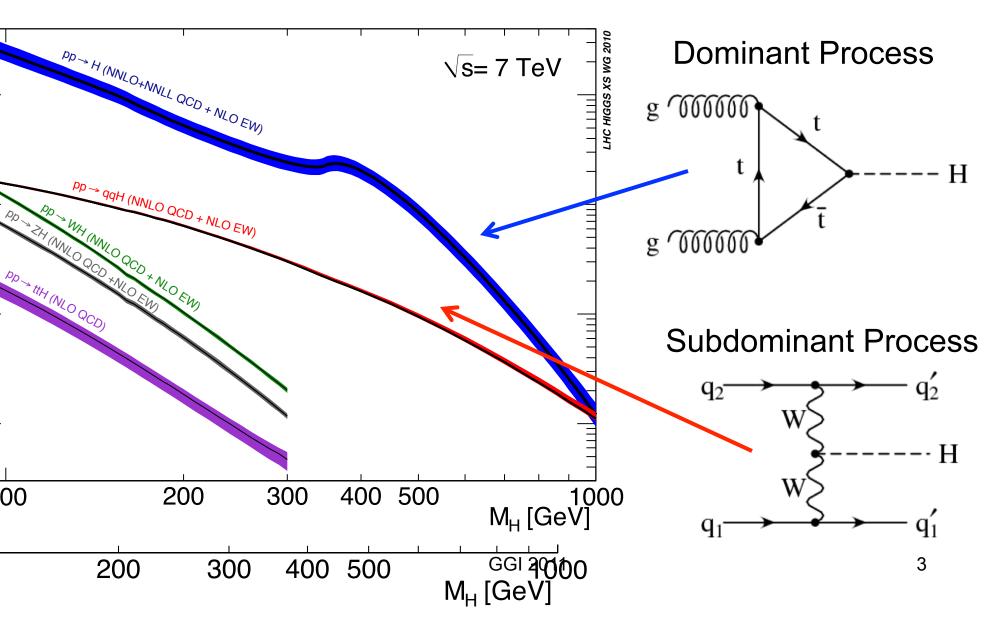
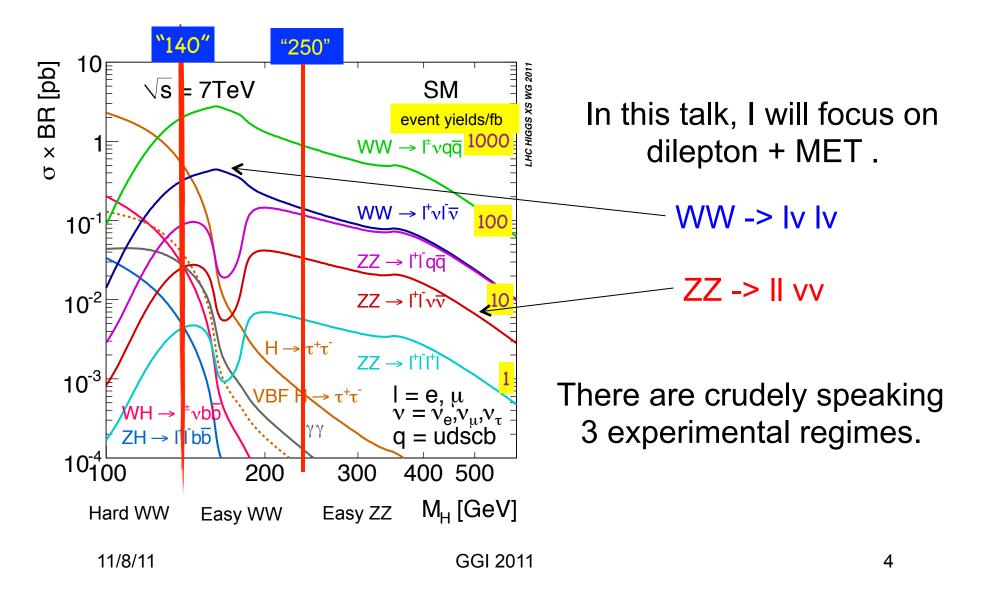


