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☞ The Meissner effect: 1930s, 1960s

magnetic flux

Abelian   ☚

Cooper pair condensate
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DUAL MEISSNER EFFECT (Nambu-’t Hooft-Mandelstam, ∼1975)                  



☺   First demonstration of the dual Meissner 
      effect: Seiberg & Witten, 1994    ☺

N=2 (extended) SUSY ➔ SU(2) →U(1), monopoles ➔ 

Monopoles become light ➔ N=1 deform. forces M condensatition ➔ 

U(1) broken, electric flux tube formed ➔ 

☹ ☹ Dynamical Abelization ... dual Abrikosov string

• gluons+complex scalar superpartner

• two gluinos

• Georgi-Glashow model built in

analytic continuation
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☞ Non-Abelian Strings, 2003 → Now
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family: the genuine vacuum plus metastable ones entangled with the genuine vacuum

in the θ evolution.

As soon as string tensions in our model are classically determined by their U(1)

charges the tension of k-string is given by

Tk = 2π k ξ + O(Λ2), (45)

where corrections of order of Λ2 are induced by the quantum effects in the effective

world sheet theory.

If we add up N strings, the resulting conglomerate is connected to the ANO

string.

6 Kinks are confined monopoles

The CP (N − 1) models are asymptotically free theories and flow to strong coupling

in the infrared. Therefore, the non-Abelian strings discussed in the previous sec-

tions are in a highly quantum regime. To make contact with the classical Abelian

strings we can introduce parameters which explicitly break the diagonal color-flavor

SU(N)diag symmetry lifting the orientational string moduli. This allows us to obtain

a quasiclassical interpretation of the confined monopoles as string junctions, and fol-

low their evolution from (almost) ’t Hooft–Polyakov monopoles to highly quantum

sigma-model kinks. In the supersymmetric case this was done in Refs. [12, 11, 13].

6.1 Breaking SU(N)diag

In order to trace the monopole evolution we modify our basic model (3) introducing,

in addition to the already existing fields, a complex adjoint scalar field aa,

S =
∫

d4x

{
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∣

∣

∣aaT a Φ + Φ
√

2M
∣
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∣
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+

i θ

32 π2
F a

µνF̃
a µν

}

, (46)

where Dµ is a covariant derivative acting in the adjoint representation of SU(N) and

M is a mass matrix for scalar quarks Φ. We assume that it has a diagonal form

M =

















m1 ... 0

... ... ...

0 ... mN

















, (47)

with the vanishing sum of the diagonal entries,

N
∑

A=1

mA = 0 . (48)

Later on it will be convenient to make a specific choice of the parameters mA, namely,

M = m × diag
{

e2πi/N , e4πi/N , ..., e2(N−1)πi/N , 1
}

, (49)

where m is a single common parameter, and the constraint (48) is automatically

satisfied. We can (and will) assume m to be real and positive.

In fact, the model (46) presents a less reduced bosonic part of the N = 2 super-

symmetric theory than the model (3) on which we dwelled above. In the N =

2 supersymmetric theory the adjoint field is a part of N = 2 vector multiplet. For

the purpose of the string solution the field aa is sterile as long as mA = 0. Therefore,

it could be and was ignored in the previous sections. However, if one’s intention is to

connect oneself to the quasiclassical regime, mA %= 0, and the adjoint field must be

reintroduced.

