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About a week ago I viewed a simulcast of Richard Strauss’s
Capriccio at the Met with Renee Fleming in the role of the
countess.
The opera was written in 1942, a quite interesting year in
Europe.
Tone and word came up already in 1786 in the title of an one
opera act by Antonio Salieri [the victim of “Amadeus” by Peter
Shaffer, a play first performed in 1979 and later made into a
movie]:
Prima la musica e poi le parole
I’ll take my cue from Salieri’s title.
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My obsession I

In lieu of an introduction I shall take the couch and tell you
about my personal obsession.
In the 60’s one tried to guess the S-matrix of strong interactions
on the basis of unitarity and analyticity. One required a maximal
form of analyticity, based on the principle that all singularities of
the scattering amplitudes in the on-shell, analytically continued,
Lorentz invariants be either a direct consequence of a physical
channel or, else, removable by extracting some kinematic
factor.
No non-trivial guess was found in space-time dimensions
higher than 2 [scattering on a line is too constrained
kinematically]. Progress was made by finding an iterative
scheme, the starting point of which still was highly non-trivial
and needed a guess. From that starting point the S-matrix
could be argued to emerge after an infinite number of iterations
organized in the procedure of dual unitarization.
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My obsession II: Large N
One still needed a guess to get started, but this time there was
a success in the form first found by Veneziano, and soon
generalized. The unitarization program became the topological
expansion in “critical” string theory.
Consider, for concreteness, pure SU(N) YM. Believe Mike
Teper and others who tell you that confinement holds in the
large N limit in the ’t Hooft sense, in the continuum limit as
constructed from lattice field theory. Take all correlation
functions of all local gauge singlet observables. For each such
correlation function take the leading, non-trivial term in the ’t
Hooft expansion in 1/N2.
Collect all this information and make it a starting point for a
topological expansion as explained by ’t Hooft at the Feynman
perturbative level, but accept it beyond that.
Question: Does this starting point obey the maximal properties
that were postulated of the starting point (ZWR formerly the
NRA) in the 60’s ?
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My obsession III: Large N phase transitions.
Zero width of resonances, residue factorization and, perhaps,
Regge asymptotics, hold in the leading 1/N2 limit.
Is everything else the S-matricists postulated for the ZWR an
exact property of the leading terms in 1/N2 ? Careful, a simple
argument leads to the conclusion that at N =∞ all Regge
trajectories are exactly linear: Unlikely to be true.
Charles Thorn, for example, has offered an answer: NO.
I am too young (!) to have earned the right to make a guess but
tend more to a NO then to a YES. My reason is that the large N
limit often produces new singularities, present only as a result
of the expansion in 1/N. It has become common to call these
singularities “large N phase transitions”. Typically, the
singularity occurs at some intermediate scale.
For finite but large N, the dependence on N near a would-be
singularity involves unusual powers, N�, albeit that � often is
rational: The standard 1/N expansion is at best asymptotic and
may miss some information about the full finite N theory.
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My obsession IV: Large N and the RG

The theory is constructed by a continuum limit from a well
defined lattice model. The limiting behavior is explained
postulating a RG. The central assumption of the RG is that
individual infinitesimal coarsening steps (“slice integrals”) can
be defined so as to preserve generic analyticity step by step.
Non-analyticities arise only as a consequence of infinite
iteration of infinitesimal steps. However, at N =∞, the number
of integration variables in the slice integrals diverges and this
central assumption can easily fail then. So, one more source of
potential nonanalyticity is added when N =∞.
This may even be good news: the N =∞ non-analyticity could
happen at just one point in the iteration and be of a simple,
“random matrix” type. Maybe one just needs to add a “large N”
universality, operating alongside with ordinary RG universality,
governing the planar continuum limit.
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My obsession V: A scenario
It is possible then that a large N phase transition separates
particle-like ’t Hooft – planar scattering processes from
Regge-like processes in a nonanalytic way.
I do not have evidence for such a large N nonanalyticity in an
analytically continued, on-shell, scattering amplitude. I do have
evidence for such a large N nonanalyticity in some basic
Euclidean-space, non-local observable.
I repeat: my scenario is not defeatist. On the contrary, I hope
that the large N transition is simple and has a universal
character. I hope this universality produces an approximate
starting point of the 1/N expansion, valid for all scales, on both
sides of the transition. Having the freedom of two different
regimes, connected in a well understood manner, might be a
simplification. These are dreams.
My talk is about reality: one example of a large N phase
transition in large N QCD, involving Euclidean space-time
Wilson loops, whose universality I claim we understand.
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Large N transition in Wilson loops I

