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Outline

e Diffusion of large (huge) matrices

@ Non-linear Smoluchowski-Fokker-Planck equations and shock
waves

@ Finite N as viscosity in the spectral flow — Burgers equations

@ Order-disorder phase transition in large N YM theory, colored
catastrophes and universality

@ Shock waves in large N SYM?
@ Chiral shock waves

e Summary
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Motivation
Simplest diffusion — additive Brownian walk of huge matrices
Surfing the shock wave

Motivation

e Matricial (N x N, N ~ c0) analogue of classical probability
calculus (physics, telecommunication, life science itd)

e Large N QFT in 0+0 dimensions (on one space-time point)

@ Building in the dynamics: systems evolve as a function of
some exterior parameters (time, length of the wire, area of the
surface, temperature ...)

e Finding out universality windows where this simplified
dynamics is shared by non-trivial theories

Maciej A. Nowak Spectral shock waves



Motivation

Two probability calculi

Simplest diffusion — additive Brownian walk of huge matrices

Surfing the shock wave

CLASSICAL

@ probability density
distribution
< .o>= [..p(x)dx

e Fourier transform F (k) of
pdf generates moments

@ In F(k) of Fourier tr.
generates additive cumulants

@ Gaussian — Non-vanishing

second cumulant only,
In F(k) = cak?

MATRICIAL (FRV for N = oo)

@ spectral measure of
matrix-valued ensemble
< > = f...P(H)dH

@ Resolvent G(z) = <T1“Z,1H>

@ R-transform generates
additive cumulants
G[R(z)+1/z] =2z

@ Wigner semicircle —
Non-vanishing second
cumulant only, R(z) = Gz
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Motivation
Simplest diffusion — additive Brownian walk of huge matrices
Surfing the shock wave

Spectral observables in RMT (FRV)

o P(H)dH = e NTtV(H) gH =
[T, dxie VS VO], (x — x;)?

@ Jacobian (Vandermonde determinant) triggers interactions
between eigenvalues

@ All nontrivial correlations in the spectral functions reflect this
interaction

e One-point function G(z) = % <TYZEH> =>4 #mk, where
mi = % (TrH*) = [ dxxkp(x)
o Note that —13G(2)|;—xric = p(x)

™
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Motivation
Simplest diffusion — additive Brownian walk of huge matrices
Surfing the shock wave

Inviscid Burgers equation

e Hj — Hjj 4+ 6H;; with < 0H;; =0 > and
< (0Hj)? >= (1 + &)t

@ For eigenvalues x;, random walk undergoes in the "electric
field” (Dyson) < 0x; >= E(x;)dt =3, (ﬁ) ot and
< (6x;)? >= ot

@ Resulting SFP equation for the resolvent in the limit N = oo
and 7 = Nt reads 0,;G(z,7) + G(z,7)9,G(z,7) =0

@ Non-linear, inviscid complex Burgers equation, very different
comparing to Fick equation for the "classical” diffusion
Orp(x,7) = %axxp(va)
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Motivation
Simplest diffusion — additive Brownian walk of huge matrices
Surfing the shock wave

Inviscid Burgers equation - details

@ SFP eq:
P({x},t) = 3 22; 0:P({x}, t) = 32, Bi(E(x) P({x}, 1))
@ Integrating, normalizing densities to 1 and rescaling the time
7 = Nt we get
O-p(x) + Oxp(x PVfdy
s Omp(x) + P.V. [ dy%
or. h s. tends to zero in the large N limit
Xi,e =p.v.i < F ind(x)
@ Note that contrary to Dyson we consider free diffusion and

not Ornstein-Uhlenbeck process, since we focus on
non-equilibrium phenomena.
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Motivation
Simplest diffusion — additive Brownian walk of huge matrices
Surfing the shock wave

Dolphins wisdom - surfing the shock wave

Tracing the singularities of the flow allows to understand the
pattern of the evolution of the complex system without explicit
solutions of the complicated hydrodynamic equations...

i e TR 5 e i T —— %;

UK Daily Mail, July 11th 2007
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Complex Burgers Equation
Physical manifestation - finite N YM
Caustics

Shock waves

Complex Burgers Equation

@ Burgers equation 9;G + G9,G =0

@ Complex characteristics
G(z,7) = Go(&[z,7)]) Go(z) = G(r=0,z) = %
E=2z—Go(&)T (£ = x — vt), so solution reads
G(z,7) = Go(z — 7G(z, 7))

@ Shock wave when % = 00

@ Since explicit solution reads G(z,7) = ﬁ(z —Vz2 —47),
1

i.e. p(x,T) = 5=V4T — x2, shock waves appear at the edges

of the spectrum (x = £2,/7).