For the reason which will become clear shortly, let us assume that, although

mA %= 0, they are all small compared to
√

ξ,

m &
√

ξ ,

26

Prototype model
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U(2) gauge group, 2 flavors of (scalar) quarks
SU(2) Gluons Aaμ + U(1) photon + gluinos+ photino

Φ =
�

ϕ11ϕ12

ϕ21ϕ22

�

M =
�

m 0
0−m

�

Basic idea:
• Color-flavor locking in the bulk → Global symmetry G;        

• G is broken down to H on the given string;

• G/H coset; G/H sigma model on the world sheet.
Φ=√ξ × I



SU(2)/U(1) = CP(1)∼O(3) sigma model

classically gapless excitation

“Non-Abelian” string is formed if all non-
Abelian degrees of freedom participate in 
dynamics at the scale of string formation

2003: Hanany, Tong
Auzzi et al.
Yung + M.S.
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π1(SU(2)×U(1)) = Z2: rotate by π around 3-d axis in SU(2) 
   → -1;  another -1 rotate by π in U(1) 

✭ ANO strings are there because of U(1)!
✭  New strings:

st
ri
ng

x
y
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π1(U(1)×SU(2)) nontrivial due to Z2 center of SU(2)
z

α

ANO
�

ξ eiα
�

1 0
0 1

�

T=4πξ

Non-Abelian
�

ξ
�

eiα 0
0 1

�

TU(1)±T3SU(2)

T=2πξ
SU(2)/U(1) ←orientational moduli; O(3) σ model

x0 ← string center in perp. plane
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CP(1) model with 
twisted mass S =

Z
d2x

�
2
g2

∂µ φ̄∂µ φ− (∆m)2φ̄φ
(1+ φ̄φ)2 + f ermions

�
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Global SU(2) is gone!
U(1) remains intact

Two vacua= 2 degenerate strings
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Figure 2: Z2 string junction.

have the same tension. Hence, two different strings form a stable junction. Figure 2
shows this junction in the limit

ΛCP(1) ! |∆m| !
√

ξ (4)

corresponding to the lower left corner of Fig. 1. The magnetic fluxes of the U(1) and
SU(2) gauge groups are oriented along the z axis. In the limit (4) the SU(2) flux
is oriented along the third axis in the internal space. However, as |∆m| decreases,
fluctuations of Ba

z in the internal space grow, and at ∆m → 0 it has no particular
orientation in SU(2) (the lower right corner of Fig. 1). In the language of the
worldsheet theory this phenomenon is due to restoration of the O(3) symmetry in
the quantum vacuum of the CP(1) model.

The junctions of degenerate strings present what remains of the monopoles in
this highly quantum regime [11, 12]. It is remarkable that, despite the fact we are
deep inside the highly quantum regime, holomorphy allows one to exactly calculate
the mass of these monopoles. This mass is given by the expectation value of the kink
central charge in the worldsheet CP(N − 1) model (including the anomaly term).

What remains to be done? The most recent investigations zero in on N = 1
theories, which are much closer relatives of QCD than N = 2. I have time to say
just a few words on the so-called M model suggested recently [13] which seems quite
promising.

2.3 M model

The unwanted feature of N = 2 theory, making it less similar to QCD, is the
presence of the adjoint scalar field. One can get rid of it making it heavy. To
this end we must endow the adjoint superfield by a mass term. Supersymmetry of
the model becomes N = 1. Moreover, to avoid massless modes in the bulk theory
(in the limit of very heavy adjoint fields) we must introduce a “meson” superfield
MA

B analogous to that emerging in the magnetic Seiberg dual, see Sect. 1, with an
appropriately superpotential. After the adjoint field is eliminated the theory has no
’t Hooft–Polyakov monopoles in the quasiclassical limit. Nevertheless, a non-Abelian

6

∼∼∼∼ ∼∼∼∼ ∼∼∼∼∼∼∼∼ ∼∼∼∼

= kink

Evolution in dimensionless parameter m2/ξ

Yung + M.S.
Hanany, Tong
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Kink = Confined Monopole

✵ Kinks are confined in 4D (attached to strings).
✵ ✵ Kinks are confined in 2D: 
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Dewar flask

4D ↔ 2D Correspondence

☛     World-sheet theory ↔ strongly coupled bulk 

theory inside   
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Versions of CP(N-1) models in 2D: non-SUSY, and SUSY
✵ ✵ N = (0,2) and (2.2)

 ★ Gauged formulation ★ (Witten, 1979)

.

