Dzero Physics Results

GGI seminar Gregorio Bernardi, LPNHE Paris October 7th 2011 Thanks to all Tevatron colleagues, in particular F.Deliot, S.Lammers, M. Williams

Tevatron Luminosity

19 April 2002 - 28 August 2011

CDF and DØ Detectors

- General purpose detectors
- Good hermeticity
- Mature algorithms
- Well understood under all pile-up conditions

	Rapidity coverage	
	CDF	Dzero
Track	2.0	2.5
Calorimeter	3.6	4.2
Muon	1.0	2.0
B-field	1.4 T	2.0 T

Introduction

Standard Model very successful, predicts large range of phenomena;

However, many problems once you leave the low-energy regime:

- Hierarchy/naturalness problem;
- Dark matter;
- No unification of forces;
- Not enough CPV for baryogenesis;
- Why 3 generations?
- No Higgs boson observed yet
- •

We expect 'new physics' to appear somewhere, but where?!

Many extensions to SM, which make testable predictions, generally with new particle content.

Outline

- NP
- B
- QCD
- Electroweak
- **Top**
- Higgs

How to Find New Physics...

New Phenomena analyses: direct searches for signatures of new particles:

Heavy Resonances

Experimental Signature

Narrow M(ee) resonance

Theoretical Model

Also use M(ee), M($\gamma\gamma$) to place limits on KK graviton mass/coupling in Randall-Sundrum models. PRL 104, 241802 (2010)

Leptoquarks

Many extensions of SM have **lepton**↔**quark symmetry**;

Mediating bosons, 'leptoquarks' (LQ) with both quark and lepton number.

Search for 1^{st} generation scalar LQ pairs:

Better than published LHC results for $\beta < 0.3$

arXiv:1107.1849 [hep-ex] Accepted by PRD-RC

Vector-like Quarks, Q

Predicted by certain little Higgs, UED, and warped ED models;

'Vector-like' = left- and right- handed components transform in same way in $SU(3) \times SU(2) \times U(1)$;

Pair: strong interaction, limited mass reach;Production: Single: EW interaction, mixing with SM quarks;

DZero

Wjj: CDF

• Cone size and out of cone corrections.

VS.

• Different treatment of systematic errors and fit to nuisance parameters.

After updated value of CDF, discrepancy with Dzero is smaller (~2.5 sigmas) - the task force has been disbanded. We wait for next CDF paper on the subject

Gregorio Bernardi / LPN GOLFACTING JES

How to Find New Physics with B's

B Physics analyses: Measure parameters sensitive to indirect NP contributions:

New Quarks:

New Gauge Groups:

B meson mixing, asymmetries and CP Violation

Neutral B mesons mix into their antiparticles;

Not CP symmetric: com<u>pl</u>ex phases φ in _____ CKM matrix, i.e. $\Gamma(B^0 \rightarrow B^0) \neq \Gamma(B^0 \rightarrow B^0)$

Physical

parameters of

B_{s.d}⁰ system

Define flavor-specific semileptonic asymmetry:

$$\left[a^{s,d}_{sl} = \frac{\Gamma(\overline{B^0} \rightarrow B^0 \rightarrow \mu^+ X) - \Gamma(B^0 \rightarrow \overline{B^0} \rightarrow \mu^- X)}{\Gamma(\overline{B^0} \rightarrow B^0 \rightarrow \mu^+ X) + \Gamma(B^0 \rightarrow \overline{B^0} \rightarrow \mu^- X)} = \frac{\Delta \Gamma_{s,d}}{\Delta M_{s,d}} \tan \phi_q\right]$$

SM prediction tiny for both B^0 and B_s^0 systems;

New particles in box diagrams can give large enhancements to asymmetry.

Loop integral: sensitive to new particles of **any mass**.

CP violation in neutral B meson semileptonic decays

In same-sign dimuon sample, \sim 30% of muons come from decays of neutral B mesons after mixing.

'Flavor blind' – around 50% from B_s^0 , 50% from B_d^0 ;

Count events; correct for background asymmetries; correct for dilution from symmetric processes;

Measurement repeated in different IP bins – gives sensitivity to a_{sl}^{d} , a_{sl}^{s} separately.

