
QCD string and scattering amplitudes

by

Yuri Makeenko (ITEP, Moscow)

Based on:

Y. M. Phys. Rev. D 83, 026007 (2011) [arXiv:1012.0708 [hep-th]]

Phys. Lett. B 699, 199 (2011) [arXiv:1103.2269 [hep-th]]

Extending: Y. M., Poul Olesen

• Phys. Rev. Lett. 102, 071602 (2009) [arXiv:0810.4778 [hep-th]]

• Phys. Rev. D 80, 026002 (2009) [arXiv:0903.4114 [hep-th]]

• Phys. Rev. D 82, 045025 (2010) [arXiv:1002.0055 [hep-th]]

• JHEP 08, 095 (2010) [arXiv:1006.0078 [hep-th]]

P. Buividovich, Y.M. Nucl. Phys. B 834, 453 (2010)
[arXiv:0911.1083 [hep-th]]



QCD string vs fundamental string
———————————–

• QCD string is formed at distances larger than confinement scale
(by fluxes of the gluon field)

• It can be described by an effective string theory (like ANO vertices)

• Perturbative QCD works at small distances (asymptotic freedom),
the effective string theory works at large distances (confinement)

• Scattering of quark bound states (mesons or baryons) rather than
gauge fields or gravitons

• Massive vector state (ρ-meson) rather than massless vector
=⇒ the need of off-shell amplitudes

• QCD string lives in d = 4 rather than critical dimension 26 or 10
(consistent quantization in d = 4)

• QCD string should describe vast amount of experimental data
(linear Regge trajectories)



Motivations since 1979
———————————– Y.M., Migdal (1979)

QCD string is not Nambu–Goto but the asymptote of large Wilson
loops is universal:

classical string

W (C)
large C∝ e−KSmin(C) =⇒ the area law = confinement

semiclassical correction (bosonic string) Lüscher, Symanzik, Weisz (1980)

W (C)
plane C∝ e

−KSmin(C)+ #
24π

∫
d2w

(
∂a ln

∣∣∣ dzdw

∣∣∣)2
w(z) : UHP ⇒ D

rectangle∝ e−KRT+#
24

πT
R =⇒ the Lüscher term

for rectangle with T ≫ R
# = d− 2 for (bosonic string) Ambjorn, Olesen, Peterson (1984)

De Forcrand, Schierholz, Schneider, Teper (1985)

Universality of the 1/R term owing to Lüscher’s roughening⟨
x2⊥
⟩
∝ α′ log(R2/α′) ≫ α′

Next orders in 1/R are not universal.



Consistent noncritical string
———————————– Arvis (1983)

String quantization is consistent for long string: Light-cone (Virasoro)
quantization of open string with the Dirichlet b.c. (of the length R):

En =

√
(KR)2 +

(
n−

d− 2

24

)
2πK K =

1

2πα′

The spectrum is consistent for

R > Rcritical =

√
d− 2

12K
π

Otherwise =⇒ tachyonic instability.

Lorentz anomaly[
L1i, L1j

]
= −iLij +

(d− 26)

6(p0 +KR)2

∞∑
m=1

m
(
ai−majm − a

j
−maim

)
vanishes in d = 26.

Olesen (1985): 1) the Lorentz anomaly vanishes for long strings.
2) d−2

24 −→ d−2
16 for NS superstring (−→ 0 for R superstring).



Effective string theory
———————————– Polchinski, Strominger (1991)

Closed string winding along a compact direction of large radius R is
described by nonpolynomial action

Seff = 2K
∫

d2z ∂X · ∂̄X −
β

2π

∫
d2z

∂2X · ∂̄2X
∂X · ∂̄X

+ . . . β =
26− d

12
It can be analyzed order by order in 1/R by expanding around the
classical solution

X
µ
cl = (eµz + ēµz̄)R e · e = ē · ē = 0 e · ē = −1/2

It looks like the Liouville action in the Polyakov formulation expressed
(modulo total derivatives and the constraints) via an induced metric

eφind = 2 ∂X · ∂̄X

(in the conformal gauge), which is not treated independently.

This effective string theory has been analyzed using the conformal
field theory technique order by order in 1/R, revealing the Arvis spec-
trum of the Nambu–Goto string in d-dimensions.



