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Generalities

Holography gives a lot interesting results for four-dimensional large-N
gauge theories at strong coupling

The best understood cases are conformal field theories, but the
duality goes beyond them

Some popular examples of non-CFT duals are: Witten QCD /
Sakai-Sugimoto, Klebanov-Strassler, Maldacena-Nunez, N = 2∗

SYM, N = 1∗ SYM, ...

C. Hoyos (UW) 2 / 30



Generalities

In non-conformal models usually there is an “interesting” IR theory
and an “exotic” UV theory

At weak coupling UV and IR physics decouple:

ΛIR ∼ ΛUV e
− 1

λ(ΛUV )

However, at strong coupling they don’t: ΛIR ∼ ΛUV

Deep in the IR this problem could be avoided (Q2 ≪ Λ2
IR , T ≪ ΛIR)
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A simple non-conformal theory

Let us choose as exotic theory N = 4 SU(N) SYM (well-defined UV fixed
point) and as interesting theory N = 2 SU(N) SYM

The field content of N = 4 SYM is:
- Gauge field
- Gauginos in 4 of SU(4)R
- Scalar fields in 6 of SU(4)R

The N = 2∗ SYM theory has the same field content but with a mass
m for a hypermultiplet (4 real scalars and a Dirac fermion)

SU(4)R → SU(2)R × U(1)
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Comments about N = 2∗ SYM

At low energies E ≪ m, the theory flows to N = 2 SYM (Aµ, λα, Φ)

At very low energies E ≪ ΛIR the effective IR theory is determined by
the position on moduli space (eigenvalues of Φ). Generically U(1)N−1

free theory.

At low temperatures T ≪ ΛIR the moduli space is lifted, but singular
points with additional massless degrees of freedom may become the
true IR theory. E.g. Paik and Yaffe ’09 for N = 2 SU(2) SYM

IR theories can be quite exotic themselves. In N = 2 SYM dyons of
charges (qi , hi ) become massless at singular points. If

h1 · q2 − h2 · q1 6= 0modN

Then the IR becomes a strongly coupled CFT
[Seiberg-Witten],[Argyres-Faraggi],[Klemm, Lerche, Theisen, Yankielowicz],[Argyres-Douglas]
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Goal:

Describe the low T regime of (large-N, strong coupling) N = 2∗ SU(N)
SYM using holography

The IR theory is not a CFT

Bonus: we will learn about N = 4 SYM with spontaneous breaking of
conformal invariance
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AdS/CFT duality

d = 10 type IIB SUGRA in AdS5 × S5 dual to N = 4 SU(Nc) SYM:

Nc → ∞, λ ≫ 1

gs ∼ 1/Nc → 0, L2/α′ ∼
√

λ ≫ 1

The duality relates Kaluza-Klein modes on the S5 with protected
operators of dimension ∆ depending on the momentum

Momentum in S5 = SO(6) ≃ SU(4)R R-charge
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AdS/CFT duality

Dimensional reduction on S5:

Consistent truncation: only keep lowest Kaluza-Klein modes

d = 10 type IIB SUGRA in AdS5 × S5 → d = 5 N = 8 gauged
SUGRA in AdS5

SO(6) gauge charge = SO(6) R-charge

mass in AdS5 ↔ dimension ∆

C. Hoyos (UW) 8 / 30



Scalar fields and dual operators

Scalar fields dual to marginal and relevant operators

m2L2 SO(6) ∆ O

−4 20′ 2 tr
(

Φ{iΦj} − 1
6δijΦ

2
k

)

−3 10 + 10 3 tr (λ{aλb}) + h.c .

0 1 4 tr (F 2 + iF F̃ + · · · )
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Holographic flows

Einstein + scalar d = 5 maximal supergravity action:

S =
1

4πG5

∫

d5x

[

1

4
R − 1

2

∑

i

(∂Xi )
2 − V (Xi )

]

.

V (Xi ) has a local maximum at Xi = 0 ⇒ AdS5 solution dual to
N = 4 SYM

Classical solutions with Xi 6= 0 are dual to N = 4 with relevant
deformations or vevs

If the classical solution ends at a different critical point of V (Xi ),
there is an IR fixed point (not necessarily stable)

Otherwise the solution is singular and the IR theory is not conformal

C. Hoyos (UW) 10 / 30



Dual to holographic flows

Conformal invariance is broken

Explicit: mass terms for components of chiral multiplets

Supersymmetry broken generically

Two chiral multiplets with the same mass: N = 2 supersymmetry
(N = 2∗ SYM)