@ But we can infer the same information from the condition
dz/d¢ =0, since {¢ = ++/T, 50 zc = &c + Go(&c)T = £24/T
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Complex Burgers Equation
Physical manifestation - finite N YM
Caustics

Shock waves

Universal preshock — relaxing N = oo condition

o G(z.7) = % (Tro—hy ) = 0 (FTrin(z - H(r)) =
9, (% Indet(z — H(7)))

o We define f(z,7) = %0; In < det(z — H(r)) >

e Note that f and G coincide only when N = co (cumulant
expansion)

@ Remarkably f fulfills for any N an exact equation
O:f + fO,f = —v0,,f v= ﬁ

@ Exact viscid Burgers equation with negative (!) viscosity

@ Positive viscosity smoothens the shocks, negative is
"roughening” them

o +x =27+ 1?35 and fy(x,7) ~ j:% + v13¢0(s, 7), where
En ~ OsIn Ai(52)
@ Preshock: "soft edge” (Airy) universality
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Complex Burgers Equation
Physical manifestation - finite N YM
Caustics

Shock waves

Multiplicative matricial random walk

e classically: yi+1 — yi = yin (n -noise)

e matricially: product of < [[,(1+ Hk) > in general has
complex spectra. But we can impose the constraint of
unitarity < [[, exp iHx >, then eigenvalues are complex, but
always confined to the unit circle (x = ')

@ Resolvent G(z,7) f dLd)

z—ei0 "

@ Related function
F(z= e"9 T)=i(zG(z,7) — %) = ,(% + Zil W,,(T)e_ine)
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Complex Burgers Equation
Physical manifestation - finite N YM
Caustics

Shock waves

Diffusion of unitary matrices:

Burgers equation for F(z = ei9,7)

@ Collision of two shock waves, since they propagate on the
circle

Universal preshock - expansion at the singularity for finite N

Universal, wild oscillations anticipating the shock — Pearcey
universality
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Complex Burgers Equation
Physical manifestation - finite N YM
Caustics

Shock waves

Three phases

If we encounter branch singularity (6 — 6.)* on the complex plane,

then for large n, w, = |n[‘“_1e_”A§Re"”9*, where 0. = 6* + A
Gapped phase Closure of the gap Gappless phase
T<4 T=4 T>4
real singularities inflection point, so complex singularities,
w=1/2 uw=1/3 w=1/2
moments oscillate in Durhuus-Olesen moments decay
time phase transition exponentially
modulo power law different power law modulo power law

Photos by Jean Guichard (La Jument lighthouse, Brittany)
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Complex Burgers Equation
Physical manifestation - finite N YM
Caustics

Shock waves

Central limit theorem

Nontrivial evolution from order (p(¢,0) = 6(6)) to disorder
(p(0,00) = 2£) (Haar measure), unravelled due to 7 = Nt

o Gapped phase: laminar " flow”
@ Critical point: inflection point

@ Gapless phase: Inverse spectral cascade

L. Da Vinci, Florence (?), ca 1506

Maciej A. Nowak Spectral shock waves



Complex Burgers Equation

Shock waves Physical manifestation - finite N YM

Caustics

Wilson loops in large N Yang-Mills theories (time = area)
Studies by Narayanan, Neuberger, 2006-2011

W(c) = <Pexp(ifAudx“)>YM
Qn(z, A) = (det(z — W(A)))

Double scaling limit...

