Some Aspects of Resummation
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e Collaborations with Leo Almeida, Werner Vogelsang, llmo Sung, Alex Mitov and Ozan
Erdogan.

e Something of a review, but slanted towards NNLL developments and the special role of
the “cusp”.

I. Threshold resummation: NLL and beyond
Il. Soft anomalous dimension matrices: toward a dipole formula?

I1l. Graphical exponentiation: from webs to surfaces for the cusp
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|I. Threshold resummation: NLL and beyond

e A center of attention at the Tevatron & LHC: factorized cross
section at fixed final-state ‘signal’ mass M, rapidity y, and
relative rapidity 7 in pair c.m.

do dxgdx
MAT M —QQ Z/ dZ/ - bqbf/hl(ma,u)¢f/h2(wb, %)

dM2dyd
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X @risQQ |5 g0 20 ds(k)

e Variable z measures how much partonic energy is used to
produce the pair
M? T M?

z = - > T =
TaTpS  TaTp S

e The limit z — 1 is the subject of threshold resummation.
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e Short-distance w_ is a generalized function.

e Example: at one loop for Drell-Yan (M? = Q?):

Wit g (2, Q2 12)

= o0(@) Cr ] e+ M
1 — 2z +
(14 2%)In 2 2
5 as |1+ 22 Q2
+ 00(Q) CF . In 2]
7y —z |, 7!

e The ‘4’ distributions tend to increase the cross section and

(Cpas/m)™ [In27—1(1—2)
at nth order we get i s

L
o Why 1! Because the cross section factorizes near z = 1 .
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e We compute w,;(z) from a regularized, partonic cross sec-
tion. When 7 — 1, it forces z — 1.

e In this limit, we find factorization into * — 1 (partonic)
distributions, soft radiation and nearly lightlike outgoing jets
and/or non-recoiling heavy quarks (squarks, gluinos).

e Color tensor cy describes color exchange in Hjy.

-24



e An example of color tensor cj: gq tensors (CL){ri}:

1 3 1
Cl = > < Cy =
2 4 2

e To leading power in 1 — z, the coupling of soft radiation to
scattered partons is through ordered exponentials,

P exp|—ig [§° dA B - A(AB)

In SCET, summarized by appropriate field redefinitions. For
final-state heavy quarks, this may be in HQET, or even NRQCD
at low relative velocity.

3

4

e As factorization scales change, color exchange at the hard
scattering evolves.

¢ Independence of factorization scales = evolution equations.
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e Hard/jet /soft radiation = double-logarithmic (Sudakov) ex-
ponentiation. A number of approaches can be used, includ-
ing SCET, with other applications to less inclusive quantities
(Collins, Soper (1981) ... Stewart, Tackmann, Waalewijn (2009))

e Threshold resummation kinematics: in c.m., z is < energy of
soft radiation:

] —»— ¥ 2E7>jk stoft ) Qobs

1 soft \/g ~ S

e The partonic cross section then becomes a convolution in soft
gluon energy, factorizes under momentsof z: 1 —z ~ —Inz
and zV ~ exp[—N(1 — 2)].

o(N) = /01 dzzN"1lo(2)
= dze~N=D=2)5(2) + O(1/N)

e This allows us to compute ...
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¢ a rather general form for threshold resummation, with leading,
“universal”’ IN-dependence in jets J (Catani, Mangano, Nason, Grazzini,
de Florian, Kidonakis, Oderda, GS, Vogelsang; circa 1997 — pres.)