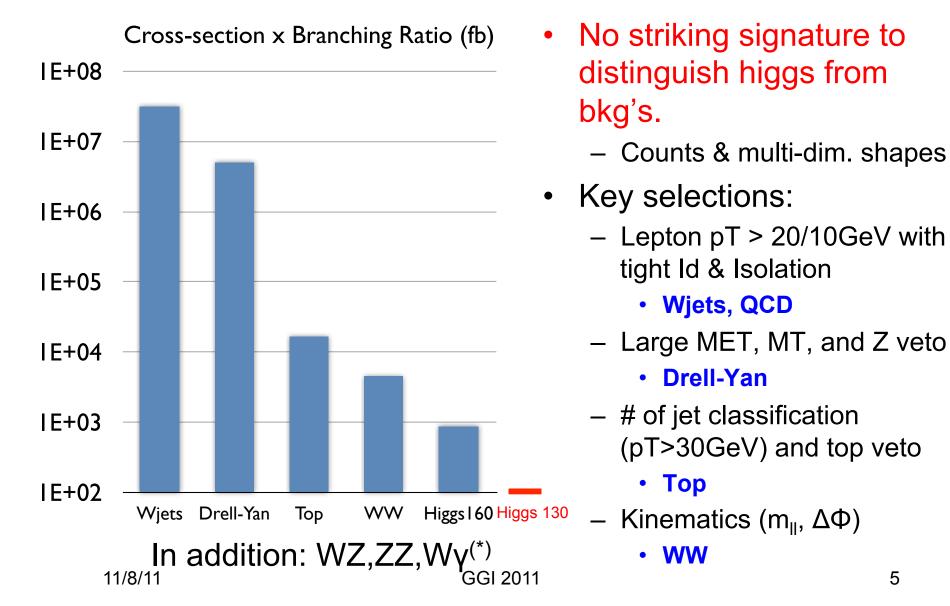
Search for Higgs in the dilepton dineutrino final state with CMS

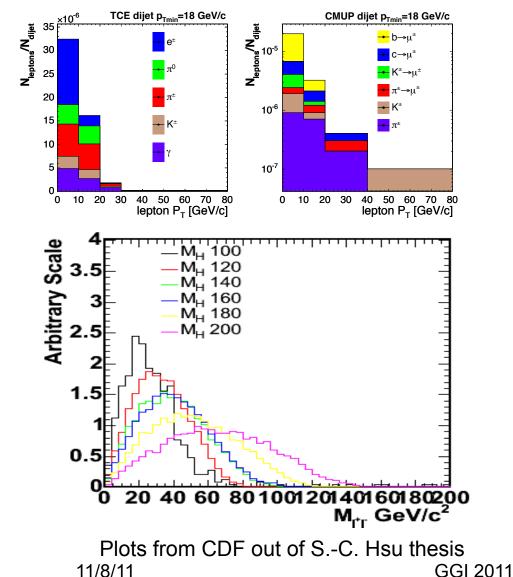
Frank Würthwein UCSD


Outline

- Introduction
- H to WW to lv lv
 - Background Suppression & Estimation
 - Results
- H to ZZ to II vv
 - Background Suppression & Estimation
 - Results
- Outlook




Higgs Production x Decay


Analysis Challenges SM backgrounds

UCSD H -> WW for low vs medium mass

Bkg from Wjets grows as lepton pT decreases.

Lepton pT decreases as W* becomes more virtual.

Bkg from DY grows for very small dilepton mass.

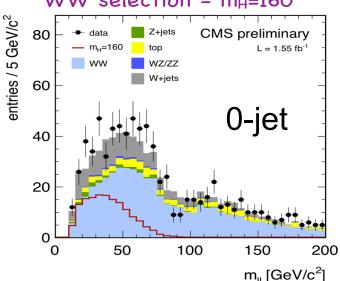
Dilepton mass is small for low higgs mass.

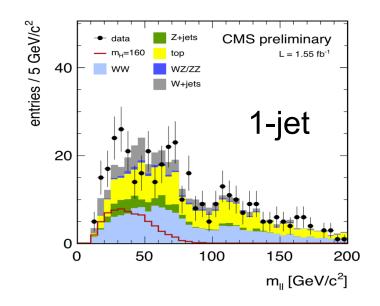
WW vs ZZ for high mass

- As higgs mass increases the boost of the Z in higgs to ZZ leads to significant MET and significant transverse mass of the II+MET system.
- This makes H -> ZZ -> II + MET an interesting channel in the mH ~ 300 – 500 GeV range already this year.