® 6 o6 o

z=—¢

y = 121/42,\/3/46

-1 _ -1 1
A =A""+ 40‘% N7z

° Qn(z,A) —
: 1/4
limnsee (4 Zy(0, A) = _ _
_ f+oo duye—ut—au?+Eu Closing of the gap is
- universal in d = 2,3,4

Maciej A. Nowak Spectral shock waves



Complex Burgers Equation
Physical manifestation - finite N YM
Caustics

Shock waves

Viscid Burgers equation

o ¢y = —40, In(eN/8=Y/2) < det(e’ + W(y,7) >) fulfills
viscid Burgers equation 0, + ¢9, ¢ = ﬁé)yygzﬁ [Neuberger]

@ In our conventions, z = e/ = —¢”, on = ify, where
Orfn + finOofn = — 55O

e Collision of two universal oscillating preshocks (Airy) at
critical time (area) produces novel universal oscillatory pattern
(Pearcey).

o Airy: Ai(€) = L [T dtexpi(t3/3 +¢t)
e Pearcey: P(¢,7) :fjoooo dtexpi(t*/4 + 122 4+ nt)
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Complex Burgers Equation
Physical manifestation - finite N YM
Caustics

Shock waves

Universal scaling visualization - " classical” analogy

Caustics, illustration from Henrik Wann Jensen

Fold and cusp fringes, illustrations by Sir Michael Berry
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Catastrophes Critical exponents

Morphology of singularity (Thom, Berry, Howls)

GEOMETRIC OPTICS
(wavelength A = 0) (v=5y=0)

@ trajectories: rays of light

N — oo Yang-Mills

@ trajectories: characteristics

@ intensity surface: caustic @ singularities of spectral flow

WAVE OPTICS (A — 0) FINITE N YM (viscosity v — 0)

)

Universal scaling, Arnold (i) and Berry (o) indices

"Wave packet” scaling Yang-Lee zeroes scaling with N
(interference regime) (for N — o0)

@ YL zeroes of Wilson loop

o N?2/3 scaling at the edge

= o N'/2 and N3/% scaling at
the closure of the gap

[y

ofold,u—gcr:%A
ocusp,u:ZUX:%
Pearcey
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Critical exponents

Catastrophes

Shocks in SYM

o Complex dissusion < [],(1 + Hi(7)) > leads to "topological
phase transition at 7 = 4

@ Confirmed for equivalent complex diffusion
< Tl ele(T) >

@ Bijection between unitary and complex realizations of random
walk

@ Phase transition for the complexification of the gauge
potential — e.g. in SYM beyond conformal window
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Chiral shock waves — mirror shocks hit the wall
Summary
"Hard edge”

Hard edge universality

@ Random walk of chiral Gaussian matrices: mirror eigenvalues
due to "chiral symmetry”, zero modes (fermion determinant)
from "rectangularity”

K 0
random matrix.

0 Kt . :
o H= , where H is M x N complex Gaussian

e Note that [H, 5]+ = 0, where v5 = diag(1y, —1p) (chiral
symmetry)

@ Change of variables converts the evolution onto complex Bru
(Wishart) evolution for KTK
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Chiral shock waves — mirror shocks hit the wall
Summary
"Hard edge”

Hard edge universality -cont.

@ Burgers alike equation for the resolvent: e.g. r =1
0:-G(z,7) +22G(z,7)9,G(z,7) = —G?(z,7)

@ Riccati eq. for Airy transmutes into Riccati-Bessel eq.

o Crucial role of G%(0) = —72p?(0)

@ Banks-Casher relation < qg >~ 7p(0)/V,

°

Spectral shocks and spontaneous symmetry breaking in QCD,
universal preshock for finite volume (N <+ V), in the guise of
analysis of Stony Brook group [Shuryak, Verbaarschot, Zahed|

More details:

[International Ph.D. project " Physics of Complex Systems” of the
Foundation of Polish Science and cofinanced by the European Regional
Development Fund in the framework of the Innovative Economy
Programme]
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Chiral shock waves — mirror shocks hit the wall
Summary
"Hard edge”

Conclusions

@ New insight for order-disorder transitions in strong interactions
(e.g. Durhuus-Olesen transition, chiral symmetry breakdown)

@ Multiple realizations of the universality, presumably also in
several real complex systems

@ Turbulence (in Kraichnan sense) as a dynamical mechanism
for Haar measure in CUE interpreted as a Gibbs state

@ Hint for new mathematical structures? (similar shocks for
averaged inverse determinants)

More details:
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