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Generalities

@ Holography gives a lot interesting results for four-dimensional large-N
gauge theories at strong coupling

@ The best understood cases are conformal field theories, but the
duality goes beyond them

@ Some popular examples of non-CFT duals are: Witten QCD /
Sakai-Sugimoto, Klebanov-Strassler, Maldacena-Nunez, N = 2*
SYM, N = 1* SYM, ...
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Generalities

@ In non-conformal models usually there is an “interesting” IR theory
and an “exotic” UV theory

@ At weak coupling UV and IR physics decouple:

__ 1
/\IR ~ AUVe AAyv)

@ However, at strong coupling they don't: Ajg ~ Ayy
@ Deep in the IR this problem could be avoided (Q? < A%, T < Ajg)
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A simple non-conformal theory

Let us choose as exotic theory N =4 SU(N) SYM (well-defined UV fixed
point) and as interesting theory N' =2 SU(N) SYM
@ The field content of N' =4 SYM is:
- Gauge field
- Gauginos in 4 of SU(4)r
- Scalar fields in 6 of SU(4)r
@ The N =2* SYM theory has the same field content but with a mass
m for a hypermultiplet (4 real scalars and a Dirac fermion)

o SU(4)r — SU(2)r x U(1)

C. Hoyos (UW) 4 /30



Comments about N =2* SYM

At low energies E < m, the theory flows to N =2 SYM (A,, A\q, )

At very low energies E < Ag the effective IR theory is determined by
the position on moduli space (eigenvalues of ®). Generically U(1)V-1
free theory.

At low temperatures T < Ajg the moduli space is lifted, but singular
points with additional massless degrees of freedom may become the
true IR theory. E.g. Paik and Yaffe '09 for N’ =2 SU(2) SYM

IR theories can be quite exotic themselves. In ' =2 SYM dyons of
charges (g;, hj) become massless at singular points. If

hi-q2—h2-q1 #0mod N

Then the IR becomes a strongly coupled CFT

[Seiberg-Witten],[Argyres-Faraggi],[Klemm, Lerche, Theisen, Yankielowicz],[Argyres-Douglas]
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Describe the low T regime of (large-N, strong coupling) N = 2* SU(N)
SYM using holography J

@ The IR theory is not a CFT

@ Bonus: we will learn about A/ = 4 SYM with spontaneous breaking of
conformal invariance
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AdS/CFT duality

d = 10 type 1B SUGRA in AdSs x S° dual to N = 4 SU(N.) SYM:
o N.—o0, A>1

0 g~ 1/N.—0, L2/a/ ~V/A>1

@ The duality relates Kaluza-Klein modes on the S° with protected
operators of dimension A depending on the momentum

@ Momentum in S° = SO(6) ~ SU(4)gr R-charge
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AdS/CFT duality

Dimensional reduction on S°:

@ Consistent truncation: only keep lowest Kaluza-Klein modes

@ d =10 type IIB SUGRA in AdSs x S°> — d =5 N = 8 gauged
SUGRA in AdSs

@ 50(6) gauge charge = SO(6) R-charge

@ mass in AdSs < dimension A
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Scalar fields and dual operators

Scalar fields dual to marginal and relevant operators

m2L2| SO(6) | A O

—4 |20 |2 o (PP — 50;)

-3 |10+10 | 3 | tr(AuApy) + hec

0 1 4 | tr(F?4iFF+---)
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Holographic flows

Einstein + scalar d = 5 maximal supergravity action:

_ 1! s, [1p 1 2 V(X
S= 47TG5/d X [4.‘? 22(3)(,) V(X))

@ V/(X;) has a local maximum at X; = 0 = AdSs solution dual to
N =4 SYM

o Classical solutions with X; # 0 are dual to A/ = 4 with relevant
deformations or vevs

@ If the classical solution ends at a different critical point of V/(X;),
there is an IR fixed point (not necessarily stable)

@ Otherwise the solution is singular and the IR theory is not conformal
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Dual to holographic flows

Conformal invariance is broken

Explicit: mass terms for components of chiral multiplets

(]

(]

Supersymmetry broken generically
Two chiral multiplets with the same mass: N = 2 supersymmetry
(N =2* SYM)

Scalar operators have a vev depending on the mass

(]

(4

Spontaneous: scalar operators acquire a vev but masses are zero

©

For A/ > 2 the vev of scalar operators determine a point in Coulomb
moduli space
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Coulomb moduli space

Moduli space N = 4 theory: [®;,®;] =0, M = RN /W
Parametrization with eigenvalues: ®; = diag (gol(.l), e ,cp’(.N))