Effective string theory (cont.)
———————————–

Conformal symmetry is maintained in noncritical dimension:

δXµ = ϵ(z)∂Xµ −
βα′

4
∂2ϵ(z)

∂̄Xµ

∂X · ∂̄X
+ c.c.

It transforms Xµ nonlinearly and the corresponding conserved energy-

momentum tensor is

Tzz = −
1

α′∂X · ∂X +
β

2

∂3X · ∂̄X
∂X · ∂̄X

+O(R−2)

Expanding around the classical solution Xµ = X
µ
cl + Y

µ
q , we obtain

Tzz = −
2R

α′ e · ∂Yq −
1

α′∂Yq · ∂Yq −
β

R
ē · ∂3Yq +O(R−2)

The central charge is determined by

⟨Tzz(z1)Tzz(z2)⟩ =
d+12β

2(z1 − z2)4
+O

(
(z1 − z2)

−2
)

to be d+12β = 26 and is cancelled by ghosts at any d.



Monte-Carlo data for energy levels
———————————– Athenodorou, Bringoltz, Teper (2010)

3+1 SU(3) LGT: closed winding string (flux tube) of length l = 2πR

En =

√
(Kl)2 +

(
n−

d− 2

24

)
8πK 8 =⇒ 2 for open string

absolutely beautifully describes the lattice calculations
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Figure 20: Energies of the lightest q = 0 excited states in SU(3) at β =
6.0625. States are JPtPl = 0++, N, 2++, ◦, 2−+, ⋆. Solid line is Nambu-Goto,
dotted is universal expansion to O(1/l3), and dashed is expansion to O(1/l)
(Lüscher correction).
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√
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≈ 1.44



Objective of the research
———————————–

Motivation: Consistency of the effective string theory approach in

noncritical dimension d < 26 for long strings.

Question: Whether or not (and if yes then when) is it possible to

apply the effective string theory ideology to consistent calculations of

meson scattering amplitudes in QCD?

Answer: Regge behavior of scattering amplitudes at high energy and

fixed momentum transfer under a few controllable approximations

(nonperturbative stringy effects dominate).

The results are then reliable but cease to be applicable for larger mo-

mentum transfer −t . −2GeV2 (where perturbative QCD dominates).



Contents of the talk
———————————–
• Classical string
– stepwise momentum-space loops
– Douglas’ minimization
– polygonal light-like contour
– induced metric and minimal surface

• Semiclassical fluctuations as the Lüscher term
– mapping UHP onto rectangle
– effective open-string theory and conformal invariance in d < 26
– scattering amplitudes in effective string theory
– Regge behavior and semiclassical Reggeon intercept (d−2)/24
– mean field in effective string theory is exact

• Generalization to off-shell
– reparametrization path integral
– measure on Diff R and Lévy flights
– consistent off-shell amplitudes

• Application to large-N QCD
– meson scattering amplitudes via Wilson loops
– perturbative QCD vs QCD string: energy dependence of αeff(t)

• Conclusion and Outlook



Reparametrization path integral
———————————– Polyakov (1997)

Wilson loop of large size in large-N QCD = string disk amplitude
integrated over reparametrizations of the boundary contour:

W [x(·)] =
∫

Ddifft(s) e
−KS[x(t)]

i.e. over functions t(s) with t′(s) ≥ 0 (string tension K = 1/2πα′).

Douglas algorithm for solving the Plateau problem Douglas (1931)

(finding the minimal surface) is to minimize the boundary functional

S[x(t)] =
1

4π

∫ +∞

−∞

ds1ds2
(s1 − s2)2

[x(t(s1))− x(t(s2))]
2

with respect to reparametrizations t(s) (ṫ(s) ≥ 0).

This representation can be derived for critical strings (bosonic string
in d = 26 or superstring in d = 10).

Area law for asymptotically large C (or very large K) =⇒ a saddle
point in the reparametrization path integral at t(s) = t∗(s).

Zig-zag or backtracking symmetry holds for the minimal area.



Large loops and minimal area
———————————–

Gaussian fluctuations around the saddle-point t∗(s) result in a
pre-exponential factor

W [x(·)] large loops
= F

[√
Kx(·)

]
e−KSmin[x(·)]

[
1+O

(
(KSmin)

−1
)]

,

which is contour dependent

Asymptotic area law is recovered modulo the pre-exponential which
is not essential for large loops.