.

.

m

!
2

2" #

Tension

m*

Figure 7: Schematic dependence of string tensions on the mass parameter m. At

small m in the non-Abelian confinement phase the tensions are split while in the

Abelian confinement phase at large m they are degenerative.

show schematically the dependence of the string tensions on m in these two phases

in Fig. 7.

It is well known [37] that two-dimensional CP (N − 1) model can be obtained as

a low-energy limit of a U(1) gauge theory with N flavors of complex scalars n! and

the potential

e2β2
(

|n!|2 − 1
)2

, (57)

where e2 is U(1) gauge coupling. Classically the CP (N − 1) model corresponds to

the Higgs phase of this gauge theory. The potential (57) forces n! to develop VEV’s

breaking the U(1) gauge symmetry. Then the U(1) photon becomes heavy and can

be integrated out. Namely, in the low-energy limit the gauge kinetic term can be

ignored which leads us to the model (34).

To include the masses mA in this theory we add, following [37], a neutral complex

scalar field σ and consider the U(1) gauge theory with the potential

S(1+1) =
∫

dt dz
{

2β |∇α n|2 +
1

4e2
F 2

αγ +
1

e2
|∂ασ|2 ,

32+ 4β

∣

∣

∣

∣

∣

(

σ − m!√
2

)

n!

∣

∣

∣

∣

∣

2

+ 2e2β2
(

|n!|2 − 1
)2







, (58)

where ∇α = ∂α − iAα (Aα is the two-dimensional U(1) gauge potential).

At large mA this theory is in the Higgs phase. Moreover, quantum effects do not

destroy the Higgs phase because the coupling constant is small. Namely, σ develops

a VEV,

〈σ〉 = m!0 ,

while VEV’s of n! are given by (55). In this phase both the U(1) gauge field and

the scalar field σ become heavy and can be integrated out leading to the massive

CP (N − 1) model with the potential (52).

At small mA this theory is in the Coulomb phase. The VEV’s of n! vanish,

and the photon becomes massless. Since the Coulomb potential in two dimensions

is linear, the photon masslessness results in confinement of kinks [24]. Thus, the

phase transition which we identified above, separates the Higgs and Coulomb phases

of the two-dimensional U(1) gauge theory (58). The Higgs phase is characterized by

a broken ZN symmetry and degenerate vacua, while in the Coulomb phase the ZN

symmetry gets restored, and the vacua split. In four dimensions the former phase

is an Abelian confinement phase with degenerate Abelian strings and 2D deconfine-

ment of monopoles. The latter phase is a non-Abelian confinement phase with N split

non-Abelian strings and non-Abelian 2D-confined monopoles forming meson-like con-

figurations on these strings. Note that the description of the CP (N−1) theory on the

string world sheet as a U(1) gauge theory (58) was used in [13] in a supersymmetric

setting.

In particular, we expect that in the N = 2 case the massive CP (1) model is in the

same universality class as the two-dimensional Ising model. Therefore, we conjecture

that the phase transition from the Abelian confinement phase to the non-Abelian one

is of the second order, and is described (at N = 2) by conformal field theory with the

central charge c = 1/2, which corresponds to a free Majorana fermion.

33
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where Dµ is a covariant derivative acting in the adjoint representation of SU(N) and

M is a mass matrix for scalar quarks Φ. We assume that it has a diagonal form
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with the vanishing sum of the diagonal entries,

N
∑

A=1

mA = 0 . (48)

Later on it will be convenient to make a specific choice of the parameters mA, namely,

M = m × diag
{

e2πi/N , e4πi/N , ..., e2(N−1)πi/N , 1
}

, (49)

where m is a single common parameter, and the constraint (48) is automatically

satisfied. We can (and will) assume m to be real and positive.