Because of asymptotic freedom, parallel transport round a
closed curve in SU(N) pure gauge theory [with the �-parameter
set to zero] is believed to be close to identity for small curves,
and far from identity for large curves.
Parallel transport is identified by a set of N angles, constrained
to sum to a multiple of 2�. These angles are the phases of the
eigenvalues of the parallel transport matrix. In the context of
Euclidean field theory this is a fluctuating object, constrained to
SU(N).
The set of eigenvalues fluctuates and individual eigenvalues
repel kinematically. When we imagine a simple smooth curve
being shrunk, the eigenvalues associated with it all feel a
dynamical force pushing them toward unity. In the infinite N
limit one expects that the balance between these two forces
would produce a nonanalytic single eigenvalue density.
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Large N transition in Wilson loops II

For small loops the density has support on a small arc centered
at unity, while for large loops the entire unit circle is covered,
almost uniformly. For a fixed loop shape, there will be a sharply
defined size at which a large N phase transition occurs. It is
plausible to view the critical size as identifying a crossover
between short distance and long distance dynamics.
It also seems plausible that in the vicinity of that size, the fixed
shape loop would have a universal dependence on scale and N
for N ≫ 1. Thus, one may be able to make some specific exact
statements about basic gauge invariant observables in the
short distance – long distance crossover regime of SU(N) four
dimensional gauge theory at N large enough !
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The observable

We need an observable that is sensitive to more than a Wilson
loop operator trace in the fundamental, Wf ; this means more
representations must enter, Wr .
A minimal set of representations containing complete
confinement information consists of all totally antisymmetric
representations of SU(N). The Wr ’s for these representations
are collected into a generating function given by:

ON(C, y) ≡ ⟨det
(

ey/2 + e−y/2Ωf (C; x)
)
⟩

where the Wilson loop operator matrices are defined by

Pei
∮ x
C Ar ⋅dx ≡ Ωr (C; x)

ON does not depend on the point x . Wr = 1
d(r)⟨trΩr ⟩, with d(r)

the dimension of r .
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A convenient representation of the observable

Define a “partition function”, Z(C, y), by

Z(C, y) =

∫
[dA�][d ̄d ]e

− 1
2g2

∫
d4x tr[F 2

��(x)]
e
∫ l

0 d� ̄(∂−A−�) 

The parametrization of the curve is fixed by (dx�/d�)2 = 1 and
l is the length of the curve. Further, A = iA�(x(�))(dx�/d�),
� = −y/l and the Grassmann variables obey anti-periodic
boundary conditions when going round the curve.

ON(C, y) = Z(C, y)/Z

⟨det(ey/2 + e−y/2Ωf )⟩ = Z(C, y)/Z = a0 + a1y2 + a2y4 + ...

Z is the partition function in the absence of the curve and the
fermions on it.
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Binder’s cumulant

log[Z(C, y)/Z(C,0)] = 1 + M2y2/2 + M4y4/24 + ...

The nonzero cumulants are:

M2n = ⟨

[
1
l

∫ l

0
d� ̄ (�)

]2n

⟩c�=0

We can think of 1
l

∫ l
0 d� ̄ (�) ≡ m as a magnetization.

Binder’s cumulant is given by:

ℬ =
M4

M2
2

ℬ = 6
[
! − 1

2

]
! =

a0a2

a2
1
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Smearing
We need to renormalize our operator. A convenient globally
applicable operator renormalization is by smearing:

∂A�/∂s = D�(A)F��(A)

with A�(s = 0, x) = A�(x).
Motivated by many lattice field theory papers, Narayanan and I
introduced continuum smearing in 2006, because it had the
above elegant form, and it has proven to be a malleable tool,
preserving the advantages established by many lattice
practitioners over many years; apparently, some think smearing
needs reinvention.
Smearing takes care of ultraviolet divergences specific to the
operator, leaving the intrinsic UV divergences of the action to
be dealt with by another regularization which can be a
nonperturbative lattice method or any perturbative continuum
method. The regularized operator is made out of A�(s, x) with
s > 0. s has dimensions of length squared.
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An example of smearing: circular loop I

