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• Supersymmetric CFTs with 4 real SUSIES (N=2 in 3D, or N=1 in 4D) 

have a conserved U(1) R-symmetry that sits in the same supermultiplet as 

the stress-energy tensor.

In a general interacting SCFT this symmetry receives quantum corrections 

and the quantum numbers associated with it become non-trivial functions 

of the parameters of the theory.

• The computation of the exact non-perturbative form of this symmetry is 

an important problem in field theory.

Such exact knowledge can be used to determine the anomalous scaling 

dimensions of chiral operators, trace SUSY RG flows (hence a significant 

part of the topology/geometry of field theory space), test dualities, etc...



• In 4D this problem was solved by Intriligator and Wecht ’05 with the use 

of a-maximization:

The exact U(1) R-symmetry in 4D N=1 SCFTs maximizes `a’ 

(a = the coefficient of the Euler density in the conformal anomaly).

In terms of ‘t Hooft anomalies 

• Alternatives to a-maximization:

(a) τRR-minimization: 

the exact U(1) R-symmetry minimizes the coefficient of the 2-point function 

applies to any dimension, but hard to compute exactly...

a =
3

32

�
3TrR3 − TrR
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τRR

(2π)d
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(x− y)2(d−2)
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(b) Z-minimization: applies to AdS/CFT (Martelli, Sparks and Yau ’05)

- dual AdS space: AdSd+1 x Y2n-1, Y2n-1 Sasaki-Einstein manifold

the exact U(1) R-symmetry minimizes the Einstein-Hilbert action on Y2n-1

It can be shown that ``τRR-maximization = Z-minimization’’ 

(Barnes et al’05)

Applies to general spacetime dimension, but requires a weakly curved AdS 

dual.

• In the last couple of years large classes of 3D N=2 SCFTs have been 

identified (constructed as Chern-Simons-Matter (CSM) theories).

Until recently it was unclear practically how to determine the exact U(1) 

R-symmetry in these theories.
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ZS3 = e−F , F =
1

2
(F + F)

F-maximization in 3D SCFTs
& recent developments

• The proposal of Jafferis (1012.3210)

the exact U(1) R-symmetry in 3D SCFTs maximizes the free energy F of 
the theory on S3  

F is extensive in the dof of the system. 

It can be computed exactly using localization techniques
(Kapustin-Willett-Yaakov ’09, Hama-Hosomichi-Lee ’10, Jafferis ’10)

Some care needs to be taken when coupling the SUSY theory with 
curvature. Doing things properly requires the introduction of extra 
couplings between the matter fields and curvature. These couplings are 
determined by the choice of R-symmetry.
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• In this way F becomes a function of the trial R-charges.

• Assuming that the R-symmetry does not mix with accidental flavor 

symmetries we can use the weak coupling formulation of the theory to 

compute F using localization techniques. For a CSM theory with gauge 

group G and chiral superfields in reps Ri one finds (after localization and 

appropriate regularization) a matrix integral:

ZS3 =

� �

Cartan

du eiπTru
2

det
Adj

(sinh(πu))
�

Chirals in rep Ri

det
Ri

�
e�(1−∆i)+iu)

�

�(z) := −z log
�
1− e2πiz

�
+

i

2

�
πz2 +

1

π
Li2

�
e2πiz

��
− iπ

12
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• The argument for F-maximization uses 2 steps:

(i) Z depends holomorphically on the combinations                    

(mj are real mass parameters).

(ii) The one-point function                        is a real number.

• These are plausible arguments but do not constitute a rigorous proof.

• Happily, it has been observed that this proposal passes a number of 

impressive non-trivial tests:

(1) Reproduces known perturbative results (Jafferis ’10, Amariti ’11).

(2) Reproduces Z-minimization (Herzog et al ’10, Martelli-Sparks ’11, 

Cheon-Kim2 ’11, Jafferis et al ’11)
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 (3) Verifies proposed Seiberg-like dualities 

(Kapustin ’11, Willett-Yaakov ’11)

We will now discuss a qualitatively different situation.

One of its characteristic features will be that as we increase the coupling a 

number of fields hit the unitarity bound and successively decouple from the 

rest of the theory.

F-maximization can in principle fail in such situations. It is interesting to 

explore if it does and how...
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An+1 CSM theory

The theory of interest is:

    N=2 Chern-Simons at level k with gauge group G=U(N) coupled to one 
    chiral superfield X in the adjoint representation (NO superpotential)

• Important information about this theory can be obtained by studying the 
superpotential deformations

1-adjoint CSM theory
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Â CSM theory ⊕ Wn+1 = TrXn+1 , n = 1, 2, . . .

Â CSM theory



It is convenient to study these theories in the large-N ‘t Hooft limit

• It is believed (Gaiotto, Yin ’07) that the     theory is exactly 

superconformal at the quantum level at any value of the coupling λ.