In fact, the model (46) presents a less reduced bosonic part of the N = 2 super-

symmetric theory than the model (3) on which we dwelled above. In the N =

2 supersymmetric theory the adjoint field is a part of N = 2 vector multiplet. For

the purpose of the string solution the field aa is sterile as long as mA = 0. Therefore,

it could be and was ignored in the previous sections. However, if one’s intention is to

connect oneself to the quasiclassical regime, mA %= 0, and the adjoint field must be

reintroduced.

For the reason which will become clear shortly, let us assume that, although

mA %= 0, they are all small compared to
√

ξ,

m &
√

ξ ,

26

Z2N symmetrym/Λ

I. Non-SUSY bulk
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1

2

3

4

0.5 1.0 2.01.5
m/Λ

Evac

Higgs phase,
Z2N spont. broken 
down to Z2,  N 
degenerate vacua

Coulomb/conf. phase,
Z2N unbroken, 1 true vac., N quasi
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  II.  N = 2 SUSY bulk

N = (2,2) CP(N-1) model  

subject to the constraint
n̄i ξ

i = 0 , ξ̄i n
i = 0 . (3.5)

Needless to say, the auxiliary field Aµ has a complex scalar superpartner σ and a

two-component complex spinor superpartner λ; both enter without derivatives. The
full N = (2, 2) -symmetric Lagrangian is 2

L =
1
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0
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∣∣∣∣
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ξ̄Ri ξ

i
L − i

√
2 n̄i

(
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R
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√
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2

)
ξ̄Li ξ

i
R − i

√
2ni

(
λ̄Lξ̄Ri − λ̄Rξ̄Li

)
, (3.6)

where mi are twisted mass parameters, and the limit e2
0 → ∞ is implied. Moreover,

σ̄µ = {1, iσ3} , (3.7)

see Appendix A.

It is clearly seen that the auxiliary field σ enters in (3.6) only through the com-
bination

σ − mi√
2

. (3.8)

By an appropriate shift of σ one can always redefine the twisted mass parameters in
such a way that the constraint (2.1) is satisfied. The U(1) gauge symmetry is built
in. This symmetry eliminates one bosonic degree of freedom, leaving us with 2N − 2

dynamical bosonic degrees of freedom inherent to CP(N − 1) model.

3.2 Switching on the heterotic deformation

The general formulation of N = (0, 2) gauge theories in two dimensions was addressed

by Witten in [7], see also [29]. In order to deform the CP(N − 1) model breaking

2This is, obviously, the Euclidean version.

8
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8

+ fermions



M. Shifman 14

mΛ

σ

n

Λ

Figure 1: Plots of n and σ VEVs (thick lines) vs. m in the N = (2, 2)CP(N − 1)model

with twisted masses as in (2.2).

where we assumed for simplicity that m ≡ m0 is real and positive. (This is by no

means necessary; we will relax this assumption at the end of this section.) Note that
the phase factor of σ in (4.22) does not follow from (4.19). Rather, its emergence

is explained by explicit breaking of the axial U(1)R symmetry down to Z2N through
the anomaly and non-zero masses (2.2), see Appendix D, with the subsequent spon-

taneous breaking of Z2N down to Z2. Once we have one solution to (4.19) with the
nonvanishing σ we can generate all N solutions (4.22) by the Z2N transformation [6].

Although we derived Eq. (4.19) in the large-N approximation, the complexified

version of this equation,
N−1∏

i=0

(√
2σ − mi

)
= ΛN , (4.23)

is in fact, exact, since this equation as well as the solution (4.22) follow from the
Veneziano–Yankielowicz-type effective Lagrangian exactly derived in the N = (2, 2)
CP(N − 1) model in [35, 36, 7, 37, 28]. The Veneziano–Yankielowicz Lagrangian

implies (4.23) even at finite N .
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Evac=0 always, SUSY unbroken, 
Z2N always broken, (N degenerate vacua)
Crossover instead of phase transition
Strong-coupling ↔ Higgs regime



  III.  N = 1 SUSY bulk

M. Shifman 15

N = (0,2) CP(N-1) model  

Supersymmetry is broken, generally speaking !!!
Phase transitions possible

All phase transitions are of the second kind!