At leading order in the YM coupling g2
0 the smeared Wilson loop

average for a circle of radius R is

W (1)
r (R, s) = 1−

g2
0

2
C2(r)

∮
dx�

∮
dy�D0(x − y , s)

where ∂sD0(x , s) = 2∇2
xD0(x , s) = − 1

32�2s2 exp
[
− x2

8s

]
. C2(r) is

the quadratic Casimir of r .
The dilatation invariance of the action ensures that the
exponent is a function of the dimensionless ratio t = s

R2 and the

answer is W (1)
r (R, s) = exp

[
−g2

0
2 C2(r)f (t)

]
with

f (t) = −1
2

+
1
4t

e−
1
2t

[
(1 + 2t)I0

(
1
2t

)
+ I1

(
1
2t

)]
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An example of smearing: circular loop II

For large t : f (t) = 1
32t2 − 1

96t3 + ....

For small t : f (t) = 1
2
√
�t

(
1−
√
�t + 3t

4 + . . .
)

.
The leading term is a perimeter term, rendered finite for finite R
and s > 0. The next term is a pure number, the single piece of
the answer which is independent of R. It only depends on the
shape of the loop and not on its scale.
As defined, f (t) is positive for all t > 0 and monotonically
decreasing to zero with increasing t . This makes the quantity in
the exponent negative resulting in W (1)

r (R, s) ≤ 1 as befitting
the average of a unitary matrix. Note however that the constant
piece has the opposite sign. In general, getting rid of the
perimeter divergence using a regularization based on
analyticity has a tendency to violate the unitarity inequality
W (1)

r (R, s) ≤ 1.
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RG improved PT and Burgers’ equation I

In four dimensional SU(N) pure gauge theory the expectation
value of a Wilson loop parallel transporter Ωr will have, to order
g4

0 (one loop) in perturbation theory, the form

⟨trΩr ⟩ = d(r)e−
C2(r)

N+1 � . After renormalization with the help of
smearing, to order g4

0 , the above group theoretical structure still
holds. An identical representation dependence holds, this time
exactly, in 2D.
For a relatively small effective coupling g2(l), perturbation
theory would say: � = g2(l)(N + 1)F (�a, l2/s), where F is a
function of dimensionless loop parameters: shape – �a, and
smearing – l2/s. g2(l)N depends on l in the usual manner
dictated by asymptotic freedom, vanishing as l → 0. Common
sense implies that � > 0 would increase monotonically with l at
fixed �a and l2/s even beyond perturbation theory.
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RG improved PT and Burgers’ equation II
We define a map from the variable l , measuring the overall
scale of the loop in 4D to �N(l) not from the Wr , but rather by
!4D

N [C(�a,S(l), l)] = !2D
N (�N(l)). The latter definition could be

used even if the r -dependence of Wr in 4D differs from 2D. S(l)
is a fixed function defining the amount of smearing s = S(l),
which goes as a constant times l2 for small l , but violates
scaling for larger l . We focus on varying l at a fixed set of �a’s
and a fixed functional form of S.
�N(l) approaches �∞(l) quite rapidly, point-wise at all l in a
range that includes at least a sizable neighborhood of � = 4.
�N(l) and the limiting function �∞(l) are all smooth in l .
For reasonably large N, because of the uniformity of the large
N limit on �N(l) we can replace �N(l) by �∞(l) without altering
the singular large N properties. The postulate of universality
means that for the vicinities of the critical scale and y = 0, for
N ≫ 1, we may replace O4D

N (C, y), by O2D
N (�∞(l), y).
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RG improved PT and Burgers’ equation III
We now describe the two dimensional large N singularity.
To bring out the N dependence we define

�N(y , �) = − 1
N

∂

∂y
log [ON(�, y)]

We are actually interested in �N more than in ON .
It is straightforward to show, as a consequence of the
r -dependence, that �N(y , �) satisfies Burgers’ equation:

∂�N

∂�
+ �N

∂�N

∂y
=

1
2N

∂2�N

∂y2

The initial condition on �N(y , �) is �N(y ,0) = −1
2 tanh y

2 .
Asymptotically, for large � we have, �N(y ,∞) = −1

2 tanh Ny
2 .