At weak coupling the R-symmetry can be determined perturbatively and 

assigns R-charge 

to the chiral superfield X.

• No holographic description of this theory in supergravity is expected.

Cannot appeal to AdS/CFT for any information about this theory.

We would like to know the full (non-perturbative) dependence of R on λ.

N, k → ∞ , λ =
N

k
= fixed

Â

R(λ) � 1

2
− 2λ2 +O(λ4) , λ � 1
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• There are regimes along the λ-line where the superpotential deformations

are relevant and drive the theory to a new IR fixed point: the An+1 theory.

• From a D-brane construction we learn that:

(i) the superpotential deformation Wn+1 lifts the supersymmetric vacuum 

when  

(ii) the theory exhibits a Seiberg-like duality:    

NS5  :    0 1 2 3 4 5
(1,k) :    0 1 2 [3,7] 8 9
D3    :    0 1 2 6

n NS5

Nc D3

(1,k)

x6

Wn+1 =
gn+1

n+ 1
TrXn+1

N > nk (equivalently in
�
t Hooft limit λ > n)

U(N)k with Wn+1 ∼ U(nk −N)k with Wn+1

λ ↔ n− λ

can be argued also 
directly in field theory
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• This information has important implications for the undeformed    theory.

(1) The fact that Wn+1 can lift the supersymmetric vacuum at arbitrarily 

large integer values of λ implies that the R-charge decreases (with increasing 

λ) towards 0.

(2) More specifically, there has to be a sequence of critical couplings

where each time one of the chiral operators TrXn+1 becomes marginal. By 

definition 

Â

0 = λ∗
2 = λ∗

3 = λ∗
4 < λ∗

5 < · · · < λ∗
n < λ∗

n+1 < · · ·

R(λ∗
n+1) =

2

n+ 1
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(3) The generic operator TrXn+1 must become marginal before it becomes 

capable of lifting the SUSY vacuum at λ=n. This implies

(4) The existence of a ``conformal window’’ for Seiberg-like duality implies

(5) At λ=λ*
4(n+1) the operator TrXn+1 hits the unitarity bound, becomes free 

and decouples from the rest of the theory. At that point we can no longer use 

it to deform the theory without destabilizing the SUSY vacuum (F-term 

SUSY breaking). Hence, spontaneous SUSY breaking must occur before 

this point: 

λ∗
n+1 < n , R(n) <

2

n+ 1

λ∗
n+1 <

n

2
, R

�n
2

�
<

2

n+ 1 assuming R(λ)
is monotonic
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n < λ∗
4(n+1) ,

1

2(n+ 1)
< R(n)
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Summary

In the     theory the following inequalities are expected to hold:

At weak coupling TrX is already free and decoupled. As we further increase 

the coupling more and more of the chiral ring operators TrXn+1 hit the 

unitarity bound and decouple. At strong coupling there is a sequential 

decommissioning of the bottom part of the chiral ring.

Â

�
n− 3

4

�
≤ λ∗

n+1 <
n

2

1

2(λ+ 1)
≤ R(λ) <

2

λ+ 1
, λ = 1, 2, . . .

R(λ) <
2

2λ+ 1
, λ =

1

2
, 1,

3

2
, . . .

Seiberg-like duality
imposes more constraints

(see below)



F = − log
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iπN
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N�
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log sinh2(πtij) +
N�
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Ii ≡
i

λ
ti +

1

N

�

j �=i

�
coth(πtij)−

(1−R) sinh(2πtij) + tij sin(2πR)

cosh(2πtij)− cos(2πR)

�
= 0 , i = 1, 2, . . . , N

F-maximization puzzles
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What does F-maximization have to say about all this?

• We are instructed to maximize the free energy

• We computed this function (and maximized) in the large-N limit using the 
saddle point approximation. This entails solving the algebraic equations 

at a saddle point configuration



• In general, the ti’s that solve these equations are complex numbers. 

• In lack of a better strategy we solved these equations numerically.

• Practically we introduce a ficticious time coordinate τ and solve the 

differential equations

With suitably chosen coefficient a the solution converges very quickly to the 

equilibrium configuration we are looking for.

• Implemented this approach with the use of Mathematica for various values 

of N. At N=100 the numerical result seems to approach the large-N 

asymptote within a few percent.
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 A typical distribution of the eigenvalues ti in the complex plane.

(this particular plot was obtained for N=100, λ=1, R=0.225) 
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 R(λ) after F-maximization 
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no obvious violation of the bounds

the operators TrXn+1 decouple 
right above λ=n
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• Checks

The numerical code reproduces very nicely the perturbative result. In fact, 

at leading order in λ the eigenvalue distribution is (Minwalla et al ’11)

The numerical result verifies this behavior.

We have written independently two different numerical codes (in 

Mathematica and Fortran) that reproduce the same result.

We have explored a wide range of initial conditions for the τ-differential 

equations and parameters a.