Use background-dominated single muon sample to constrain detector asymmetries and reduce systematic uncertainty.

Asymmetry 3.9σ from SM prediction

PRD 84, 052007 (2011)

15

Anomalous Like-sign Dimuon Asymmetry

Now working on final paper:

- 1) Use **full dataset**. Equalise $N(\mu\mu)$ per polarity sample;
- Use **local muon system variables**; to constrain K/n→µ decay-in-flight fraction;
- 3) Extend use of **muon impact parameter**. Maximise sensitivity by separating signal and BG dominated regions;
- 4) Measure **integrated mixing probability** χ_0 (probability that a B meson has mixed prior to decay). Validation of many aspects of asymmetry measurement.

Asymmetry is a linear combination semileptonic charge asymmetries of B_d^0 and B_s^0

$$A^{b}_{sl} = C_{d}a^{d}_{sl} + C_{s}a^{s}_{sl} ; \qquad a^{b}_{sl} = \frac{\Gamma(\overline{B} \to \mu^{+}X) - \Gamma(B \to \mu^{-}X)}{\Gamma(\overline{B} \to \mu^{+}X) + \Gamma(B \to \mu^{-}X)}$$

Coefficients depend on mean mixing probability and production fractions

- LHCb starts with CP non-invariant initial state:
 - measure difference between Bd and Bs asymmetries
- LHCb MC sensitivity study with 1 fb⁻¹

Flavor-specific Asymmetries

Semi-exclusive decay channels: direct extraction of raw signal asymmetry in B_d^0 and B_s^0 decays;

Measure reconstruction asymmetries of final state particles (muons, kaons, pions) – use data driven methods.

Measure fraction of oscillated mesons using simulation – i.e. account for dilution from charge symmetric processes.

Produce world's best measurements to narrow the constraints in the (a_{sl}^d, a_{sl}^s) plane.

CP Violation in $B_s{}^0{\rightarrow}J/\psi\phi$

Same final states in `mixed' and `direct' decay \Rightarrow interference between diagrams;

CPV arises from overall complex phase $\phi_s^{J/\psi\phi}$

If NP enhancements present: $\phi_s^{J/\psi\phi} \approx \phi_s$

Extract physical parameters including $\Phi_s^{J/\psi\Phi}$, $\Delta\Gamma_{s'} \tau(B_s^0)$, in lifetime-dependent angular fit, including flavor tagging.

arXiv:1109.3166 [hep-ex] Submitted to Phys. Rev. D

Final iteration of this interesting analysis at D0.

Now working on combination paper with CDF.

CP Violation in $B_s{}^0{\rightarrow}J/\psi\phi$

Same final states in `mixed' and `direct' decay \Rightarrow interference between diagrams;

CPV arises from overall complex phase $\phi_s^{J/\psi\phi}$

If NP enhancements present: $\phi_s^{J/\psi\phi} \approx \phi_s$

Extract physical parameters including $\Phi_s^{J/\psi\phi}$, $\Delta\Gamma_{s'} \tau(B_s^0)$, in lifetime-dependent angular fit, including flavor tagging.

arXiv:1109.3166 [hep-ex] Submitted to Phys. Rev. D

Final iteration of this interesting analysis at D0.

Now working on combination paper with CDF.

QCD & Electroweak

Three Main Motivations in SM measurements

Test best available theory predictions

- Explore new kinematic regimes
- provide important inputs to PDFs
- **Search for New Physics**
- anomalous cross sections
- resonances can show up in jets too!
- use SM as a guide

Gregorio Bernardi / LPNHE-Paris

Measure important backgrounds to New Physics

- N(N)LO predictions not available for many processes of interest, particularly those with large jet multiplicities and heavy flavor components => data measurements crucial
- New Physics share signatures with irreducible backgrounds that are currently being pinned down.
- Interplay between fragmentation models, tunes, PDFs and scale choices needs to be understood to model SM backgrounds

Inclusive Jets

Gregorio Bernardi / LPNHE-Paris

a_s extraction

The coupling strength, a_s , is scale dependent: $a_s(\mu_R)$ Renormalization Group Equation predicts μ_R -dependence

Extract a_s from 22 (out of 110) inclusive jet cross section data points at 50<p_T<145 GeV