Burgers’ equation in the inviscid limit (N =∞) with the � = 0
initial condition above produces a singularity as a function of y
at y = 0, when � reaches the value 4.
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Shock formation visualized
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RG improved PT and Burgers’ equation IV

From Burgers’ equation:

∂

∂�

[
1

∂�N/∂y ∣y=0

]
= 3!N(�)− 1

2

The shock wave is easy to understand from Burgers’ equation:
!∞(�) is equal to 1/2 for 0 < � < 4 and to 1/6 for 4 < � . As �
increases from zero, the RHS stays equal to unity. The inverse
slope increases from −4 at unit slope in � . For � → 4−, the
inverse slope becomes 0−, that is a discontinuous jump in �N
takes place. After the jump the RHS becomes zero and the
slope no longer changes. The infinite jump at y = 0 persists for
all � > 4.
The main point is that �4D

N [C(�a,S(l), l)] for l ∼ lc presents a
similar shock wave structure.
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RG improved PT and Burgers’ equation V

Some consequences of Burgers’ universality:

limN→∞

[
N−3/2 a1

a0

∣∣∣
�=4

]
= 1

8

√
3
2

1
K ,

limN→∞

[
N−3/2 a2

a1

∣∣∣
�=4

]
= 1

24

√
3
2K , K ≡ 1

4�Γ2 (1
4

)
≈ 1.046

limN→∞ [!N ∣�=4] = 1
3K 2 ≡ !c ≈ 0.3647

limN→∞

[
N−1/2 d!N

d�

∣∣∣
�=4

]
= −1

6

√
3
2K (K 2 − 1) ≈ −0.0201

The N dependence of the a-ratios reflects the large N
separation between the roots of ON(C, y) on the imaginary
y -axis near y = 0 and at � ∼ 4 where it goes like N−

3
4 . The N

dependence of the � derivative at � ∼ 4 reflects the mean field
character of the “magnetic” exponent.
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Numerical objectives

To test our hypothesis about Burgers universality in 4D we wish
to:

▶ Show that indeed �N(l) has a continuum limit consistent
with asymptotic freedom and the critical regime �N(l) ∼ 4
naturally falls at weak to strong crossover scales.

▶ Confirm by independent tests that the large N dependence
is governed by the exponents 3/4 and 1/2.

Our statistical errors are small, but we have not yet tested
sufficiently for systematic effects.
To check for the continuum limit we studied a sequence of
square Wilson loops of side L = 3,4,5,6,7 at N = 19 for
inverse ’t Hooft couplings 0.348 ≤ b ≤ 0.373.
To check for the large N exponents we looked at the eigenvalue
spacing at -1 close to criticality and at !4D

N there for
N = 19,29,47.
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Approach to continuum limit I: raw data

0.350 0.355 0.360 0.365 0.370
b

0.20

0.25

0.30

0.35

0.40

Ω

Largest loops rightmost. y -axis is !. x axis is b. N = 19. Data
points plus cubic spline interpolation.
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Approach to infinite N: analytical 2D

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
b

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Ω
(b

,N
)

N = 17,23,29,37,41,47,∞. Need a very large N to see the
jump. b is the 2D ’t Hooft gauge coupling. Plot shows
analytically known functions. Picking the same N and locally
shifting and stretching or compressing the x-axis produces, for
each line of raw data, a fragment of the analytical curve.
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Approach to continuum limit II

-2.0 -1.5 -1.0 -0.5
Log

Lloop
2

Lc
2

3

5

6

7

Τ

Largest loops rightmost. y -axis is � . Lc(b) :

Lc(b) = 0.26
(

11
48�2bi(b)

)51/121

e
24�2bi (b)

11

where bi(b) = b ⟨trΩplaq⟩
N . Here we mapped b → Lc(b) where

Lc(b) ∼ 3/4 fm in QCD units. We also mapped, for each fixed

lattice loop size Lloop, !4D
N → �N(log

L2
loop

L2
c(b)

), setting N = 19.
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Approach to continuum limit III: linear extrapolation