Outline

- Introduction
- H to WW to lv lv
 - Background Suppression & Estimation
 - Results
- H to ZZ to II vv
 - Background Suppression & Estimation
 - Results
- Outlook



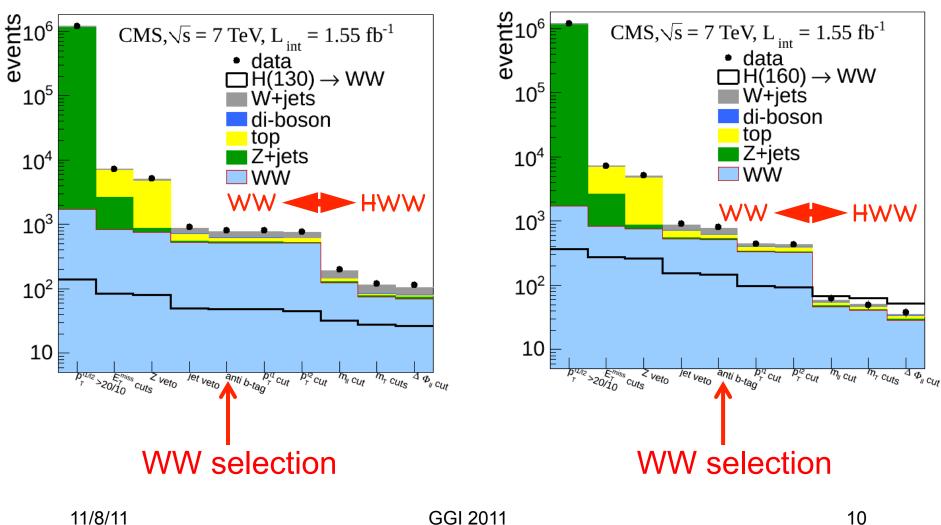


- Evaluated at HWW selection
 - WW (for mH < 200GeV)
 - Wjets
 - Drell-Yan
- Evaluated at WW level
 - Top
 - rely on MC to extrapolate to HWW

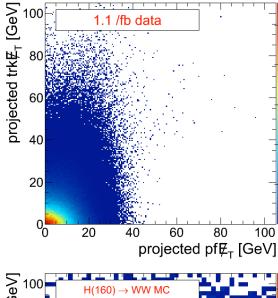
GGI 2011

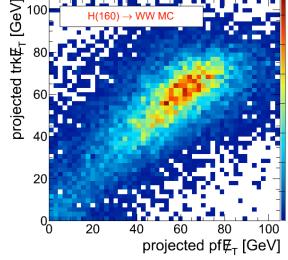
- Bkg estimated from MC
 - Dibosons (WZ,ZZ,Wγ)
 - Z to тт

11/8/11



Cut based analysis




H160

Missing Energy with PileUp Missing Energy and pile-up

• 2011 data differs from 2010:

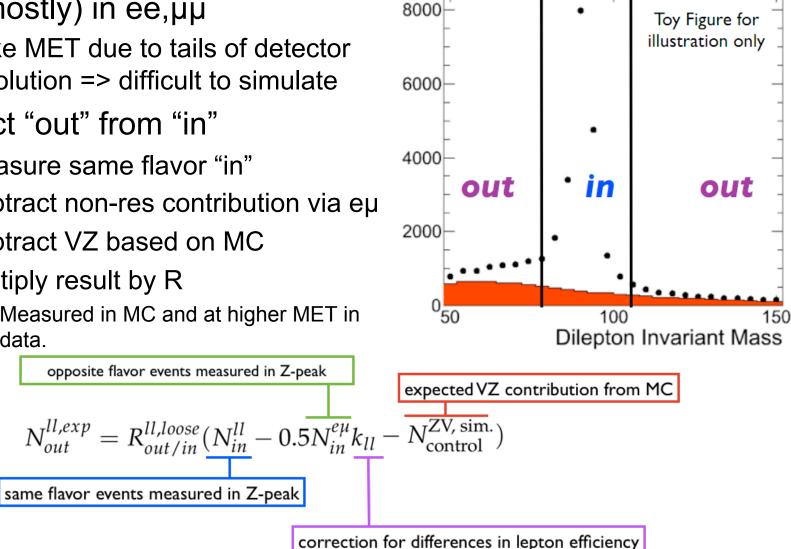
- ~8 interactions per bunch crossing
- larger tails in the missing energy distribution