@ Large-N limit: distribution of eigenvalues on R®

1 N
o(y) = 5 2007 — &)

a=1

@ o(y) = distribution of D3 branes in transverse space

@ Near-horizon limit:

6 -
ds® = H™ 12y, dstdx” + HY/2 Y “(dy')?, H(7) = /dﬁwwf’fv';%|4

i=1
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Holographic flows and Coulomb moduli space

N = 4 theory:
@ Eigenvalue distribution o,, 5 > n > 1 has support on n-dimensional
ball of radius A
@ Symmetry: SO(6) — SO(n) x SO(6 — n)
o Typical distance between eigenvalues: Agp ~ A/N/"
N = 2* theory:
@ Two complex scalars massive: moduli space reduced to M = CN /W

o Distribution of eigenvalues on a disc: Agp ~ A/vV/N
@ Distribution of eigenvalues on a line: Ap ~ A/N

Eigenvalues on a line: Wigner's semicircle distribution
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Singularities in holographic flows

Gubser’s classification of singularities:the good, the bad and the naked

@ (Zero temperature) solutions
ds® = e2A(r)77de“dx” +dr?, X = Xi(r).

@ Asymptotic AdSs boundary: as r — oo, A(r) ~ r/L, X; ~ constant
@ Null energy condition: A”(r) < 0 (analogous to “c-theorem”)

o Singularities: A(r) — —cocatr=rny

eZA:(r—ro)ﬁ, o< \/g
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Thermodynamic behavior of singularities

N =1, (F) other

X / 4 Coulomb vacua?
§/3 (®) branch
N=1,
. massive
s V43 T+ @ vacua
1

(A) Coulomb T

/

B ) Coulomb
23 + branch T /3 4 — branch
. N =2,
2/V15 + (i) EO g;‘!; 6 1 (E) supports
~ finite 77
| Nt
0 -+ AdSs conformal 0+ (© conformal
: (iv) S~1% vacuum
One Two Three
massive  massive massive
chiral chirals chirals

from hep-th /0002160

6 o0 1/V/6 2/V15

~ T8 S
S~ T5 B 2—-302" (1|3 4 5
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More thermodynamics of N = 2*

Buchel’s calculation of speed of sound and bulk viscosity:

<

n
015}
010}
005}

e
‘ ‘ ‘ ‘ 1 5
002 004 006 008 (g —cs )

from 0708.xxxx

1 ¢ 1

Bulk viscosity = reduction from 5d CFT [Buchel, Skenderis]

C. Hoyos (UW) 16 / 30



low T (large-N, strongly coupled) N/ = 2* SYM flows to an effective 5d

Given a linear distribution of eigenvalues in the Coulomb moduli space, at
CFT, while N' =4 SYM flows to a 6d CFT. J
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Proof for N/ = 4 dual

The metric dual to the of SO(5) symmetric configuration is

2 2141/6 wogv dr? 2
d54,1:(gr) H nu,,dx dx +W’ H:1+ﬁ

Near-horizon limit u? = 1/(g?(r) — oo

2 (glu)™*/3 4 5
dspp =~ T N dxt dx” 4 ?du
Scalar potential
15g2
Vo~ —Tgx{ X ~ 2(glu)?/?
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Proof for N/ = 4 dual

Define
dsg 1 = e 2?dsy 1 + €3(dyf + dy3),

Then, with
X=e? u=2glu, "= 2glx"

we have an Ad57 metric
2 1 S SV ay b ~2
d567] = =5 nlLI/dX dax¥ + (iabdy dy =+ —g du

and an uplifted action with scalar potential

15g2
2
Same as d =7 N =2 SUGRA!
Uplift to d = 11 SUGRA = near-horizon limit of a stack of M5 branes

Cvetic, Gubser, Lu, Pope '00

Vig=7 = —
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Proof for N/ = 2* dual

The metric of duals to configurations in the Coulomb branch of NV = 2*
SYM |S [Pilch,Warner]

4 dc? p*
d 2 —_ k2
4,1 g2 p8(c? — 1)? TR ST

P=eb — i (2 —1)[ ;'°g<c_1>}

c+1

1w dxdx”

¢ = cosh(2x)

At low temperatures the geometry approaches the v = 0 geometry
(enhangon)
In the near-horizon limit u — oo

X ~2u, €% ~2/(3u), e* ~ 21 /3ky~4/3 /33

Then, the metric becomes

3\3 2k ,
dsi1 ~ <2> u=8/3 [g du?® + < 3 ) My dx* dx ]
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Proof for N/ = 2* dual