- \rightarrow Exclude data points with large influence on PDF set
- NLO + 2-loop threshold corrections
- MSTW2008NNLO PDFs
- Extends results from HERA to high $\ensuremath{p_{\text{T}}}$

precise a_s measurement: $\alpha_s(Mz) = 0.1161^{+0.0041}_{-0.0048}$

Trijets and R3/2

• Tests of pQCD at high jet multiplicity

<u>σ(3jet)/σ(2jet)</u>

Additional opportunities to extract a_s (future)

<u>3-jet mass</u>

Differential cross sections measurements:

- data are corrected to particle level
- particle level measurements are compared to NLO theory
- NLO theory is corrected to particle level using parton shower MC

$W \rightarrow ev + jets$

Precise measurements of W+(n) jet (n=1,2,3,4) inclusive cross sections and differentially as function of n^{th} jet p_T

Small data uncertainties allow detailed study of NLO theory

Data compared to two indep. NLO implementations - led to bug fixes in MCFM

Differences in NLO theory attributed to choice of scale

PRD in preparation ^t with comprehensive set of observables

Z+b jets

Interesting test of pQCD predictions and b-quark and fragmentation.

Important background to the SM Higgs search in the ZH(\rightarrow bb) channel.

Probe of b-quark parton distribution function

 $\sigma(Z+b)$ / $\sigma(Z+j)$ benefits from cancellations of many systematic uncertainties

 \Rightarrow precise comparison with theory

Z+b/Z+jet = .0193 ± .0022(stat) ± .0015 (syst) -- in agreement with NLO pQCD (which has 20-25% scale uncertainty)

 $\gamma + b$ differential cross section vs p_T also in agreement with NLO

new W+b and updated W+c, Z+b, y+b, y+c measurements in preparation

Inclusive W and Z

Gregorio Bernardi / LPNHE-Paris

27

Z/γ* Forward-Backward Asymmetry

 $A_{FB} = (\sigma_F - \sigma_B)/(\sigma_F + \sigma_B)$ where $\sigma_F (\sigma_B)$ is $\theta > 0$ ($\theta < 0$)

Interference between Z and γ^* diagrams leads to an enhanced symmetry away from Z pole -- high mass dominated by Z - γ^* interference

-- near the Z pole, sensitive to $sin^2\theta_{eff}$

Extraction of effective weak mixing angle: $sin^2\theta_{eff} = .2309 \pm .0008 (stat) + .0006 (syst)$

Z/y* Forward-Backward Asymmetry

 $A_{FB} = (\sigma_F - \sigma_B)/(\sigma_F + \sigma_B)$ where $\sigma_F (\sigma_B)$ is $\theta > 0$ ($\theta < 0$)

A_{FB} sensitive to couplings of the light quarks to the Z

most precise measurements of these light quark couplings to the Z to date!

(b)

68% C.L

2-D and 4-D fits are made to u, d vector and axial vector couplings to Z 68% confidence level contours of g_V^u compared to other experiments

,
$$g^u_A$$
 and g^d_V , g^d_A

Gregorio Berna

Lepton Charge Asymmetry in W→lv

Lepton asymmetry is convolution of W boson asymmetry and asymmetry from (V-A) nature of W boson decay

Precise measurement provides important PDF inputs

Lepton Charge Asymmetry in W→lv

$$A(\eta) = rac{d\sigma(\mu^+)/d\eta - d\sigma(\mu^-)/d\eta}{d\sigma(\mu^+)/d\eta + d\sigma(\mu^-)/d\eta}$$

Lepton asymmetry is convolution of W boson asymmetry and asymmetry from (V-A) nature of W boson decay

Precise measurement provides important PDF inputs

Two bins of lepton E_T probe different regions of W rapidity \rightarrow finer probe of x-dependence

Dibosons

Dibosons - Wy

search for radiation amplitude zero (RAZ)
seen as a dip in signed γ-l rapidity difference
look for anomalous

couplings

Results are in agreement with SM prediction, and we produce some of the best AC limits at hadron collider to date!

