
Jets and QCD — lecture 4

Matteo Cacciari1,2 and Gavin Salam3,4,1

1 LPTHE (CNRS/UPMC)
2 Université Denis Diderot (Paris 7)

3 CERN, PH-TH
4 Princeton University

Focus Week at the GGI Workshop
High energy QCD after the start of the LHC

Florence, Italy, 12-16 September 2011



Towards an understanding of jets

How a jet is and isn’t like a parton —

quantitatively

And how this relationship is affected by the jet

radius
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Small v. large jet radius (R) ≡ HSBC[Understanding jets]

Small jet radius Large jet radius

single parton @ LO: jet radius irrelevant
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Small v. large jet radius (R) ≡ HSBC[Understanding jets]

Small jet radius

θ

Large jet radius

θ

perturbative fragmentation: large jet radius better
(it captures more)
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Small v. large jet radius (R) ≡ HSBC[Understanding jets]
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underlying ev. & pileup “noise”: small jet radius better
(it captures less)
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Small v. large jet radius (R) ≡ HSBC[Understanding jets]

Small jet radius Large jet radius

multi-hard-parton events: small jet radius better
(it resolves partons more effectively)
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Parton pt v. jet pt

3 physical effects:

1. Gluon radiation from the parton
2. Hadronisation

3. Underlying Event

One important consideration:

Whether the parton is a quark or a gluon
[quarks radiate with colour factor CF = 4/3
gluons radiate with colour factor CA = 3]
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Jet pt v. parton pt : perturbatively?
[Understanding jets]

[Parton pt v. jet pt ]

The question’s dangerous: a “parton” is an ambiguous concept

Three limits can help you:

◮ Threshold limit e.g. de Florian & Vogelsang ’07

◮ Parton from color-neutral object decay (Z ′)

◮ Small-R (radius) limit for jet

One simple result (small-R limit)

〈pt,jet − pt,parton〉
pt

=
αs

π
lnR ×

{

1.01CF quarks
0.94CA + 0.07nf gluons

+O (αs)

only O (αs) depends on algorithm & process

cf. Dasgupta, Magnea & GPS ’07
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Jet pt v. parton pt : hadronisation?
[Understanding jets]

[Parton pt v. jet pt ]

Hadronisation: the “parton-shower” → hadrons transition

Method:

◮ “infrared finite αs” à la Dokshitzer & Webber ’95

◮ prediction based on e+e− event shape data

◮ could have been deduced from old work Korchemsky & Sterman ’95

Seymour ’97

Main result

〈pt,jet − pt,parton−shower 〉 ≃ −0.4 GeV

R
×

{

CF quarks
CA gluons

cf. Dasgupta, Magnea & GPS ’07

coefficient holds for anti-kt; see Dasgupta & Delenda ’09 for kt alg.
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Underlying Event (UE)[Understanding jets]

[Parton pt v. jet pt ]

“Naive” prediction (UE ≃ colour dipole between pp):

∆pt ≃ 0.4 GeV × R2

2
×

{

CF qq̄ dipole
CA gluon dipole

Modern Monte Carlo tunes tell you (
√
s = 7 TeV):

∆pt ≃ 8 GeV × R2

2
≃ 1.2 GeV × (πR2)

This big coefficient motivates special effort to understand interplay
between jet algorithm and UE: “jet areas”

How does coefficient depend on algorithm?

How does it depend on jet pt? How does it fluctuate?

cf. Cacciari, GPS & Soyez ’08
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Jet contours – visualised[Understanding jets]

[Parton pt v. jet pt ]
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Using our understanding to help discover a

dijet resonance, qq̄ → X → qq̄.
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What R is best for an isolated jet?[Dijet resonances]

PT radiation:

q : 〈∆pt〉 ≃
αsCF

π
pt lnR

Hadronisation:

q : 〈∆pt〉 ≃ −CF

R
· 0.4 GeV

Underlying event:

q, g : 〈∆pt〉 ≃
R2

2
·2.5−15 GeV

Minimise fluctuations in ptptpt

Use crude approximation:

〈∆p2t 〉 ≃ 〈∆pt〉2

E.g. to reconstruct mX ∼ (ptq + ptq̄)

X
pp

q

q

q

q

in small-R limit (!)