More subtle effects (such as the Lüscher term) resides in the pre-
exponential factor, coming from fluctuations around t∗(s)

t(s) = t∗(s) +
β(s)

√
KSmin

For a R× T rectangle Y.M., Olesen (2010)

F [rectangle] ∝ eπT/R for T ≫ R

reproducing the Lüscher term for bosonic string in d = 26.



Functional Fourier transformation
———————————– Migdal (1986)

Scattering amplitudes are given by a reparametrization-invariant
functional Fourier transformation

A[p(·)] =
∫

Dx ei
∫
p·dx W [x(·)]

of disk amplitude (to be identified with the Wilson loop)
for piecewise constant momentum-space loop p(t):

p(t) = pi for ti < t < ti+1

ṗ(t) = −
∑
i

∆piδ(t− ti) with ∆pi ≡ pi−1 − pi

representing M momenta of (all incoming) particles.
Then momentum conservation is automatic while an (infinite) volume
V is produced, say, by integration over x0 = xM .

The Fourier transformation of string vertex operators is reproduced:∫
dt p(t) · ẋ(t) = −

∫
dt ṗ(t) · x(t) =

∑
i

∆pi · xi



Momentum-space disk amplitude
———————————–
After the Gaussian path integration (with s-independent determinant)

A[p(·)] =
∫

Ds(t) exp (α′
∫ +∞

−∞
dt1

∫ +∞

−∞
̸ dt2 ṗ(t1) · ṗ(t2) ln |s(t1)− s(t2)|)

It looks like the disk amplitude: scattering amplitude = Wilson loop

provided that

C∗ := xµ(t) =
1

K
pµ(t)

step

smeared

with width εi

Smeared step-wise (with boundary Liouville field φ(ti) for covariance)

pµ(t) =
1

π

∑
i

∆p
µ
i arctan

(t− ti)

εi

εi→0−→
1

2

∑
i

∆p
µ
i sign (t−ti) εi = ε e−φ(ti)

=⇒ polygon with vertices

x
µ
i =

1

K
p
µ
i x

µ
i − x

µ
i−1 =

1

K
∆p

µ
i

where K = 1/2πα′ is string tension.



Wilson-loop/scattering-amplitude duality
———————————–

Similar with WL/SA duality in N = 4 SYM Alday, Maldacena (2007)

Drummond, Korchemsky, Sokatchev (2008)

for Regge kinematical regime with

s ≫ −t & −∆p2i

For −t ≫ −∆p2i it looks like light-like edges

(otherwise simplifications for tachyonic ∆p2i = 1/α′).

2 → 2 kinematics (center-mass frame, u-channel scattering for both

s < 0 and t < 0)

∆p
µ
1 = (E, p,0,0)

∆p
µ
2 = (−E,−p cos θ,−p sin θ,0)

∆p
µ
3 = (E,−p,0,0)

∆p
µ
4 = (−E, p cos θ, p sin θ,0)

scattering angle θ: cos θ =
t

s+ t
, (1− cos θ) =

s

s+ t
.



Douglas’ minimization
———————————–
The minimum of Douglas’ integral is reached for t(s) obeying∫̸

dt1
ẋ(t) · ẋ(t1)

[s(t)− s(t1)]
= 0,

where s(t) denotes inverse to t(s).

For smeared stepwise pµ(t) (resulting in polygonal xµ(t)) Douglas’
minimization is trivially satisfied at intermediate points, when t is not
close to ti’s, because then ẋµ(t) = 0. For t = ti we have

∑
j ̸=i

2∆pi ·∆pj

si − sj
+ π

∑
j

(
∆p2j −

1

α′

)⟨∂G (
sj, sj

)
∂si

⟩
= 0

⟨
G
(
sj, sj

)⟩
=

∫
DdiffsG

(
sj, sj

)
∫
Ddiffs

Lovelace
=

1

π
ln

(sj+1 − sj−1)

(sj+1 − sj)(sj − sj−1)ε

with the reparametrization path integral going over functions obeying
s(ti) = si which are zero modes of the Douglas minimization.

Great simplification occurs for tachyonic edges ∆p2i = 1/α′, but simi-
lar formulas appear for ∆p2i ≫ 1/α′ with t = −∆p21−2∆p1 ·∆p4−∆p24.