Break N = 2 down to  N = 1 in the bulk 

Deformation of the bulk:  ADD W= μ(Aa)2 + μ′A2

Lheterotic = ζ†
R

i∂L ζR +
�
γζR R

�
i∂Lφ†�ψR +H.c.

�
−g

2
0|γ|2

�
ζ†

R
ζR

��
Rψ†

L
ψL

�

at small γ
ζR is Goldstino

Evac = |γ|2
����Rψ†

R ψL�
���
2

(0,2) supersymmetry is 
spontaneously broken!

Tong 
Yung + M.S.

(2,2) supersymmetry is broken down to (0,2)

 Heterotic deformation the of the World-sheet theory:

M. Shifman 16



At large N heterotic CP(N-1) 
is also solvable (a là Witten) 

and presents a treasure 
trove of various phases

We have two parameters, γ and m, and a nontrivial phase 
diagram

With this choice of mass 
parameters we have ZN 
symmetry, and phases with 
broken/unbroken ZN.
SUSY is spontaneously 
broken
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Coulomb/confining.
Chiral ZN unbroken

Higgs phase
Weak coupling
Chiral ZN broken

 SUSY restored here



 Witten’s point

 ZN unbroken
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  IV.  N = 1 or 2 SUSY bulk,
Hanani - Tong model

✭ Obtained from string/D brane consideration
✭ ✭ From field theory we get zn model: DIFFERNENT
✭ ✭ ✭ Large-N limit the same!!!

2.2 N = (0, 2) weighted sigma-model: heterotic deformation

As is well-known from early studies of two-dimensional supersymmetric sigma-models [29],
there is no smooth N = (0, 2) deformation of the N = (2, 2) CPN−1 sigma-model3. On the
other hand, it is possible to have deformation of the C×CPN−1 model, which is the relevant
effective theory emerging in when studying the non-Abelian vortices (the C factor describes
the translation modes of the vortex). From the additional C piece, one can keep only a
right-handed fermion, while the scalar and left-handed fermionic super-partners is free. A
similar situation occurs for the weighted sigma-model4. As a result we consider the following
Lagrangian

Lhet
WCPNF−1 = LWCPNF−1 + i

2 ζ̄R∂LζR − 2|ω|2|σ|2 − [iωλLζR + H.c.] . (2.6)

The heterotic coupling ω is introduced by means of an additional right-handed fermion ζR.
Obviously the modification dramatically changes the physics of the sigma-model at hand.
For example, the Witten index is modified from N − Ñ to zero as in the CPN−1 case. This
observation is indeed consistent with supersymmetry breaking [13,31] occurring in the model.

Adding the twisted masses. Twisted masses can be easily introduced into the model
by first gauging the U(1)NF−1 independent flavor symmetries and then setting to zero all the
fields in the additional twisted multiplets but not the lowest components [24]. The resulting
Lagrangian takes the following form

Lhet
WCPNF−1 = |∇µni|2 + |∇µρj|2 + iξ̄L, i∇Rξi

L + iξ̄R, i∇Lξi
R + iη̄L, j∇Rηj

L + iη̄R, j∇Lηj
R

−
N−1�

i=0

|σ −mi|2 |ni|2 −
Ñ−1�

j=0

|σ − µj|2 |ρj|2 −D
�
|ni|2 − |ρj|2 − r0

�

+

�
in̄i

�
λLξi

R − λRξi
L

�
− i

N−1�

i=0

(σ −mi) ξ̄R, iξ
i
L + H.c.

�

+



−iρ̄j

�
λLηj

R − λRηj
L

�
+ i

Ñ−1�

j=0

(σ − µj) η̄R, jη
j
L + H.c.