-1.5 -1.0 -0.5
Log

Lloop
2

Lc
2

2

3

5

6

7

Τ

The bottom rightmost curve is obtained by extrapolating all the
data above it linearly in 1/L2 at fixed physical scale L/Lc(b).
1/L2 is an order a2 correction where a is the lattice spacing.
The coefficient of the a2 term is roughly linear in
log[(L/Lc(b))2]. On the dashed horizontal line !N would attain
the critical value !∞ for N = 19. Note the large N correction
(analytically calculated) separating the dashed line from 4,
showing large 1/N effects (already in 2D).
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Approach to continuum limit III: example of linear
extrapolation

0.01 0.02 0.03 0.04 0.05 0.06
Lloop

- 2

4.0

4.5

Τ

Log@HLloop�LcL^2D=-0.75

Although we see a quite linear behavior, the magnitude of the
correction relative to the continuum value is quite large.
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Continuum limit

In summary, there is little doubt that �N(l) has a nontrivial
continuum smooth limit as a function of physical loop size l
[Lc(b) ∼ 3/4 fm in SU(3) terms] and this holds from small loops
and through a scale where the large N phase transition occurs.
Some less reliable data (not shown) confirms this for N = 29.
The point-wise convergence of �N(l) to �∞(l) is rapid, while the
buildup of the shock wave singularity in O2D,4D

N is slow.
In short, there is a large N phase transition of the type we
expected in continuum SU(N) gauge theory, for Wilson loops
renormalized by smearing.
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The critical exponents of N I: 3/4
This exponent was responsible for the large N scalings
predicted for the a-coefficient ratios in the critical regime. It
comes from the expected average level spacing at eigenvalues
∼ −1 at criticality. We extract direct estimates for the latter from
the data we generate: more precisely, we compute the average
length �g of the arc connecting two consecutive eigenvalues on
the unit circle which has −1 in its interior. For 6× 6 loops and
for !N ≈ !c we found N3/4�g = 7.60 for 47, 7.96 for 29 and
8.36 for 19. If we just fitted log �g to log N we would have gotten
a slope of 0.85. However, the theory actually predicts, at
criticality, the numerical value of the zeros of O(C, y) on the
imaginary y axis that are nearest to y=0 as some number times
N−3/4. That prediction fits the number at 47 very well – we
suspect that the accuracy of the prediction is accidental: It is
not exactly true that the zeros give �g ; rather this holds only in
an approximate sense. In any case, the exponent of N is
corroborated to be 3/4.
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The critical exponents of N II: 1/2
This exponent enters the slope of ! at criticality. Taking the
derivative of a cubic spline interpolation to !N at !c for 6× 6
loops with respect to log(L/Lc)2 for N = 19,29,47 and
least-square fitting the logarithms of these slopes to log N gave
a power of 0.58; within errors this is consistent with an
exponent of 1/2. Unlike in the case of the 3/4-exponent, in this
case a large N non-universal amplitude enters, and there is no
way to get a direct estimate for the number, except perhaps, for
a situation that the smearing is chosen in such a manner that
the critical regime lies in the perturbative domain. Such a
choice is possible, but the necessary perturbative computation
has not been yet carried out: it is fairly difficult. Our data was
taken in a regime that might be within the reach of perturbation
theory, but we do not know this for sure.
For both exponents, varying the definition of “criticality” by order
1
N terms (which can be motivated in various ways) one can get
closer to 1/2 and 3/4.

Burgers universality in four-dimensional SU(N) Yang-Mills theory at large N 31/32 ,



The main question

It could be that the pre-QCD S-matrix postulates on hadronic
processes do not match precisely the planar limit. There is no
doubt that the latter really is well defined. One possibility is that
the large N limit induces some non-analyticities of “statistical”
origin, which relieve the system from the extremely tight
constraints imposed by analyticity, crossing, unitarity and
simultaneous Regge behavior in all channels and, at the same
time, hard high momentum behavior. I have been searching for
the right observables where the mechanism which relaxes the
constraints can be identified for a long time, and today I
described one candidate.
In general, I think it is important to identify this “violation of
S-matrix basic principles” in the planar limit. This might show
what exactly it is that limits the nonlinear sigma–mode–based
effective string theory approach to the “soft regime” of planar
QCD from extending to short distances.
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