Douglas’ minimization (cont.)
———————————–
For ∆p2i light-like (or tachyonic), Douglas’ minimization gives

∑
j ̸=i

∆pi ·∆pj

si − sj
= 0

Only M − 3 from these M equations are independent because of the
PSL(2;R) projective invariance. The minimal surface does not depend
on three values.

For M = 4 we can set s1 = 0, s3 = 1, s4 = ∞ in the usual way =⇒

s2 ∗ =
s

s+ t

— the saddle point of the Veneziano amplitude at large −s,−t.

C∗ bounds the minimal surface of the area

KSmin = α′s ln
s

s+ t
+ α′t ln

t

s+ t

s≫t→ −α′t ln
s

t

whose exponential reproduces the classical Regge behavior of the
scattering amplitude:

A(s, t) = e−KSmin ∝ sα
′t



Minimal surface
———————————–

The minimal surface spanned by the rectangle with stepwise pµ(t) is

given by the harmonic function

Xµ(x, y) =
1

πK

∑
i

∆p
µ
i arctan

(x− si)

y
si = s(ti)
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This minimal surface is depicted for θ = 1.0 (left) and θ = 0.2 (right).



Momentum-space Lüscher term
———————————–

Schwarz–Christoffel map of the upper half-plane onto a rectangle:

ω(z) =
∫ z

s2

dx√
(s4 − x)(s3 − x)(x− s2)(x− s1)

=
2

√
s42s31

F

(√
s31(z − s2)

s32(z − s1)
,

√
s32s41
s42s31

)

R =
2

√
s42s31

K
(√

1− r
)
, T =

2
√
s42s31

K
(√

r
)

where

r =
s43s21
s42s31

sij = si − sj

is the projective-invariant ratio. Therefore,

T

R
=

K
(√

r
)

K
(√

1− r
)

is projective invariant.



Momentum-space Lüscher term (cont.)
———————————–

To calculate the momentum-space Lüscher term, we expand

Xµ(ω1, ω2) = X
µ
cl(ω1, ω2) + Y

µ
q (ω1, ω2),

where X
µ
cl is harmonic and obeys the boundary condition, so Y

µ
q has

the mode expansion

Y
µ
q (ω1, ω2) =

∑
m,n

χµ
mn sin

πmω1

R
sin

πnω2

T

to be substituted in the quadratic part of the action

S(2) =
1

2πα′

∫
d2ω ∂Yq·∂̄Yq+

β

πR2

∫
d2ω

(
∂2Yq · ē

) (
e · ∂̄2Yq

)
+O

(
(R)−3

)

Using the asymptotes for −s ≪ −t =⇒ T ≫ R:

K
(√

r
)
r→1→

1

2
ln

16

1− r
, K

(√
1− r

)
r→1→

π

2
,

it is now clear that each set of modes results in the Lüscher term

πT

24R
=

1

24
ln

16s

t
r = r∗ = 1−

t

s



Semiclassical Reggeon intercept
———————————–
There are (d − 2) such sets of modes for bosonic string, so their
contribution to the intercept of the linear Regge trajectory is

α(0) =
d− 2

24

The expansion of the effective string theory goes for the scattering
amplitude in the parameter(

ln
1

1− r

)−1
=
(
ln

s

t

)−1
,

like it was T−1 for the closed winding string. Therefore, the Regge
behavior

A ∝ eα(t) ln(s/t) is similar to W ∝ e−TV (R)

The semiclassical Regge trajectory of the effective string theory in
d < 26 can be computed for UHP like in Durhuus, Olesen, Petersen (1984)

for the Polyakov string. Now the same result emerges as

α(0) = 1+
d− 26

24
=

d− 2

24



Large-d limit for static potential
———————————– O. Alvarez (1981)

Path integral of the Nambu–Goto string is calculable as d → ∞ by a
saddle-point technique.

Mean values of the induced metric (diagonal σab)

σ0 = ⟨∂0X(z) · ∂0X(z)⟩ , σ1 = ⟨∂1X(z) · ∂1X(z)⟩ ,

and the Lagrange multipliers (diagonal αab)

α0 = ⟨α0(z)⟩ , α1 = ⟨α1(z)⟩

The mean-field action reads for a T ×R rectangle

Smf =
TR

2πα′

(√
(1 + σ0)(1 + σ1)−

1

2
(σ0α0 + σ1α1)

)
−
π(d− 2)

24

T

R

(
α0

α1

)1/2
The first term comes from the classical Nambu–Goto action and the
second one is the semiclassical Lüscher–Symanzik–Weisz term

There are no higher-order terms as (d− 2) ∼ R2/α′ → ∞, when fluc-
tuations of the mean-field values are suppressed.