Submitted to PRL <u>arXiv:1109.4432</u> Gregorio Bernardi / LPNHE-Paris

Dibosons - WW, WZ, ZZ

Large dataset allows us to measure processes with σ as low as~ 1pb

- 100 leptonic WW events in 1.1 fb-1 $\sigma(p\bar{p} \rightarrow WW) = 11.5 \pm 2.1(syst + stat) \pm 0.7(lumi)$
- 34 leptonic WZ events in 4.1 fb-1 $\sigma(p\bar{p} \to WZ) = 3.9^{+1.06}_{-0.9} \ pb$
- 10 leptonic ZZ events in 6.4 fb-1 $\sigma(p\bar{p} \to ZZ) = 1.45^{+0.53}_{-0.43} \ pb$

200 DØ, 6.4 fb¹ 4e Data * 4μ Data 150 Δμ2e Data Signal+Background	All in agreement with SM, stringent AC limits set		$\begin{array}{l} 95\% \text{ C.L. Limit} \\ \hline -0.075 < \lambda_Z < 0.093 \\ -0.053 < \Delta g_1^Z < 0.156 \\ \hline -0.376 < \Delta \kappa_Z < 0.686 \\ \hline -0.075 < \lambda_Z < 0.093 \\ \hline -0.027 < \Delta \kappa_Z < 0.080 \end{array}$
100 50 50 100 150 200 M ₁ (GeV)	First evidence (4.2 σ) for WV \rightarrow Ivjj at the Tevatron $\sigma(WV) = 20.2 \pm 4.5 \text{ pb}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	+ Data - Background Diboson Signal - ±1 s.d. on Background χ^2 Prob = 0.45 χ^2 Prob = 0.45 150 200 250 300 Dijet Mass (GeV)

Dibosons - WZ, ZZ

Fully leptonic final state

Lepton + jets final state

work in progress!

Updated measurement uses 8.6 fb⁻¹

Prompt Diphoton Production

- Prompt diphotons are produced directly in hard scattering or through quark fragmentation
- sensitive to energy scale, ISR, fragmentation, PDFs

H->γγ currently main channel for SM Higgs discovery at low mass at LHC

Theory predictions: PYTHIA: Parton Shower DIPHOX: fixed order NLO calculation RESBOS: Resummed calculation (to NNLL)

In region where SM Higgs and New Physics is of most interest, RESBOS gives excellent data description

Data is not described at lowest diphoton masses

Phys. Lett. B **690**, 108 (2010), arXiv.org:1002.4917

Diffraction and Elastic Scattering

Gregorio Bernardi / LPNHE-Paris

37

Total Elastic Cross Section

- Fundamental measurement of $d\sigma/dt$ t = 4-momentum transfer
- Gives information on nucleon structure, non-perturbative effects
- First measurement using FPD, data taken in special runs
- Compare to phenomenological models, other experiments

Double Parton Interactions

Look for two hard scatters in same p-pbar interaction

DP Updates in the works:

- unfolding distributions
- triple parton interactions
- γ + b + 2 jets topology
- parton x correlations
- ➡ provides information for building optimal MPI model

 Provides complementary information on proton structure
May be important background for high-p_T searches

Discriminant:

$$\Delta S = \Delta \phi \left(\mathbf{p}_{\mathrm{T}}^{\gamma, jet_{i}}, \ \mathbf{p}_{\mathrm{T}}^{jet_{j}, jet_{k}} \right)$$

 \vec{P}_{T} \vec{P}_{T} $\Delta S \vec{p}_{T}$ \vec{P}_{T} \vec{P}_{T} \vec{P}_{T} \vec{P}_{T} \vec{P}_{T}

Uses γ + 3 jet topology

 $\Delta \phi$ - an azimuthal angle between two best pT-balanced pairs.

W mass

W mass is a key parameter in the Standard Model. This model does not predict the value of the W mass, but it predicts this relation between the W mass and other experimental observables:

$$M_W = \sqrt{\frac{\pi\alpha}{\sqrt{2}G_F}} \frac{1}{\sin\theta_W \sqrt{1-\Delta r}}$$

Radiative corrections (Δ **r)** depend on M_t as ~M²_t and on M_H as ~log M_H. They include diagrams like these:

Precise measurements of M_w and M_t constrain SM Higgs mass.

For equal contribution to the Higgs mass uncertainty need: $\Delta~M_{_W}\thickapprox~0.006~\Delta~M_{_t}$. The limiting factor here will be ΔM_w , not ΔM_t !