Define
ds5271 — e 2% dsf’l + 892452, (1)

Then, with 91 = 2(3a+x), ¢2=2(a—x), ¢1=—¢+log(4/3)/4 we
have an AdSe metric

ds2 33/2

4 2k\? 1
517 53 —du® + () N dxt dx” + gdxg] .

g2 3

and an uplifted action with scalar potential (gg = 3m and g62 = /3g?)
1 _ _
Va=6(®) = ~3 {ggew +4gsme™*? — m’e 6ﬂ

Same as maximally supersymmetric solution of d = 6 F(4) SUGRA!
Near—horizon ||m|t Of D4/D8/O8 intersection in type “A Cvetic, Gubser, Lu, Pope '00
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Large-N equivalences for IR theories

N = 4: (2,0) theory on M5 brane (6d SCFT) J

N =2*: E; = SU(2) theory on D4/D8/08 (actually D4/08) intersection
(5d SCFT) J

It turns out we can understand why the 5d CFT should be equivalent to a
D4/D8/08 intersection
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A large-N equivalence for A = 4

@ Holographic dual to N' = 4 SYM: AdSs x S°

@ Supersymmetric orientifold projection:
AdSs x S° — AdSs x S°/Z,+0T7 plane+Ns = 4 D7 branes
@ SU(4)r — SU(2)r x SU(2)
@ Same geometry: correlation functions in the common sector are the

same = large-N equivalence

@ Holographic dual to orientifold: N' =2 USp(N) SYM-+antisymmetric
hypermultiplet+Nf = 4 fundamental hypermultiplets

@ Fundamental hypermultiplets become massive in the Coulomb branch

W= QXQ
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A large-N equivalence for N = 2*

@ Mass in N/ =4 SYM for adjoint hypermultiplet (V' = 2* SYM)=
Mass in orientifold theory for antisymmetric hypermultiplet

(1,1) C 20/, (3,1)_, C 10

o SU(4)r — SU(2)gr x U(1) or SU(2)g x SU(2) — SU(2)r x U(1)
@ Holographic dual of N = 2* can be interpreted as
AdSs x S°/Z,+07+Ns = 4 massive D7 branes

@ T-dual version: D4/D8/08
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AdS5 x S5 AdSS5 x S5/22+07+D7
(N=4 SU(N) SYM) (N=2 USp(N) Nf=4)

J flow \ orientifold l flow

SO(5) symm  "Enhangon" =y massive D7s (Nf=0)
l uplift (N=2* SYM) luplift
AdS7-M5 (6d CFT) AdS6-D4/08 (5d CFT)

What is the meaning of the uplift in the field theory?
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Deconstruction

Let us start with the A = 4 theory...

@ Wigner's semicircle distribution of eigenvalues ¢ € (—A, )

2N
N N2
() = 3 @
@ Change variables ¢ = Ax/N, x € (=N, N)
2 x2
p(x) = —y/1— N2
@ Large-N limit: x € (—o0, )
2
p(x) = p
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Deconstruction

Keep N > 1 finite but focus around ¢ =0

Separation between eigenvalues: Ap = % (%)

U(1)(N=1) gauge theory with 1/2 BPS vector multiplets of mass
My, = ng’A (%) n=1,23,...

same spectrum as tower of Kaluza-Klein modes (up to n ~ O(N))

Effective length

e ¢ ¢

e ©

4N
J ~ N3/2 )\YM —1/2/\—1
" gymh (Avw)
@ SL(2,7Z) symmetry of N = 4: magnetically charged states with mass
A s
" 2gy/w (N)’ n T
@ KK modes for a circle of effective length

4 N
L6:g%~Nl/2()\YM)1/2/\’1

C. Hoyos (UW) 27 / 30



Deconstruction

@ Dyonic states: KK momentum along both circles

@ Spectrum of BPS states: six-dimensional theory compactified on a
torus with 16 supercharges

@ BPS spectrum of (2,0) theory on single M5 brane arkani-Hamed, Cohen, Kaplan,

Karch

o N> 1implies Ls > Lg > A1

C. Hoyos (UW) 28 / 30



Deconstruction

For the N/ = 2* theory
@ Same kind of arguments go through (A = m)
@ There is no SL(2,Z) duality: only one additional extra dimension
@ Five-dimensional theory with 8 supercharges and coupling

_ dgypm N s
km

g52 = gymls

@ If g5 is the bare coupling, there should be a conformal fixed point in
this limit [Seiberg '96]

@ No flavor: E; = SU(2) 5d SCFT
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Thank you!

C. Hoyos (UW) 30/ 30