+ i
2 ζ̄R∂LζR − [iωλLζR + H.c.]− 2|ω|2|σ|2 . (2.7)

For zero values of the twisted masses there is a U(1) R-symmetry under which the fermions
ξi
R, ηj

R, λR (ξi
L, ηj

L, λL) have charge +1(−1), whereas σ has charge +2. A generic choice of the
masses mi and µj breaks this symmetry completely. Instead, we make the following choice
for the masses

mk = m e2πi k
N , k = 0, . . . , N − 1 ,

µl = µ e2πi l
Ñ , l = 0, . . . , Ñ − 1 . (2.8)

3
See Refs. [9, 30] for a discussion of this issue in a context related to non-Abelian vortices

4
In fact, it is possible to introduce N = (0, 2) deformations of the weighted sigma-model without in-

troducing any new degrees of freedom, or C factors. However, all the possible deformations different from

the one considered in the text do not arise in the context of non-Abelian vortices. Nevertheless, it may be

interesting to study the effects of such deformations. For more details on this aspect, see Ref. [9].
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Ñ , l = 0, . . . , Ñ − 1 . (2.8)
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representation [27]. The model can be built out of N positively charged fields ni, Ñ negatively

charged fields ρj and a non-dynamical auxiliary field. The full Lagrangian, including the

fermionic superpartners can be written in a superfield formalism which make supersymmetry

manifest (see Sec. A). The Lagrangian (A.1) has the following component expansion

LWCPNF−1 = |∇µni|2 + |∇µρj|2 − |σ|2|ni|2 − |σ|2|ρj|2 −D
�
|ni|2 − |ρj|2 − r0

�

+ iξ̄L, i∇Rξi
L + iξ̄R, i∇Lξi

R + iη̄L, j∇Rηj
L + iη̄R, j∇Lηj

R +

+
�
in̄i

�
λLξi

R − λRξi
L

�
− iσξ̄R, iξ

i
L − iρ̄j

�
λLηj

R − λRηj
L

�
+ iση̄j

Rηj
L + H.c.

�
,

(2.1)

where the covariant derivatives are given by

∇µni = (∂µ − iAµ)ni, ∇µρj = (∂µ + iAµ)ρj . (2.2)

The fields Aµ, σ, λL,R and D all belong to the same N = 2 supermultiplet, they are non-

dynamical, and can be integrated out using their equations of motion. However, as we shall

see later, in strongly coupled phases these auxiliary fields do become dynamical and describe

particles in the low energy effective theory.

The model has a unique parameter which determines the strength of the interactions, the

two-dimensional Fayet-Iliopoulos term r0 [28]. Classically, the model has a continuous set of

vacua determined by the vacuum equation

N−1�

i=0

|ni|2 −
Ñ−1�

j=0

|ρj|2 = r0 . (2.3)

The first and the most important quantum effect is the generation of a dynamical scale Λ
through dimensional transmutation. In fact, the Fayet-Iliopoulos term gets renormalized,

flowing with respect to the energy scale � through the following one loop expressions

r(�) = r0 −
N − Ñ

4π
log

�
M2

UV

�2

�
≡ −N − Ñ

4π
log

�
Λ2

�2

�
. (2.4)

The theory is thus asymptotically free for N > Ñ . From the expression above we can also

guess that for N = Ñ we have super-conformal theory, and this is indeed the case [26].

Actually, thanks to supersymmetry, (2.4) is exact in perturbation theory because of the

vanishing of higher order contributions. Furthermore, integrating out the matter fields in

the functional integral we can find an exact superpotential for the field σ [26, 21,22,24]

W (σ) =
N − Ñ

4π
σ

�
log

�σ

Λ

�
− 1

�
. (2.5)

This superpotential includes all the non-perturbative instantonic contributions to the func-

tional integral. At the classical level the theory has two U(1) R-symmetries, U(1)R×U(1)V .