Additional contributions to Δr arise in various extensions to the Standard Model, *e.g.* in SUSY:

W mass

Impact of W mass

B

W mass, now and soon

source of uncertainties	1 fb-1	6 fb-1	10 fb-1	ŀ
				ŧ
Statistics	23	10	8	
				ŀ
Systematics				
Electron energy scale Electron resolution Electron energy offset Electron energy loss Recoil model Electron efficiencies Backgrounds	34 2 4 6 5 2	14 2 3 3 3 3 2	11 2 2 2 2 3 2	
Total Exp. systematics	35	16	13	
Theory PDF QED (ISR-FSR) Boson Pt	9 7 2	6 4 2	4 3 2	
Total Theory	12	8	5	
Total syst+theory (if theory unchanged)	37	18 20	14 17	
Grand total	44	21	16	

Summary for QCD and Electroweak

- QCD and EW legacy measurements
 - unprecedented precision
 - extract fundamental constants like a_s and $sin^2\theta_W$ from measurements
 - we will learn more by looking at the full dataset
- Precision physics => this has taken us years to achieve, techniques have been ported to the LHC experiments
- Our inputs to PDF fits have large impact
- W/Z/γ + jets, diboson measurements crucial for understanding backgrounds to New Physics and SM Higgs searches
- Anomalous coupling limits are some of the world's best
- Expect to see several new results using the full 10 fb⁻¹ in 2012

Тор

Top Pair Measurements in All Possible Channels

Top Pair Cross Sections at 1.96 TeV

in addition to the cross section

- cross section ratios (limit on t->H+b)
- fit the cross section together with R to extract V_{tb} :

 $R = \frac{\mathcal{B}(t \to Wb)}{\mathcal{B}(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{tb}|^2 + |V_{ts}|^2 + |V_{td}|^2}$

 $|V_{tb}| = 0.95 \pm 0.02$ assuming CKM unitarity arXiv:1106.5436

Future measurements will focus on differential cross sections Only Tevatron can measure them at 1.96 TeV ;)

Electroweak Top Production at Hadron Colliders

- predicted since the 80s
- allows to directly measure V_{tb}
- challenging to measure
- small cross section and background similar signature than signal
- not possible with counting only (bkg uncertainty larger than the signal):
- multivariate techniques

Single Top Cross Section

2

n

6

8

√s [TeV]

Single Top Perspectives at the Tevatron

for $m_t = 172.5$ GeV:	σ_{tb}	σ_{tqb}	σ_{tW}
(in pb)			
$p\bar{p}$ @ 1.96 TeV	1.04 ± 0.04	2.26 ± 0.12	0.28 ± 0.06
pp @ 7 TeV	$\begin{array}{c} {}_{\rm PRD \ 74, \ 114012 \ (2006)} \\ {}& 4.6 \pm 0.3 \\ {}_{\rm PRD81, \ 054028 \ (2010)} \end{array}$	64.6 ^{+3.3} PRD83, 091503 (2011)	15.7 ± 1.4 PRD82, 054018 (2010)

- s-channel
- challenging at LHC
- legacy measurement of the Tevatron

latest D0 measurement (5.4 fb-1, arXiv:1105.2788): expected sensitivity close to 3σ

with 10 fb⁻¹, should get evidence maybe observation when combination with CDF ?

Top Quark Mass

- the top quark is the only "natural" quark:
- coupling to the Higgs boson close to 1: special role in the electroweak symmetry breaking ?
- together with M_w, predict the Higgs boson mass
- how to measure the top mass ?
 - template method:
 - * compare an observable in data with MC generated with different masses
 - ideogram method:
 - * event likelihood computed as a convolution of a Gaussian resolution function with a Breit-Wigner (signal)
 - matrix element method:
 - \ast build an event probability based on the LO tt matrix element using the full kinematics of the event
- mass extraction from the tt cross section

- using the experimental and theoretical cross sections vs. mass (well defined renormalization scheme): method first used at D0 to extract both the pole mass and the MS mass (PLB 703, 422 (2011))