Scalar operators have a vev depending on the mass

Spontaneous: scalar operators acquire a vev but masses are zero

For N ≥ 2 the vev of scalar operators determine a point in Coulomb
moduli space
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Coulomb moduli space

Moduli space N = 4 theory: [Φi , Φj ] = 0, M = R
6N/W

Parametrization with eigenvalues: Φi = diag (ϕ
(1)
i , · · · , ϕ

(N)
i )

Large-N limit: distribution of eigenvalues on R
6

σ(~y) =
1

N

N
∑

a=1

δ(~y − ~ϕ(a))

σ(~y) = distribution of D3 branes in transverse space

Near-horizon limit:

ds2 = H−1/2ηµνdxµdxν + H1/2
6

∑

i=1

(dy i )2, H(~y) =

∫

d6w
σ(~w)

|~y − ~w |4
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Holographic flows and Coulomb moduli space

N = 4 theory:

Eigenvalue distribution σn, 5 ≥ n ≥ 1 has support on n-dimensional
ball of radius Λ

Symmetry: SO(6) → SO(n) × SO(6 − n)

Typical distance between eigenvalues: ∆ϕ ∼ Λ/N1/n

N = 2∗ theory:

Two complex scalars massive: moduli space reduced to M = C
N/W

Distribution of eigenvalues on a disc: ∆ϕ ∼ Λ/
√

N

Distribution of eigenvalues on a line: ∆ϕ ∼ Λ/N

Eigenvalues on a line: Wigner’s semicircle distribution
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Singularities in holographic flows

Gubser’s classification of singularities:the good, the bad and the naked

(Zero temperature) solutions

ds2 = e2A(r)ηµνdxµdxν + dr2, Xi = Xi (r).

Asymptotic AdS5 boundary: as r → ∞, A(r) ≃ r/L, Xi ≃ constant

Null energy condition: A′′(r) ≤ 0 (analogous to “c-theorem”)

Singularities: A(r) → −∞ at r = r0

e2A ≃ (r − r0)
4

3σ2 , σ ≤
√

8

3
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Thermodynamic behavior of singularities
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More thermodynamics of N = 2∗

Buchel’s calculation of speed of sound and bulk viscosity:
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Bulk viscosity = reduction from 5d CFT [Buchel, Skenderis]
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Conjecture

Given a linear distribution of eigenvalues in the Coulomb moduli space, at
low T (large-N, strongly coupled) N = 2∗ SYM flows to an effective 5d
CFT, while N = 4 SYM flows to a 6d CFT.
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Proof for N = 4 dual

The metric dual to the of SO(5) symmetric configuration is

ds2
4,1 = (gr)2H1/6ηµνdxµdxν +

dr2

(gr)2H1/3
, H = 1 +

ℓ2

r2

Near-horizon limit u2 = 1/(g2ℓr) → ∞

ds2
4,1 ≃ (gℓu)−4/3

u2

[

ηµνdxµdxν +
4

g2
du2

]

Scalar potential

V ≃ −15g2

2
X 2, X ∼ 2(gℓu)2/3
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Proof for N = 4 dual

Define
ds2

6,1 = e−2φds2
4,1 + e3φ(dy2

1 + dy2
2 ),

Then, with
X = e−φ, ũ = 23/2gℓu, x̃µ =

√
2gℓxµ.

we have an AdS7 metric

ds2
6,1 =

1

ũ2

[

ηµνdx̃µdx̃ν + δabdyadyb +
4

g2
dũ2

]

and an uplifted action with scalar potential

Vd=7 = −15g2

2

Same as d = 7 N = 2 SUGRA!
Uplift to d = 11 SUGRA ⇒ near-horizon limit of a stack of M5 branes
Cvetic, Gubser, Lu, Pope ’00
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Proof for N = 2∗ dual

The metric of duals to configurations in the Coulomb branch of N = 2∗

SYM is [Pilch,Warner]

ds2
4,1 =

4

g2

dc2

ρ8(c2 − 1)2
+ k2 ρ4

c2 − 1
ηµνdxµdxν

ρ6 = e6α = c + (c2 − 1)

[

γ +
1

2
log

(

c − 1

c + 1

)]

c = cosh(2χ)

At low temperatures the geometry approaches the γ = 0 geometry
(enhançon)
In the near-horizon limit u → ∞

e2χ ≃ 2u, e6α ≃ 2/(3u), eA ≃ 21/3ku−4/3/31/3

Then, the metric becomes

ds2
4,1 ≃

(

3

2

)4/3

u−8/3

[

4

g2
du2 +

(

2k

3

)2

ηµνdxµdxν

]
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Proof for N = 2∗ dual

Define
ds2

5,1 = e−2φ2ds2
4,1 + e6φ2dx2

6 , (1)