2 2
R M ™m 9
Na'rla 9 9 zaaS(“ ))
pe o p
M? m?2
29 23”79@8(”2)]
pe o p

Wab—cd

b—cd
X X H¢

NZHQ M2 )

e Different processes differ in list of (leading-logarithmic) jets
and in the (single-logarithmic) “soft matrices” S. Matrix
indices label color exchange cy at the hard scattering: singlet,
octet ...in amplitude and complex conjugate.

ab—cd
X ST
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¢ Incoming jet functions in moment space (parton a), with full

leading-power N dependence (IN"'LL):
(Almeida, Sung, GS, Vogelsang, forthcoming)

In A? (N, Q)
— @ d"zA (as(u)) |K ( )— In (]?u)
+ 5 " du? DY) (as(u)) 38 Ko (2];“) —n (]gu)]
et 2 el )

+ Da (as (1 — a:)2 Q%)) }

e A, the cusp anomalous dimension: A,;In N in DGLAP evo-
lution kernel. Dgand D{(¥) begin at NNLL, and include infor-
mation on threshold phase space.
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e The soft function mixes color exchange. It is generated from
a matrix of anomalous dimensions.

e Effective theory approach (Becher, Neubert, Schwartz, 2007-): Mmo-
ments are used on jet functions separately; inverted to derive

an evolution equation in x. Soft anomalous dimension matrix
is the same as here ...
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e In terms of the anomalous dimension matrix:

N2u,2

SMZ’

Bi - Bjs as(1®)| | u=na
N—-1_

— ’PeXli){/()1 dil?w 1 — 1 FTS‘ (Bi * B> s ((1 o m)2M2)>}

xS (1, 8; - Bj» s (M?/N?))
:BN_l —1
XP exp { fy d 1 Ls(Bi- Bj» s (1 — 2)°M7)]}

. I‘f.;l) — NLL resummation (as" In" IN)

e Boundary condition, S (1, 3; - 8, as (M?/N?)) starts at o,
and is a constant up to NNLL. Computed for inclusive heavy
quark production (Czakon, Mitov, GS, 2009), and also for light parton
2 — 2 processes (Almeida, Sung, GS, Vogelsang, forthcoming).
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1. Soft anomalous dimension matrices. IR structure
of amplitudes.

e Multiloop scattering amplitudes in dimensional regularization
(Catani (1998) Tejeda-Yeomans & GS (2002) Kosower (2003) Aybat, Dixon & GS
(2006); Becher, Neubert (2008), Gardi, Magnea (2008), Dixon, Gardi, Magnea (2009),
Del Duca et al (2011))

e Amplitude for partonic process
f: fapa,ra)+ fB(PB,TB) = f1(P1,71) + f2(P2,72)

Q2

2

f Q
M pi o as(u?), e Pjs s as(1?), €

p? p?

{Tz}

M;) (L) {ri}

e Need to control poles in € for factorized calculations at
fixed order and for resummation.
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e Source of double logs and poles in dimensional reg.:

‘Leading Regions’:

“jets’

e The same cast of characters as for cross section.
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e Same separation, from Ward identities (Sen (1983)):

Factorization of soft gluons:
S

>0

N N

x CHD
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e Jet/soft factorization for amplitude. :

2 2
£, @ 2y ¢ — [virt] | Q 2
ML Dy H2’aS(M )76) — i=A,HB,1,2 Jz [“zaaS(U’ )76]
f Q* f Q*
X S[L]I piauzaas(.UJZ)ae h[I] Dy ,uz’ as(ﬂz)]

¢ Jet function: J = Jrsinglet(Qz) (Tejeda-Yeomans & GS (1982))
e Soft function labelled by color exchange (singlet, octet ...)
e Factors require dimensional regularization

¢ Same factorization — resummation

e Relation to supersymmetric Yang-Mills theories
(Bern, Czakon, Dixon, Kosower & Smirnov (2006) N=4 crosscheck to 4 loops. )
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¢ Dimensionally-regularized soft matrix
(Tejeda-Yeomans & GS (2002))

S

2
[Q s (12), ]
2

2 dit 2
— /0 @ i £] [ds (lfza as(ﬂ2)a E])
9 1

= P exp

o I'lfl: anomalous dimension; color mixing
e Same anomalous dimension as in the cross section!

e For all massless 2 — 1 processes (Aybat, Dixon, GS (2006))

rg=""[1+""K| 1§ +
7T

7T
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r'(2) = (K/2)I'()) with same K as in the DGLAP splitting.