 $\begin{array}{l} \lambda_t \approx 1 \; !! \\ m_t >> m_b \end{array}$

Top Quark Mass Measurements

- uncertainty below 1 GeV

- all channels give consistent results

- still working on decreasing the systematic uncertainties

Top Pair Spin Correlations

- in the SM, the spin of the top and of the antitop are produced correlated
- correlation preserved in the decay products
- very sensitive observable to search for new physics

- measurement method:
- latest measurements use a new method based on matrix element: measure f, fraction of events with spin correlation using a template fit of R

• complementary measurement at the LHC

- mainly gg-> tt
- ATLAS dilepton: $A=0.34^{+0.15}-0.11$ (helicity basis, $A_{SM}=0.32$)
- also ~ 3σsensitivity

 $\Delta \Phi = |\Phi_{l+}-\Phi_{l-}|$ (in the lab frame)

- at the Tevatron, still statistically limited
- using the full dataset should at least improve the error by $\sqrt{2}$
- possible analysis improvement (c-tagging in the lepton+jets channel)
- combination with CDF

Searches in the Top Sector

• only a few examples

No sign of new physics so far, but....

Top-Antitop Charge Asymmetry

At NLO, QCD predicts an asymmetry for tt produced via qq initial state - the

top quark is predicted to be emitted preferably in the direction of the incoming quark - the exchange of new particles like Z' or axigluon could modify it

Tevatron Top Charge Asymmetry Results

• CDF measurements

$A_{t\bar{t}}$	ljets	ljets $(M_{t\bar{t}} \ge 450 \text{ GeV})$	dilepton
unfolded data	0.158 ± 0.074		0.42 ± 0.16
SM prediction (MCFM)	0.058 ± 0.009		0.06 ± 0.01

3.4 σ difference

D0 ljets measurement

- unfold the reconstructed distribution to correct for acceptance and detector effects

Forward-Backward Top Asymmetry, %

Forward-Backward Top Asymmetry, %

Statistically limited measurements, need better understanding of the predictions

Top Charge Asymmetry Prospect

Tevatron perspectives

- D0 dilepton result with 5.4 fb⁻¹ soon in review :
- $\sqrt{2}$ improvement
- combination with CDF: another $\sqrt{2}$
- we have to conclude on the effect with the full dataset: is it really new physics ?

Searching for the Higgs Boson

Tevatron has already shown that the "high mass" part of the electroweak-favored range is excluded \rightarrow SM Higgs is between ~115 and ~150 GeV.

This summer, LHC has confirmed and extended these limits: it is also starting to confirm directly that higher masses (> 180 GeV) are not possible for SM Higgs (work to be completed with more LHC luminosity).

Higgs has a low mass and is in a region where its Branching Ratios vary rapidly as a function of its mass

Challenge: we need to combine all decay modes to find it, but we also need individual measurements to identify it as the SM Higgs boson!

→ Remind Tevatron strategy, starting from the high mass channels, then moving to the H→bb search, where Tevatron has unique capabilities

Higgs Search Strategy @ Tevatron

Optimize all channels individually, based on production and decay properties.

- Select inclusive candidate samples maximizing acceptance to potential Higgs signals (different masses probed)
- Separate further these channels into multiple analysis subchannels of different S/B, to improve the sensitivity.
- Model all backgrounds using simulation and data, with detailed verifications on independent control regions in data
- Use advanced multivariate analysis tools to separate signal from background based on the full event kinematics
- Derive systematic uncertainties from independent measurements, both in normalization and on the shape of their distributions.
- Use standard statistical approaches and constrain the systematic uncertainties to the data, to obtain the best search results.

CDF/D0 H \rightarrow **WW** \rightarrow **I** $_{\rm V}$ **I** $_{\rm V}$ **Limits**

Both experiments exclude SM Higgs boson around 165 GeV → combined yield:

62

Low Mass Higgs Searches

Increase lepton reconstruction and selection efficiencies

Specific to low mass analyses:

Optimize dijet mass resolution → needs precise calibration and resolution for gluon and quark jets separately

→ new techniques explored (NN, tracks + calorimeter cells) we are not done yet!

Improve the efficiency for tagging b-quark jets

- separate b,c,light.