Large-d limit for static potential (cont.)
———————————–

Minimizing Smf with respect to σ0, σ1, α0, α1, one finds

σ0 = λ(1− 2λ)−1 σ1 = −λ λ =
π2(d− 2)α′

12R2

α0 = (1− 2λ)1/2 α1 = (1− 2λ)−1/2

so at the minimum

Smf∗ =
T

2πα′

√
R2 − π2(d− 2)

6
α′.

Many results indicate this formula to be exact order by order in 1/R.

This apparently means that the mean field turns out to be exact not

only for large d, as usual, but also for any d > 2.

Quite similar to scattering amplitudes after conformal mapping of

rectangle onto upper half-plane.



Mean-field approximation for static potential
———————————–
Similarity with the saddle point in the large-d limit by O. Alvarez (1981)

Classical configuration in world-sheet parametrization:

X1
cl =

ω1

ωR
R X2

cl =
ω2

ωT
T ω1, ω2 ∈ ωR × ωT rectangle

ωR, ωT change under reparametrizations (variational parameters).

The mean-field action (with account for the Lüscher term)

Smf =
1

4πα′

(
R2ωT

ωR
+ T2ωR

ωT

)
−

π(d− 2)

24

ωT

ωR

Minimization with respect to ωT/ωR reproduces the square root(
ωT

ωR

)
∗
=

T√
R2 − π2(d−2)

6 α′
Smf∗ =

T

2πα′

√
R2 − π2(d− 2)

6
α′

For upper half-plane parametrization(
ωT

ωR

)
=

K
(√

r
)

K
(√

1− r
) r =

s43s21
s42s31

= the Grötzsch modulus which is monotonic in r.



Mean-field approximation for scattering amplitude
———————————–
For the scattering amplitude the Mandelstam variables s and t play
the role of T and R:

Smf = α′s ln r + α′t ln(1− r) +
(d− 2)

24
ln(1− r) valid as r → 1

where we have included the associated momentum-space Lüscher
term Janik (2001), Y.M. (2011). Minimizing, we have

r∗ = 1−
α′t+ (d− 2)/24

α′s
which results in the linear Regge trajectory

α(t) =
(d− 2)

24
+ α′t.

It is obtained for large d but is expected to be exact for any d:
• Semiclassical cancellation of reparametrization and ghosts (any d)
• Exact results in d = 26 and d = 2

Quadratic fluctuations around this mean field are stable for α(t) < 0:

α′t < −
d− 2

24



Invariant regularization and Liouville field
———————————–

The Gaussian exponent

− π
∫ +∞

−∞
dt1 dt2 ṗ(t1) · ṗ(t2)G (s(t1), s(t2))

=
∑
k ̸=l

∆pk ·∆pl log |sk − sl| − π
∑
j

∆p2jG(sj, sj)

For an invariant regularization G(sj, sj) involves the Liouville field
Polyakov (1981)

G(si, sj) = −
1

π
ln |si − sj| for |si − sj| ≫ εi, εj

G(sj, sj) −→ Gε(sj, sj) =
1

π
log

1

ε
+

1

2π
φ(sj)

For critical bosonic string (in d = 26): Aoyama, Dhar, Namazie (1986)

A =
∫

Dφ(s)
∫ ∏

m
dsm eφ(sm)/2−πα′∆p2mG(sm,sm) ∏

j ̸=m

|sj − sm|α
′∆pj·∆pm

the path integration over φ(s) — boundary Liouville field decouples
only for tachyonic scalar, massless vector, etc.