The first one is an axial symmetry, under which σ has charge +2. This symmetry is anoma-

lous and is broken down to Z2N−2Ñ by the one-loop corrections. By minimization of the

superpotential (2.5) we find N − Ñ massive vacua. We will discuss in more details the

vacuum structure of the theory in Sec. 3.
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2.2 N = (0, 2) weighted sigma-model: heterotic deformation

As is well-known from early studies of two-dimensional supersymmetric sigma-models [29],
there is no smooth N = (0, 2) deformation of the N = (2, 2) CPN−1 sigma-model3. On the
other hand, it is possible to have deformation of the C×CPN−1 model, which is the relevant
effective theory emerging in when studying the non-Abelian vortices (the C factor describes
the translation modes of the vortex). From the additional C piece, one can keep only a
right-handed fermion, while the scalar and left-handed fermionic super-partners is free. A
similar situation occurs for the weighted sigma-model4. As a result we consider the following
Lagrangian

Lhet
WCPNF−1 = LWCPNF−1 + i

2 ζ̄R∂LζR − 2|ω|2|σ|2 − [iωλLζR + H.c.] . (2.6)

The heterotic coupling ω is introduced by means of an additional right-handed fermion ζR.
Obviously the modification dramatically changes the physics of the sigma-model at hand.
For example, the Witten index is modified from N − Ñ to zero as in the CPN−1 case. This
observation is indeed consistent with supersymmetry breaking [13,31] occurring in the model.

Adding the twisted masses. Twisted masses can be easily introduced into the model
by first gauging the U(1)NF−1 independent flavor symmetries and then setting to zero all the
fields in the additional twisted multiplets but not the lowest components [24]. The resulting
Lagrangian takes the following form
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For zero values of the twisted masses there is a U(1) R-symmetry under which the fermions
ξi
R, ηj

R, λR (ξi
L, ηj

L, λL) have charge +1(−1), whereas σ has charge +2. A generic choice of the
masses mi and µj breaks this symmetry completely. Instead, we make the following choice
for the masses

mk = m e2πi k
N , k = 0, . . . , N − 1 ,

µl = µ e2πi l
Ñ , l = 0, . . . , Ñ − 1 . (2.8)

3
See Refs. [9, 30] for a discussion of this issue in a context related to non-Abelian vortices

4
In fact, it is possible to introduce N = (0, 2) deformations of the weighted sigma-model without in-

troducing any new degrees of freedom, or C factors. However, all the possible deformations different from

the one considered in the text do not arise in the context of non-Abelian vortices. Nevertheless, it may be

interesting to study the effects of such deformations. For more details on this aspect, see Ref. [9].
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Figure 4: Phase Diagram of the weighted (2, 2) CPN−1 model in the large-N approach. There
are four domains with different VEVs for σ: two Higgs branches Hρ and Hn, and two Coulomb
branches C. In the Coulomb phase C r = 0. The curve µ/Λ = (m/Λ)1/α together with horizontal
and vertical lines starting from µ = Λ and m = Λ respectively separates the C phases from the
Higgs phases. In Hn r > 0 and in Hρ r < 0. On the super-conformal line µ/Λ =( m/Λ)1/α a new
branch described by a super-conformal theory opens up.
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Figure 4: Phase Diagram of the weighted (2, 2) CPN−1 model in the large-N approach. There
are four domains with different VEVs for σ: two Higgs branches Hρ and Hn, and two Coulomb
branches C. In the Coulomb phase C r = 0. The curve µ/Λ = (m/Λ)1/α together with horizontal
and vertical lines starting from µ = Λ and m = Λ respectively separates the C phases from the
Higgs phases. In Hn r > 0 and in Hρ r < 0. On the super-conformal line µ/Λ =( m/Λ)1/α a new
branch described by a super-conformal theory opens up.
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of semi-local vortex strings in SQCD: the ZN model [
Shifman:2011xc

?] and the Hanany-Tong [
Hanany:2003hp,Hanany:2004ea

?,?] model. In
Sec.