1 3

2 4
(a) (b) (c)
(d) (e) ()
9) (h) (i)

e Essential result: three-line fabcTC{TBITCK terms vanish.
(diagrams (g), (h))
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e To NNLO, “single-web” exchange generalizes single gluon.
(C.F. Berger, 2002). A ‘radiation scheme’ for the running coupling
(Catani, Dokshitzer, Marchesini)

e Hints of unexpected simplicity for IR gluons, at least with
massless Wilson lines. Web exchange <+ “sum over dipoles”.
(Becher, Neubert (2008), Gardi, Magnea (2008), Dixon (2008) and Dixon, Gardi, Mag-
nea (2009)).

e Much can be understood in terms of scale-independence of
Wilson lines: 3 — (B*. This is quite restrictive for massless
lines. Scale invariance eliminates almost all non-jet velocity
dependence up to three loops, where “conformal cross ratios”

Bi - B Bk * B
Bi - B1 Bk - By

can appear. What really happens beyond three loops isn’t yet
known.
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e As a practical matter, the IR structure of two-loop single-pole

are now understood as
1
. B4 L@ o Lo
zEf
where EH (2 ) is residue of the 2 loop single pole in the Su-
dakov form factor. (Ravindran, Smith, van Neerven (2005); Jantzen, Kuhn,

Penin, Smirnov (2005, 2006) EW logs.)
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e For the massless case, the ‘radical’ simplicity of a dipole form
to all orders explored in 1108.5947, 1109.3581 (pel buca, Duhr, Gardi,

Magnea, White).
Q° i) (@7
Pi» “290‘8(“2)96 — JVlr | “2,043(/1?),6

L 2 d\? A A2
B (@s(A%) > In (SZ]) T;- T,
2 A2 4 {i,5} 2

2 Qz 2
‘|‘%7J,i(a8(>‘ )] H |pis “270‘8(“ )

mlf

X exp | —

e A sum of two-eikonal ‘cusps’ in the exponent.

e Whether or not this holds beyond NNLpole, the simple two-
eikonal, singlet ‘cusp’ becomes even more interesting.



1. The graphical interpretation of exponentiation: the ‘cusp’
(Erdogan, Mitov, GS, Sung)

e An graphical interpretation of exponentiation. An alterna-
tive/interpretation of anomalous dimensions. (It’s more gen-
eral, but we’ll consider just the cusp.)

e Will find an interesting ‘geometrical’ interpretation.

e The 2-line eikonal form factor is the exponential of a sum of
two-eikonal irreducible diagrams, the “webs” with modified
color factors:

(Gatheral, Frenkel Taylor, GS)



e ‘“Webs” in the exponent, w(?). are 2-eikonal irreducible dia-
grams. At 2 loops:

SRR

e All have color factor (fundamental representation)
CrC 4 (only — no 6’12;)



e How it works. Say we know the exponent w(®) to order N.
Expand to NV + 1st order, as a sum of diagrams and in terms
of the exponential

N1 (i)] )(N+1)

AN+ (exp > ow
1=1
AN+ — v p(N+1)
D(N-I—l)

e This gives a formula for the highest order in the exponent:

wN+D) = o pNty Nt T
D(N+1) m=2 m!
w NN plim) gylime1) || gy (i) (N+1)



e To the relation

WNH) o pvin N
D({N+1) m=2 m/!
X ]E\jf e ]g\:f w(zm) fw(im—l) . w(il)](N—l—l)

e Now apply the ‘abelian’ graphical identity, which holds for any

number, length or shape of Wilson lines, simply an expression
of the path ordering of eXp[J dA\B - A(BA)]:

e The identity allows us to interpret the products of lower-order
w'’s in terms of IN 4 1st order diagrams, so that the effect of
all the lower orders is to modify color factors, since these are
unaffected by the identity.



e Important: Consistency with the exponential in terms of anoma-
lous dimensions requires that the webs automatically subtract
all divergences where there is more than one ‘subjet’ in the
web. The entire web is either hard, soft, or collinear to one
line or the other.

e The web acts like a single gluon (consistent with the dipole
exponentiation).



e As ordered exponentials, the webs can be constructed in co-
ordinate space. Care must be taken to preserve gauge invari-
ance, or double-logarithmic exponentiation fails in general.