NB: full calc, correct fluct: Soyez ’10
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At low pt, small RRR limits relative impact of UE

At high pt, perturbative effects dominate over
non-perturbative → RbestRbestRbest ∼ 1.



Dijet mass: scan over R [Pythia 6.4][Dijet resonances]
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Dijet mass: scan over R [Pythia 6.4][Dijet resonances]
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Dijet mass: scan over R [Pythia 6.4][Dijet resonances]
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Dijet mass: scan over R [Pythia 6.4][Dijet resonances]
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Dijet mass: scan over R [Pythia 6.4][Dijet resonances]
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Dijet mass: scan over R [Pythia 6.4][Dijet resonances]
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Dijet mass: scan over R [Pythia 6.4][Dijet resonances]
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Dijet mass: scan over R [Pythia 6.4][Dijet resonances]

R = 1.0
1/

N
 d

n/
db

in
 / 

2

dijet mass [GeV]

qq, M = 100 GeV

arX
iv:0810.1304

 0

 0.02

 0.04

 0.06

 0.08

 60  80  100  120  140

SISCone, R=1.0, f=0.75
Qw

f=0.24 = 31.9 GeV

Resonance X → dijets

X
pp

q

q

q

q

jet

jet

Jets 2 (M. Cacciari and G. Salam) GGI September 2011 11 / 29



Dijet mass: scan over R [Pythia 6.4][Dijet resonances]
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Dijet mass: scan over R [Pythia 6.4][Dijet resonances]
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Dijet mass: scan over R [Pythia 6.4][Dijet resonances]
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Dijet mass: scan over R [Pythia 6.4][Dijet resonances]
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Scan through qq̄ mass values[Dijet resonances]

mqq = 100 GeV
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Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass
can reproduce this anayltically

Soyez ’10

Message received by CMS: they
combine all R = 0.5 jets (pt >
10 GeV) within ∆R = 1.1 of two
hardest to improve resolution.

ATLAS ’11 still just use R = 0.6

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09
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Scan through qq̄ mass values[Dijet resonances]

mqq = 150 GeV

 1

 1.5

 2

 2.5

 3

 0.5  1  1.5

ρ L
 fr

om
 Q

w f=
0.

24

R

qq, M = 150 GeV

arX
iv:0810.1304

SISCone, f=0.75

Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass
can reproduce this anayltically
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Message received by CMS: they
combine all R = 0.5 jets (pt >
10 GeV) within ∆R = 1.1 of two
hardest to improve resolution.

ATLAS ’11 still just use R = 0.6

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09

Jets 2 (M. Cacciari and G. Salam) GGI September 2011 12 / 29

http://quality.fastjet.fr


Scan through qq̄ mass values[Dijet resonances]

mqq = 200 GeV
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Message received by CMS: they
combine all R = 0.5 jets (pt >
10 GeV) within ∆R = 1.1 of two
hardest to improve resolution.

ATLAS ’11 still just use R = 0.6

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09
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Scan through qq̄ mass values[Dijet resonances]

mqq = 300 GeV
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can reproduce this anayltically
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Message received by CMS: they
combine all R = 0.5 jets (pt >
10 GeV) within ∆R = 1.1 of two
hardest to improve resolution.

ATLAS ’11 still just use R = 0.6

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09
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Scan through qq̄ mass values[Dijet resonances]

mqq = 500 GeV
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Message received by CMS: they
combine all R = 0.5 jets (pt >
10 GeV) within ∆R = 1.1 of two
hardest to improve resolution.

ATLAS ’11 still just use R = 0.6

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09
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Scan through qq̄ mass values[Dijet resonances]

mqq = 700 GeV
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Message received by CMS: they
combine all R = 0.5 jets (pt >
10 GeV) within ∆R = 1.1 of two
hardest to improve resolution.