Sec:LargeNSec:LargeN

4 we study the large-N solution, which we use in Sec.
Sec:SpectrumZNSec:SpectrumZN

4.1 to determine the full spectrum
of the theory. With the knowledge acquired so far, we are ready to write down an exact
twisted superpotential which encodes the full spectrum in Sec.

Sec:twistedSec:twisted

3.1. Finally, in Sec.
Sec:GeometricFormulationsSec:GeometricFormulations

5 we
study vacuum manifolds and perturbation theory of these models in the geometric language.
Finally we summarize and conclude in Sec.

Sec:ConsclusionsSec:Consclusions

6.

2 Exact World-Sheet Theory on Non-Abelian Semi-
Local Vortices: the ZN Model

Sec:HananyTongModel

Non-Abelian semi-local vortices are present in the Higgs phase of U(N) SQCD with Nf =
N +Ñ flavors when one introduces a non-vanishing Fayet-Iliopoulos term ξ [

Hanany:2003hp,Hanany:2004ea

?,?]. The moduli
space of a single semi-local vortex is a non-compact space of complex dimension N +Ñ . One
can interpret N − 1 zero modes as parameterizing orientational degrees of freedom2, while
further Ñ modes parameterize the size of the semi-local vortex. Finally, one last parameter
is related to the position of the vortex on the plane.

A crucial property of the moduli space of semi-local vortices is the logarithmical diver-
gence of its metric:

Ldiv ∝ 2πξ ln L , (2.1)

where L is an infrared cut-off3. This account for basically all the difficulties in treating
this kind of solutions. These divergent terms were calculated in Refs. [

Shifman:2006kd,Eto:2007yv

?, ?]. More recently,
some of the authors showed in Ref. [

Shifman:2011xc

?] how to take advantage of the presence of the large
logarithms instead. After an appropriate redefinition of the fields one can actually derive an
exact world-sheet theory for semi-local strings in the limit lnL→∞. The resulting model,
the ZN model, is the following N = (2, 2) supersymmetric4 theory

Sexact =

�
d2x

�
|∂k(zjni)|2 + |∇kni|2 +

1

4e2
F 2

kl +
1

e2
|∂kσ|2

+ |mi − m̃j|2 |zj|2|ni|2 +
���
√

2σ + mi

���
2
|ni|2 +

e2

2

�
|ni|2 − r

�2
�

,

i = 1, ..., N , j = 1, ..., Ñ , ∇k = ∂k − iAk . (2.2)

It is assumed that at the very end we take limit e2 → ∞, where gauge fields and their
superpartners become auxiliary [

Witten:1978bc,Hanany:1997vm

?,?] and can be integrated out:

Ak = −i n∗
i ∂kni,

√
2σ = −

�

i

mi |ni|2. (2.3) eq:int1

2The moduli space of a non-Abelian semi-local vortex contains indeed a subspace which corresponds to
CPN−1, the orientational moduli space of a traditional non-Abelian vortex.

3L can either represents a finite length of the vortex, or a finite volume of the transverse space. Intro-
duction of masses is also a way to cut-off the diverging integrals L−1 = ∆m

4We write down only the bosonic part of the action, but we will include fermions in Sec.
Sec:LargeNSec:LargeN
4.

3

  V.  N = 2 SUSY bulk,
zn Model (MS+Vinci+Yung)

zj of the opposite charge compared to ni and unconstrained

Derived from the bulk theory in the limit ln(ξL2)>>1
M. Shifman 22
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P. Koroteev , W. Vinci, A. Yung+ MS: work in progress:

☞ At N→∞ HT = zn

☞ BPS sectors the same at  any N

☞ New type of renormalizability



Instead of conclusions
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4D ↔ 2D Correspondence 

brings fruits and a treasure 
trove of novel 2D models with 
intriguing dynamics!