Path integrals over reparametrizations
———————————–

The measure on Diff(R)∫
s(τ0)=s0
s(τf )=sf

Ddiffs(τ) · · · = lim
N→∞

∫ sf

s0

N−1∏
j=1

∫ sj+1

s0
dsj

1

(sj+1 − sj)

1

(s1 − s0)
· · ·

is invariant under reparametrizations

s → t(s) , t(s0) = s0 , t(sf) = sf ,
dt

ds
≥ 0

Integration goes over (N − 1) subordinated values

s0 ≤ · · · ≤ si−1 ≤ si ≤ · · · ≤ sN = sf

Discretizing s′ = exp[−φ] that relates reparametrizations to the

boundary value of the Liouville field φ by si − si−1 = exp[−φi] =⇒
∫ sf

s0
Ddiffs · · · = lim

N→∞

N∏
i=1

∫ +∞

−∞
dφi δ

(1)(sf − s0 −
N∑

j=1

e−φj) · · ·

with the only restriction on φi’s given by the delta-function.



Path integrals over reparametrizations (cont.)
———————————–

Regularization of (logarithmically) divergent integral

1

(si − si−1)
−→

1

Γ(δi)(si − si−1)1−δi
all δi = δ

Main integral for the integration at the intermediate point si∫ si+1

si−1

dsi
Γ−1(δi)Γ

−1(δi+1)

(si+1 − si)
1−δi+1(si − si−1)1−δi

=
Γ−1(δi + δi+1)

(si+1 − si−1)
1−δi−δi+1

This is an analogue of the well-known formula∫ +∞

−∞

dsi√
2π

e−(sf−si)
2/2ν1

√
ν1

e−(si−s0)
2/2ν2

√
ν2

=
e−(sf−s0)

2/2(ν1+ν2)√
(ν1 + ν2)

used for calculations with the usual Wiener measure.

The functional limit is when N → ∞ with Nδ → 0:∫ sN=sf

s0
D(N)
diff s =

1

Γ(Nδ)

1

(sN − s0)
1−Nδ

Nδ→0−→ Nδ
1(

sf − s0
)

reproducing the projective-invariant result.



Reparametrizations as Lévy stochastic process
———————————– Buividivich, Y.M. (2009)

What trajectories are typical in path integral over reparametrizations?

Subordinated stochastic process (gamma-subordinator) with PDF

P (∆si) =
1

Γ(δ) (∆si)
1−δ

δ > 0 is a time step

dsf

∫ sf

s0
D(N)
diff s — propagator from s0 to

[
sf , sf +dsf

]
during the time τ = Nδ

Scaling variable

z = τ ln
1

(sf − s0)
=⇒

τdsf(
sf − s0

)1−τ
= dz e−z ,

Scaling with

(sf − s0) ∼ e−1/τ =⇒ Hausdorff dimension=0

supersedes (sf − s0)
2 ∼ τ for the Brownian motion (whose dH = 2).



Sample trajectories in path integral
———————————–

Typical trajectories for the gamma-subordinator (obtained by Metropolis–

Hastings algorithm)
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Lévy’s flights are seen in the right figure.

Their origin is that P (∆si) is very large at small ∆si =⇒ most of

∆si’s are small.

Then some of ∆si has to be large to satisfy the boundary condition.

Hausdorff dimension decreases from 1 to 0 (left to right)
(Horowitz, 1968)



Hausdorff dimension of sample trajectories
———————————–

Hausdorff dimension of the discretized process is determined by its
characteristic function (Lévy–Khintchine)⟨

e−q∆si
⟩
= 1F1(δ, δN ;−q)

as

dH = lim
q→∞

ln
(
−N ln

⟨
e−q∆si

⟩)
ln q
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Hausdorff dimension versus ln(1/δ) (left) from the slope of the lines
(right).
It decreases from 1 for δ & 1 to 0 for δN → 0



Ambiguities of the measure
———————————–

More symmetric discretization of the measure

Ddiffs =
∏
i

dsi
(si+1 − si−1)

(si+1 − si)(si − si−1)
Lovelace choice

(every multiplier is projective invariant).

It is the one which results in the consistent off-shell (Lovelace)

amplitudes with α(0) = (d− 2)/24.

The results do not change if next-to-neighbor discretization

(si+1 − si) =⇒ (si+n − si)/n

=⇒ a continuum limit in spite of the discontinuities.

It looks like different universality classes (with different α(0)).