With this in mind, the result, with an IR cutoff L, is:
(Erdogan, GS, forthcoming)

B(Le) = 5 w @ (1/30))

e Here 0 and A\ are distances along the eikonal lines. The
invariant size of the web fixes the running coupling.

e n.b. Systematic subtractions are necessary to construct this
“web function” w. When this is done,

1
w = — 4A(a3) + O(e)

-3



e Again,

7, dA do
VX o
e A “surface” interpretation is tempting. Indeed this is the

same formula found from gauge/gravity duality for strongly

coupled conformal gauge theory by minimizing a 5-dimensional
surface (Alday, Maldacena (2007)). But here it’'s QCD with a cou-

pling the runs with the size of the web. In a sense, it is just
the invariances of the theory driving the result.

E(L,e) = w (as (1/Ao))



e Another interesting correspondence: polygonal Wilson lines
(Korchemskaya Korchemsky (1993), Drummond et al (2008)...). Webs appear
in “corners, and when defined in a gauge-invariant fashion
give the leading singularities:

e Again, an interesting correspondence to gauge/gravity duality,
and neglecting the running of the coupling, derive formulas
based on minimal surfaces in 5 dimensions, like:

4 1 1 4Wconformal
> Wa(Ba,B,) = /21dy1 /-1 dys
a=1  TVTe ! L7799 — ) (1 — 93)




Conclusions

e Many applications have been left out, especially transverse
momentum and related resummations, low-x and BFKL, and

power corrections.

e Where is this going? A most optimistic conjecture: the graph-
ical interpretation of anomalous dimensions may offer another
window to non-partonic degrees of freedom.



Extra:

e An equivalent form for the soft function:

N2H'2
S M2 Bi - /Bja as(ﬂz) pu=M

o d .
=Pexo{~ v T5(Bi- 05 ()}
XS (19 /87, ’ /6]9 Ks (MZ/NZ))

XPexp{ — /J]\\f/z\r(ﬁb I's (Bi * Bjs s (“2)>}




e Massive lines, for heavy quark and new physics production
.7

e Could

vanish with massive outgoing lines?



e Antisymmetric color combinations with massive Wilson lines
(Mitov, GS, Sung (2009), Becher, Neubert (2009))

e Explicit forms of form-factor like diagrams (Kidonakis (2009))

e Coordinate-space representation can be useful, and give the
same results as momentum space. Integrals over Wilson line
vertices are trivial.

e Nonzero result in Euclidean space (sufficient).

3 Bi - B
F?g)(ﬁI, e) = — [dPx i’jizl €ijk CLGi (m)zlias
0g(Cis
g(Cgae)g(Ckae) g(i 8)
with ¢; = ﬁi/W and
1
g(szg) = j5CdX

(1 —2X¢; + A2)' ¢
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. . 2
e Subsequently,elegant explicit results for I‘fg )(mi)- (Ferrogli, Neu-
bert, Yang (2009)), which check numerically against position space
calculations but can be continued to Miknowski space.

(pr+pJ)?°.
mrmy °

e The “3g” diagram, with cosh 875 =

2
Y€ coth
7 ETTK B17BIK BIk

Amazingly simple! The full result not much more compli-
cated.

e Has a puzzling feature: nonuniform limit from
B=1—4m?/M? — 0-

~ cos 0™

%

(2)(’”%,3) N fln 1 — Bcosf
16, 1 + B cos 6*

But not to worry: threshold factorization with recoil-less Wil-
son lines for outgoing quarks holds only for radiation whose
energy is much smaller than quark relative four-momenta.
Thus as 3 — 0, the range of applicability of this result shrinks

toward zero.