In all cases we obtain numerically similar results.
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• There are no obvious violations of the bounds for                 .  

• However, the results are inconsistent with the Seiberg-like duality of VN 

’08. That duality predicts the following set of equations

These equations imply an oscillatory feature that is not observed.

• Possible implications:

(a) More dominant saddle points modify this result.

(b) The F-maximization recipe should be modified.

(c) The Seiberg-like duality of VN ’08 does not hold.

21

F
�

2

n+ 1
,λ

�
= F

�
2

n+ 1
, n− λ

�
, λ ∈ (λ∗

n+1, n− λ∗
n+1) , n = 1, 2, . . . ,

λ ∼ O(1)



• If such violations are really present should they be taken seriously?

As we increase the coupling more and more operators hit the unitarity 

bound and decouple creating new accidental symmetries. The first operator 

that decouples non-perturbatively is TrX2 at λ~1. It is not surprising that F-

maximization in its current form can fail in such cases.

Recall what happens in 4D with a-maximization. In similar cases (e.g. in 4D 

1-adjoint SQCD) when fields decouple one is instructed to subtract the 

anomalies of the decoupling fields from a and maximize the remaining 

contributions (Kutasov, Parnachev, Sahakyan ’05).

Puzzle: In 4D 1-adjoint SQCD N2 dof decouple (mesons). In our CSM 

example order 1 dof decouple. How can these have a sizable effect in the large-N 

limit at small enough ‘t Hooft coupling?
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Amusing speculation

The R-charge obtained from F-maximization remains in the vicinity of the 

curve              .

We anticipate this feature to persist for any λ. Similar feature observed also 

in 4D 1-adjoint SQCD.

It is tempting to take this one step further. If 

is an exact property of the theory it implies that:

(i) R(λ) oscillates indefinitely in the vicinity of the curve              passing 

through the above points at integer values of λ.

(ii) R asymptotes at large λ to the curve       .

1

2(λ+ 1)

∆
�
TrXn+1

� ���
λ=n

=
1

2
⇔ R(n) =

1

2(1 + n)

1

2(λ+ 1)

1

2λ



Perspectives

We have identified a CSM theory with complex enough dynamics that can 
pose as a useful testing ground for new non-perturbative techniques in 3D 
QFT, like F-maximization.

A combination of field and string theory techniques can be used to pose 
constraints on the theory beyond the perturbative regime.

Open problems:

1) Should clarify the main message that comes from the numerical 
evaluation of the free energy using the matrix integral of Jafferis

Does the dominant saddle point contribution obey the constraints 
imposed by SUSY breaking and Seiberg-duality, analytic checks ???
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2) Should the matrix integral of Jafferis be modified? 

How does one implement such modifications?

3) In order to probe the effects of decoupling fields it will be interesting to 

consider the full CSM analog of 1-adjoint SQCD, namely

U(NC) Chern-Simons theory at level k coupled to:

- 1 chiral superfield in the adjoint

- NF chiral superfields in the fundamental

- NF chiral superfields in the anti-fundamental.

To simplify things it is interesting to consider the Veneziano-like limit

k, NC , NF → ∞ , λ =
NC

k
, x =

NC

NF
fixed
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Using information from string theory (VN ‘08, ’09) one can set some 

constraints on the R-charge function RX for the adjoint superfield X, e.g. 

now

RX(λ,x)  is presumably a monotonically decreasing function of λ at fixed x 

that approaches at strong ‘t Hooft coupling a limiting lowest value

No corresponding information is currently available for RQ, the R-charge 

functions for the quark multiplets.  

�
n−3
4

�
x

x−
�
n−3
4

� < λ∗
n+1 <

nx

x− n
, n ≤ [x]− 3

4

1

2([x] + 2)
< RX,lim <

2

[x] + 1
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4)  CSM theories with 2 adjoint chiral superfields (+ additional matter) are 

also interesting.

In 4D a-maximization has led to an intriguing picture of 2-adjoint N=1 

SCFTs that appear to admit a mysterious ADE classification. A web of RG 

flows connects different members of this classification.

In previous work VN ’09 we provided evidence for a similar structure in a 

subclass of 3D CSM SCFTs. F-maximization can help solidify and extend 

this picture.

It can also help find non-trivial evidence for the new Seiberg-like dualities 

proposed in VN ’09.

The web of RG flows can be used to test the proposed F-theorem.
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Example:  Seiberg-Brodie-like duality in Dn+2-CSM theories VN ’09.

Electric Theory
U(Nc) N=2 CSM theory coupled to 

2-adjoints (X,X’) + NF pairs of (anti)fundamentals
+ superpotential W=Tr XX’2+Tr Xn+1

Magnetic Theory
U(3n(NF+k)-Nc) N=2 CSM theory coupled to 

2-adjoints (Y,Y’) + NF pairs of (anti)fundamentals
+ superpotential W=Tr YY’2+Tr Yn+1+mesonic contributions
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