From Dijet mass to Multi Variate Analysis

- To improve S/B → utilize full kinematic event information
- Multi Variate Analyses are used to maximize search sensitivities
 - Neural Networks
 - Boosted Decision Trees
 - Matrix Element Calculations
- Visible gain obtained (~20% in sensitivity)

Results from DØ

~10% gain on sensitivity

Gregorio Bernardi / LPNHE-Paris

(i.e. on top of gain due to luminosity) ⁶⁵

Dibosons with Heavy Flavor Jets

🔶 Data

VZ Тор V+h.f./WW V+I.f. Multijet

MET + HF jets

 $Z \rightarrow bb$ yields is 5 times larger, but more W+jets, and also background from WW.

Apply similar analysis as low mass $H \rightarrow bb$ analysis, and check sensitivity.

2.8 s.d. from BG-only hypothesis

CDF/D0 Limits

Similar shapes: small deficit below 115 GeV, small but broad excess around 130 GeV, exclusion around 160 GeV

New Tevatron Combination

Observed Exclusion : 100-109 and 156-177 GeV Expected Exclusion : 100-108 and 148-181 GeV

Tevatron Run II Preliminary H \rightarrow bb Combination, L \leq 8.6 fb⁻¹

 $H \rightarrow bb$ channel provides best sensitivity in the mass region just above the LEP bounds

Evidence/observation of this decay mode is important for establishing that a Higgs-like signal found in other channels is in fact the SM Higgs. It will be best done at the Tevatron in the foreseeable future.

Conclusions and Outlook on Higgs

Tevatron exclusion has been extended at high mass

Tevatron is reaching exclusion sensitivity at lowest mass (~115 GeV)

On track to reach 95% CL exclusion sensitivity over expected m_H range, i.e. from 100 to 185 GeV

Best sensitivity to H→bb , → Tevatron will remain complementary to LHC at least until 14 TeV Run

Publications

32 publications in 2010 Very good first part of 2011, already 34 publications, Aiming at breaking the year record of 46!

247 total

$\Lambda_b \rightarrow J/\psi \Lambda$ Branching Fraction

Particle properties (masses, decay BRs, lifetimes etc) sensitive to different models of nonperturbative QCD.

Measure BR relative to topologically similar, well-measured reference channel $B^0 \rightarrow J/\psi K_S^0$:

$$\sigma_{\rm R} \equiv \frac{f(\mathbf{b} \rightarrow \Lambda_{b}) \cdot \beta(\Lambda_{b} \rightarrow J/\psi\Lambda^{0})}{f(\mathbf{b} \rightarrow B^{0}) \cdot \beta(B^{0} \rightarrow J/\psiK_{s}^{0})} =$$

$$0.345 \pm 0.034 \text{ (stat.)} \pm 0.033 \text{ (syst.)} \pm 0.003 \text{ (PDG)}$$
(existing WA: 0.270 ± 0.130)

Factor 3 improvement on previous W.A. precision.

PRD-RC 84, 031102 (2011)

Dibosons - Zy

Z/γ* transverse momentum

- Z/γ* kinematics provides colorless probe of underlying collision process
- Z / γ^* p_T is excellent probe of ISR
- results are presented at particle level
- Pythia Perugia6 gives best description of data over entire kinematic range
- p_T distribution uncertainty dominated by detector resolution and efficiencies
- alternate approach:

$$\phi_\eta^* = an([(\pi - \Delta \phi)/2] \sin heta^*)$$

where

$$\cos heta^* = anh[(\eta^{(-)}-\eta^{(+)})/2]$$

• sensitive to same physics, but much reduced detector uncertainties

Data are compared with resummed calculation: small uncertainties allow for detailed comparison

$Z/\gamma^* \rightarrow II + jets$

- Z provides colorless probe of collision and hard scale → study kinematics of hadronic recoil
- Extensive set of measurements carried out in electron and muon decay channels which examined jet p_T (1,2,3 jets), Z p_T, angular correlations
- Novel techniques employed for unfolding, thorough study of systematics
- Careful studies of different theoretical effects: NLO corrections, PDFs, MC tunes
- Techniques have been carried forward to other V+jets measurements

Gregorio Bernardi / LPNHE-Paris

SM and Fermiophobic Higgs in *yy* **final state**

CDF-D0 combinations: Best fermiophobic Higgs limits: mH > 119 GeV