ATLAS ’11 still just use R = 0.6

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09
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Scan through qq̄ mass values[Dijet resonances]

mqq = 1000 GeV
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can reproduce this anayltically
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Message received by CMS: they
combine all R = 0.5 jets (pt >
10 GeV) within ∆R = 1.1 of two
hardest to improve resolution.

ATLAS ’11 still just use R = 0.6

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09
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Scan through qq̄ mass values[Dijet resonances]

mqq = 2000 GeV
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◮ Best R depends strongly on
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◮ Increases with mass
can reproduce this anayltically
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Message received by CMS: they
combine all R = 0.5 jets (pt >
10 GeV) within ∆R = 1.1 of two
hardest to improve resolution.

ATLAS ’11 still just use R = 0.6

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09
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Scan through qq̄ mass values[Dijet resonances]
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http://quality.fastjet.fr/
[Dijet resonances]
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Analytic quality estimates[Dijet resonances]

Soyez ’10

Analytic v. MC lineshape

Perturbatively resum resonance
“line-shape”, convolute with model
for non-perturbative effects.

etermine “quality” of line-shape
from the analytic results, as a func-
tion of jet radius R
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Analytic quality estimates[Dijet resonances]

Soyez ’10

Analytic v. MC quality Best R v. mass scale
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Fat jets
boosted massive hadronically decaying objects

E.g. when a known particle, W ,Z or a top → a single jet

or a new particle, Higgs, gluino, neutralino → a single jet

This will be common for electroweak-scale objects at LHC:
mW ,mt ≪ 14 TeV
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E.g. X → tt̄ resonances of varying difficulty[1 jet & 2 partons]

RS KK resonances → tt̄, from Frederix & Maltoni, 0712.2355

NB: QCD dijet spectrum is ∼ 103 times tt̄
Jets 2 (M. Cacciari and G. Salam) GGI September 2011 16 / 29



Boosted massive particles, e.g.: EW bosons[1 jet & 2 partons]

Hadronically decaying EW boson at high pt 6= two jets

single
jet

z

(1−z)

boosted X
R &

m

pt

1
√

z(1− z)

Rules of thumb: m = 100 GeV, pt = 500 GeV

◮ R <
2m

pt
: always resolve two jets R < 0.4

◮ R &
3m

pt
: resolve one jet in ∼75% of cases (18 < z < 7

8) R & 0.6
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Boosted ID strategies[1 jet & 2 partons]

q q
Select on the jet mass with one large (cone)
jet Can be subject to large bkgds

[high-pt jets have significant masses]

q q

Choose a small jet size (R) so as to resolve
two jets Easier to reject background

if you actually see substructure

[NB: must manually put in “right” radius]

q q Take a large jet and split it in two
Let jet algorithm establish correct division
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Jet masses[1 jet & 2 partons]
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qq → qq events

pt,jets > 700 GeV

anti-kt, R = 0.7

Look at jet mass distribu-
tion for two leading jets in

◮ qq → qq events

◮ pp → W + jet events

◮ a mixture of the two
In roughly sensible

proportions

Jet mass gives clear sign of massive particles inside
the jet;
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Jet masses[1 jet & 2 partons]
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pt,jets > 700 GeV

anti-kt, R = 0.7

Look at jet mass distribu-
tion for two leading jets in

◮ qq → qq events

◮ pp → W + jet events

◮ a mixture of the two
In roughly sensible

proportions

Jet mass gives clear sign of massive particles inside
the jet; but QCD jets are massive too — must learn

to reject them

Jets 2 (M. Cacciari and G. Salam) GGI September 2011 19 / 29



QCD principle: soft divergence[1 jet & 2 partons]

Signal Background

z

(1−z)

boosted X
z

quark

(1−z)

Splitting probability for Higgs:

P(z) ∝ 1

Splitting probability for quark:

P(z) ∝ 1 + z2

1− z

1/(1− z) divergence enhances background

Remove divergence in bkdg with cut on z
Can choose cut analytically so as to maximise S/