Consistent off-shell amplitudes
———————————– Y.M., Olesen (2010)

Reparametrization path integral results in

⟨
G
(
sj, sj

)⟩
=

∫
DdiffsG

(
sj, sj

)
∫
Ddiffs

Lovelace
=

1

π
ln

(sj+1 − sj−1)

(sj+1 − sj)(sj − sj−1)ε

With the proper choice of discretization of the measure

(each multiplier is projective invariant)

D(N)
diff s =

N∏
i=1

dsi (si+1 − si−1)

(si+1 − si)(si − si−1)

this gives the scattering amplitude

A(∆p1, . . . ,∆pM)

=
∫

si−1<si

∏
i

dsi
∏
k ̸=l

|sk − sl|α
′∆pk·∆pl

∏
j

(
|sj − sj−1| |sj+1 − sj|

|sj+1 − sj−1|

)α′∆p2j−1

where the integration over si (Koba–Nielsen variables) is inherited

from the path integral over reparametrizations.



Consistent off-shell amplitudes (cont.)
———————————– Di Vecchia, Frau, Lerda, Sciuto (1988)

This is a known off-shell tree string amplitude originally obtained from
the Lovelace string vertex operator (instead of the usual one).
It is consistent off-shell and invariant under PSL(2;R) projective trans-
formations (subgroup of reparametrizations)

s ⇒
as+ b

cs+ d
with ad− bc = 1

For 4 scalars this reproduces projective-invariant off-shell amplitude

A(∆p1,∆p2,∆p3,∆p4) =
∫ 1

0
dxx−α(s)−1(1− x)−α(t)−1,

where α(t) = 1+ α′t – linear Regge trajectory – and

s = −(∆p1 +∆p2)
2, t = −(∆p2 +∆p3)

2

are usual Mandelstam’s variables (for Euclidean metric).

The tachyonic condition α′∆p2j = 1 has not to be imposed. The on-
shell Veneziano tachyon amplitudes is obtained by setting α′∆p2j = 1



Application to QCD
———————————– Y.M., Migdal (1981)

Green’s functions of M colorless composite quark operators

q̄(xi)q(xi) q̄(xi)γ5q(xi) q̄(xi)γµq(xi) q̄(xi)γµγ5q(xi)

are given by the sum over Wilson loops passing via xi (i = 1, . . . ,M)

G ≡
⟨ M∏
i=1

q̄(xi)q(xi)

⟩
conn

=
∑

paths ∋{x1,...,xM≡x0}
J[x(τ)]W [x(τ)]

The weight for the path integration is

J[x(τ)] =
∫

Dk(τ) sp Pei
∫ T
0 dτ [ẋ(τ)·k(τ)−γ·k(τ)]

for spinor quarks of mass m and scalar operators or

J[x(τ)] = e−
1
2

∫ T
0 dτ ẋ2(τ) =

∫
Dk(τ) e

∫ T
0 dτ [iẋ(τ)·k(τ)−k2(τ)/2]

for scalar quarks. τ is the proper time.

The Wilson loop W (C) is in pure Yang–Mills at large N (or quenched).
For finite N , correlators of several Wilson loops are present.



Application to QCD (cont.)
———————————– Y.M., Olesen (2008)

QCD scattering amplitude = functional Fourier transform

A (∆p1, . . . ,∆pM) =
∑

paths

ei
∫ T
0 dτ ẋ(τ)·p(τ) J[x(τ)]W [x(τ)]

for piecewise constant momentum-space loop p(τ) as before.

Substituting the area-law and interchanging the integrals over x(τ)
(Gaussian) and s(τ), we get

A ({∆pm}) ∝
∫ ∞

0
dT T M−1 e−mT

∫ +∞

−∞

dsM−1

1+ s2M−1

M−2∏
i=1

∫ si+1

−∞

dsi
1+ s2i

×
∫

Dk(t) sp P e−iT
∫
dt γ·k(t)/(1+t2)W [x(t) =

1

K
(p(t) + k(t)) ]

For small m and/or large M , the integral over T is dominated by
large T ∼ (M − 1)/m and the path integral over k factorizes:

A ({∆pm}) ∝ W [x(t) =
1

K
p(t)]

It is just the same as the Lovelace-type string amplitude!