Then, with φ1 = 1
2(3α + χ), φ2 = 1

2(α − χ), φ1 = −φ + log(4/3)/4 we
have an AdS6 metric

ds2
5,1 =

33/2

2u2

[

4

g2
du2 +

(

2k

3

)2

ηµνdxµdxν +
1

9
dx2

6

]

.

and an uplifted action with scalar potential (g6 = 3m and g2
6 =

√
3g2)

Vd=6(φ) = −1

8

[

g2
6 e2φ + 4g6me−2φ − m2e−6φ

]

Same as maximally supersymmetric solution of d = 6 F (4) SUGRA!
Near-horizon limit of D4/D8/O8 intersection in type IIA Cvetic, Gubser, Lu, Pope ’00
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Large-N equivalences for IR theories

N = 4: (2, 0) theory on M5 brane (6d SCFT)

N = 2∗: E1 = SU(2) theory on D4/D8/O8 (actually D4/O8) intersection
(5d SCFT)

It turns out we can understand why the 5d CFT should be equivalent to a
D4/D8/O8 intersection
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A large-N equivalence for N = 4

Holographic dual to N = 4 SYM: AdS5 × S5

Supersymmetric orientifold projection:
AdS5 × S5 → AdS5 × S5/Z2+O7 plane+Nf = 4 D7 branes

SU(4)R → SU(2)R × SU(2)

Same geometry: correlation functions in the common sector are the
same ⇒ large-N equivalence

Holographic dual to orientifold: N = 2 USp(N) SYM+antisymmetric
hypermultiplet+Nf = 4 fundamental hypermultiplets

Fundamental hypermultiplets become massive in the Coulomb branch

W = QiXQ̃i
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A large-N equivalence for N = 2∗

Mass in N = 4 SYM for adjoint hypermultiplet (N = 2∗ SYM)=
Mass in orientifold theory for antisymmetric hypermultiplet

(1, 1)0 ⊂ 20′, (3, 1)−2 ⊂ 10

SU(4)R → SU(2)R × U(1) or SU(2)R × SU(2) → SU(2)R × U(1)

Holographic dual of N = 2∗ can be interpreted as
AdS5 × S5/Z2+O7+Nf = 4 massive D7 branes

T-dual version: D4/D8/O8
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Road map

What is the meaning of the uplift in the field theory?
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Deconstruction

Let us start with the N = 4 theory...

Wigner’s semicircle distribution of eigenvalues ϕ ∈ (−Λ, Λ)

ρ(ϕ) =
2N

πΛ2

√

Λ2 − ϕ2

Change variables ϕ = Λx/N, x ∈ (−N, N)

ρ(x) =
2

π

√

1 − x2

N2

Large-N limit: x ∈ (−∞,∞)

ρ(x) =
2

π
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Deconstruction

Keep N ≫ 1 finite but focus around ϕ = 0
Separation between eigenvalues: ∆ϕ = Λ

2

(

π
N

)

U(1)(N−1) gauge theory with 1/2 BPS vector multiplets of mass

mn =
gYMΛ

2

( π

N

)

, n = 1, 2, 3, . . .

same spectrum as tower of Kaluza-Klein modes (up to n ∼ O(N))
Effective length

L5 =
4N

gYMΛ
∼ N3/2(λYM)−1/2Λ−1

SL(2, Z) symmetry of N = 4: magnetically charged states with mass

Mn =
Λ

2gYM

( π

N

)

, n = 1, 2, 3, . . .

KK modes for a circle of effective length

L6 =
4gYMN

Λ
∼ N1/2(λYM)1/2Λ−1
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Deconstruction

Dyonic states: KK momentum along both circles

Spectrum of BPS states: six-dimensional theory compactified on a
torus with 16 supercharges

BPS spectrum of (2, 0) theory on single M5 brane Arkani-Hamed, Cohen, Kaplan,

Karch

N ≫ 1 implies L5 ≫ L6 ≫ Λ−1
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Deconstruction

For the N = 2∗ theory

Same kind of arguments go through (Λ = m)

There is no SL(2, Z) duality: only one additional extra dimension

Five-dimensional theory with 8 supercharges and coupling

g2
5 = g2

YML5 =
4gYMN

km
→ ∞

If g5 is the bare coupling, there should be a conformal fixed point in
this limit [Seiberg ’96]

No flavor: E1 = SU(2) 5d SCFT
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Thank you!
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