√
B

Originally: cut on (related) kt-distance

Butterworth, Cox & Forshaw ’02
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Inside the jet mass[1 jet & 2 partons]
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QCD Jet Mass distribution
Pythia 6.4, qq→qq, no UE

anti-kt, R=0.7

LHC, 7 TeV

pt,jets > 700 GeV

QCD jet mass distribution has the
approximate

dN

d lnm
∼ αs ln

ptR

m
× Sudakov

Work from ’80s and ’90s

+ Almeida et al ’08

The logarithm comes from integral
over soft divergence of QCD:

∫ 1
2

m2

p2t R
2

dz

z

A hard cut on z reduces QCD back-
ground & simplifies its shape
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Inside the jet mass[1 jet & 2 partons]
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Inside the jet mass[1 jet & 2 partons]
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Inside the jet mass[1 jet & 2 partons]
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anti-kt algorithm
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Example improvement from boosted regime[1 jet & 2 partons]

Search for main decay of light Higgs boson in W/Z+H, H → bb̄

ATLAS TDR
(unboosted)

(boosted)

restricting search to ptH > 200 GeV

using the method from Butterworth, Davison, Rubin & GPS ’08
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One of many applications of “boosted” searches,
using variety of techniques, many involving jet substructure

See proceedings proceedings of Boost 2010
and talks at http://boost2011.org

http://boost2011.org


Noise removal from jets[1 jet & 2 partons]

[Some of the other ideas]

Plain pythia event

Jets 2 (M. Cacciari and G. Salam) GGI September 2011 24 / 29



Noise removal from jets[1 jet & 2 partons]

[Some of the other ideas]

Plain pythia event + 10 pileup
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Noise removal from jets[1 jet & 2 partons]

[Some of the other ideas]

Key idea:

◮ Look at jet on smaller
angular scale

◮ Discard its softer parts

◮ Filtering Butterworth et al ’08

◮ Pruning Ellis, Vermillion and Walsh ’09

◮ Trimming Krohn, Thaler & Wang ’09

[With earlier methods by Seymour ’93 and Kodolova et al ’07;

Rubin ’10 for filtering optimisation; also Soper & Spannowsky ’10, ’11]
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Noise removal from jets[1 jet & 2 partons]

[Some of the other ideas]

[Boost 2010

writeup]

◮ Filtering Butterworth et al ’08

◮ Pruning Ellis, Vermillion and Walsh ’09

◮ Trimming Krohn, Thaler & Wang ’09

[With earlier methods by Seymour ’93 and Kodolova et al ’07;

Rubin ’10 for filtering optimisation; also Soper & Spannowsky ’10, ’11]
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t → bjj decays — multiple kinematic variables[1 jet & 2 partons]

[Some of the other ideas]

Top signal

12/m13arctan m
0 0.5 1 1.5

12
3

/m
23

m

0
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0.8

1

W=m23m
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QCD background

12/m13arctan m
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m
0

0.2

0.4

0.6
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W=m23m
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Using Dalitz-like plots to pull out the W without using b tagging

Plehn, Spannowsky, Takeuchi & Zerwas ’10
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Exploiting energy-flow beyond LO structure[1 jet & 2 partons]

[Some of the other ideas]

Jankowiak, Hook and Wacker ’11

Background (e.g. g → gg)
and signal (e.g. W → qq̄)
often have different colour
structure → different radi-
ation patterns.

◮ Pull (non-boosted context) Gallicchio & Schwartz ’10

◮ N-subjettiness Jihun Kim ’10; Thaler & Van Tilburg ’10

◮ “Buried Higgs” light singlets Falkowski et al ’10; Chen et al ’10

◮ Boosted decision trees Cui & Schwartz ’10

◮ Dipolarity, applied to HEPTopTagger Jankowiak, Hook and Wacker ’11

◮ Jet deconstruction Soper & Spannowsky ’11

◮ Template method beyond LO Almeida et al ’11

◮ . . .
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Jet shape variables (here for top tagging)[1 jet & 2 partons]