Justification of large T as m → 0
———————————–

Path integral over x(τ) (for scalar quarks) can be calculated via

mode expansion xµ(τ) = x
µ
0 +

∞∑
n=1

(
aµn cos

2πτ

T
+ bµn sin

2πτ

T

)
:

∫
x(0)=x(T )

Dx(τ) e−
1
2
∫ T
0 dτ ẋ2(τ)−K

2 ẋ∗G∗ẋ =
∞∏

n=1

[
2π

(
1

T
n2 +Kn

)]−d

ζ-function regularization gives

∞∏
n=1

A = Aζ(0) = A−1/2
∞∏

n=1

n =
√
2π

∞∏
n=1

[
2π

(
1

T
n2 +Kn

)]−d T →0−→ (2πT )−d/2

T →∞−→ Kd/2

Miniconclusion: large T are essential in QCD perturbation theory only

for M > 4, but are essential non-perturbatively:
∫
dT T M−1 e−mT · · ·



Effective ρ-trajectory and pQCD prediction
———————————–

The figure taken from A. B. Kaidalov, hep-ph/0612358

exclusive process

π−p → π0n

It is hard to believe that pQCD reggeization is relevant.



Separation of pQCD and QCD string
———————————–

Reggeization of q̄q in pQCD is due to double logarithms
Kirschner, Lipatov (1983)

T is restricted from above by τmax ∼ 1/K to separate the contribution
from small loops associated with pQCD. It plays the role of an infrared
cutoff in pQCD, rather than a usual transverse mass µ.

With the double logarithmic accuracy:

pQCD ladders =
2I1 (ω ln sτmax)

ω ln sτmax
− 1 ω =

√
g2(t)CF

2π2
≈ .5

g2 ⇒ g2(t) ? because of charge renormalization. Then asymptotically

pQCD ladders ∝ (sτmax)
ω(t)

standard pQCD = τmax = ∞ =⇒ IR regularization by µ.

Wilson loop = either QCD (small loops) or QCD string (large loops)
like either N = 4 SYM or IIB superstring in AdS/CFT.
The total amplitude = pQCD (this one) + QCD string (as before).
At finite s the relative coefficient is of most importance.



pQCD + QCD string effective Reggeon trajectory
———————————–
Simple model of pQCD (small loops) + QCD string (large loops):

A =
2I1

(
0.5 ln(α′s)

)
0.5 ln(α′s)

− 1+R
(
α′s

)0.5+α′t

Plot of the effective Reggeon trajectory (for various s)

αeff(t) =
ln(A/R)

ln(α′s)

R ≈ 20

α′s = 1040
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Experimental data for αρ(t)
———————————– Kennett et al. (1986)
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Brodsky, Tang, Thorn (1993)

two regimes as s → ∞



Conclusion
———————————–

• Regge behavior of QCD scattering amplitudes follows from the
area law. The only approximation is large N . Great simplification
occurs for small m and/or large M (Lovelace-type amplitudes).

• It was crucial for the success of calculations that all integrals are
Gaussian except for the one over reparametrizations which reduces to
integration over the Koba–Nielsen variables.

• Derivation is legible for those momenta ∆pi for which asymptoti-
cally large loops are essential in the sum over C:

KSmin(C∗) = α′|t| ln s
max {|t|,K} i.e. large s and |t| ≪ s.

• The classical string has intercept of the Reggeon trajectory
α(0) = 0 (α(0) ≈ 0.5 from experiment) but is applicable only for
|t| ≫ 1/α′. The mean-field approximation results in α(0) = (d−2)/24.

• 4-point scattering amplitude is valid only for asymptotically large s

and fixed t associated with small angle or fixed momentum transfer.

• When −t ≪ s becomes large, there are no longer reasons to expect
the contribution of large loops to dominate over perturbation theory,
which comes from integration over small loops.



Outlook
———————————–

• Reggeon intercept of ≈ 0.5 has to be obtained, most probably by

accounting for spontaneous breaking of chiral symmetry like in

Fedorov, Simonov (2003)

• Pomeron trajectory with the intercept of ≈ 1 should be obtained

from an annulus amplitude (to be compared with α(t) = 1+d−2
96 +α′t

4
for d = 10) by Janik, Peschanski (2000); Janik (2001)

• relative strength of pQCD to QCD string is to be estimated

(Kaidalov (2006) estimated about 1/1000 for current energies)

• confining nonflat background in the AdS/CFT correspondence may

be relevant to bending of Regge trajectories, seen in experiment,

à la Brower, Polchinski, Strassler, Tan (2007)

• mean-field approximation for other strings (elfin string Migdal (1981))


