics we are still in search of the true string theory it should correspond to for confining gauge theories (we know the fake one it led to!).
- Much more progress has been made instead in connection with non-confining SUSY gauge theories such as in the AdS/CFT correspondence (with possible applications to the QCD QG-plasma in the strongcoupling regime).

- In the last decade new ideas have emerged that might eventually provide a practical implementation of the large-N program.
- In particular, the combination of ASV's planar equivalence and KUY's volume independence may allow to compute QCD properties (modulo 1/N corrections) in a physically interesting range of N_F and quark masses using small-lattice computations at large-N.
- Estimating the size of 1/N corrections (both for VI and for PE) should come next.

A question from my 2008 talk

How come that lattice calculations become more and more complicated as we increase N when the actual dynamics should become simpler? There should be some way to approach directly the large-N limit even numerically...

...but I'm probably too naive!