[Some of the other ideas]

efficiency

0.1 0.2 0.3 0.4 0.5 0.6 0.7

m
is

ta
g
 r

a
te

-2
10

-1
10

Hopkins

CMS

Pruning

ATLAS

Thaler/Wang

500 GeV < pT < 600 GeV

Τ3!Τ2

Multivariate ΤN

Thaler & van Tilburg ’11

cf. also J.-H. Kim ’10 for Higgs

Early proposals include planar flow
(3- v. 2-body structure of top de-
cay) Thaler & Wang ’08

Almeida et al ’08

Recent try: N-subjettiness. Break
jet into subjets 1, . . . ,N

τN =
1

pt,jet

∑

i

pti min(Ri1, . . . ,RiN)

N-pronged decay: cut on mass &
τN
τN−1

Combines constraints on LO struc-
ture (energy sharing among prongs)
and higher-order radn (from quarks
in signal v. gluons in bkgd)



Shower deconstruction for ZH[1 jet & 2 partons]

[Some of the other ideas]

Matrix-element method on steroids

shower
deconstruction

BDRS
method

For each event estimate the probabil-
ity that event is signal-like or back-
ground like.

Break event into many mini-jets;
use Monte-Carlo type Sudakovs and
splitting functions to get estimate of
multi-parton matrix element for S &
B hypotheses.

Intelligently combines full info about
LO splitting, radiation, b-tags, etc.

Soper & Spannowsky ’11

cf. also multivariate (BDT) type methods

from Cui & Schwartz ’10
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Closing remarks[Closing]

The study of jets is an increasingly broad subject.

Driven by the ubiquity of jets in LHC studies, the greater

flexibility of LHC detectors relative to Tevatron ones, and
by the broad dynamic range of LHC.

[jets from 20 GeV to several TeV — from below to far above EW scale;

UE ∼ 1 GeV per unit area, pileup 10− 20 GeV, HIC 100− 300 GeV]

Many basic ideas ideas have been worked out.

But intense recent activity suggests that there is still scope

for significant further progress.
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Supplementary material
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Jet algorithm properties: summary[Supplementary material]

[Jet-properties summary]

kt Cam/Aachen anti-kt SISCone

reach R R R (1 + pt2
pt1

)R

∆pt,PT ≃ αsCi

π
× lnR lnR lnR ln 1.35R

∆pt,hadr ≃ −0.4 GeVCi

R
× 0.7 ? 1 ?

area = πR2 × 0.81 ± 0.28 0.81 ± 0.26 1 0.25

+πR2 Ci

πb0
ln αs(Q0)

αs(Rpt)
× 0.52 ± 0.41 0.08 ± 0.19 0 0.12 ± 0.07

In words:

◮ kt : area fluctuates a lot, depends on pt (bad for UE)

◮ Cam/Aachen: area fluctuates somewhat, depends less on pt

◮ anti-kt : area is constant (circular jets)

◮ SISCone: reaches far for hard radiation (good for resolution, bad for
multijets), area is smaller (good for UE)
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Identifying jet substructure: try out anti-kt
[Supplementary material]

[3 algs’ substructure]

anti-kt algorithm

p t/GeV
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0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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[3 algs’ substructure]
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Seymour ’93

Butterworth, Cox & Forshaw ’02
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Butterworth, Davison, Rubin & GPS ’08
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A more complex example: top

reconstruction
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Robustness: Mtop varies with R?[Supplementary material]
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no UE

with UE

Mtop

Game: measure top mass to 1 GeV
example for Tevatron

mt = 175 GeV

◮ Small R : lose 6 GeV to PT
radiation and hadronisation, UE
and pileup irrelevant

◮ Large R : hadronisation and PT
radiation leave mass at
∼ 175 GeV, UE adds 2− 4 GeV.

Is the final top mass (after W jet-energy-scale and Monte Carlo unfolding)
independent of R used to measure jets?

Flexibility in jet finding gives powerful cross-check of systematic effects

cf. Seymour & Tevlin ’06
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Flexibility in jet finding gives powerful cross-check of systematic effects

cf. Seymour & Tevlin ’06
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6 partons v. 6 jets?[Supplementary material]

[Top reconstruction]

Alpgen pp → t̄t → 6q
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