• Two different MET variables:

- nominal calorimeter and tracker
- only tracker based MET
 - not affected by pile up

• pfMET and trkMET are weakly correlated for backgrounds

- use the smaller one for each event
- minMet>40 (same flavor)
- minMet>20 (opposite flavor)



Drell-Yan Estimation

GGI 2011

- DY (mostly) in ee,µµ
 - Fake MET due to tails of detector resolution => difficult to simulate
- Predict "out" from "in" •
 - Measure same flavor "in"
 - Subtract non-res contribution via eu
 - Subtract VZ based on MC
 - Multiply result by R —
 - Measured in MC and at higher MET in data.

11/8/11

Wjets Estimation

- Measure "FR" with QCD events
 - FR = prob. for "fake" lepton that passes loose selection to also pass tight lepton selection.
 FR = function of (pT,n)
- Extrapolate Wjets applying FR onto 1 loose
 1 tight after higgs selection

Validation of Method in same sign at WW selection:

Type	Yield
Estimated events from fake rate method	$68.4 \pm 3.8^{+15.6}_{-10.6}$
Observed same-sign events in Data	92
Monte Carlo estimate of non-fake contribution (WZ & W γ) GGI 2011	28.0 ± 1.9
Fake background observed GGI 2011	64.0 ± 9.7

CMS preliminary

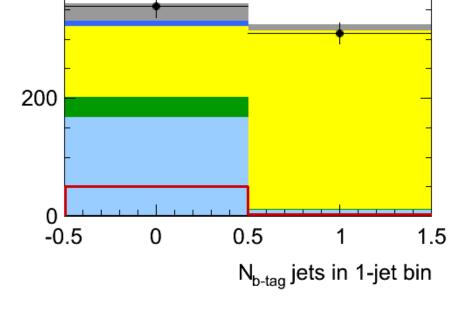
 $L = 1.1 \text{ fb}^{-1}$

600

400

entries

Top Background Top background



- Jet veto kills top soft b-jets Remaining top can be tagged
 - Somethypethons
- Top the generation of the second seco
- Top tagging eff. ~50% in 0-jet Estimate residual top: Residual top estimated via:

$$N_{top} = N_{tag} \frac{\varepsilon}{1 - \varepsilon}$$

- Measure ε in 1 b-jet events There must be another b-quark
- Systematics ~20-30%

Z+jets

WZ/ZZ

W+jets

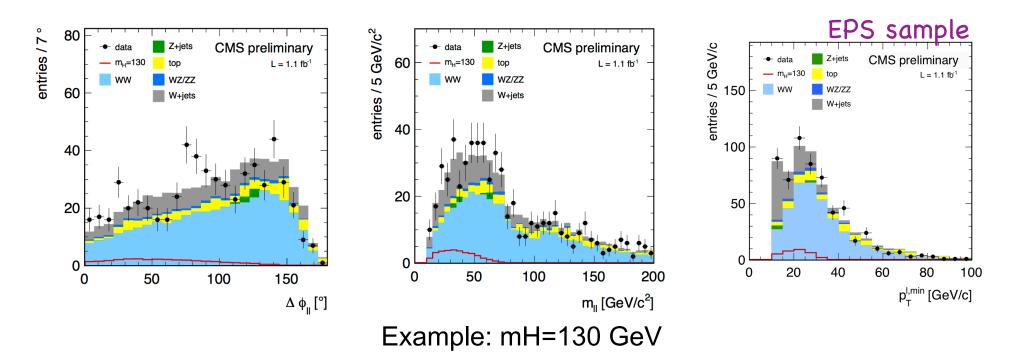
top

data т_н=160

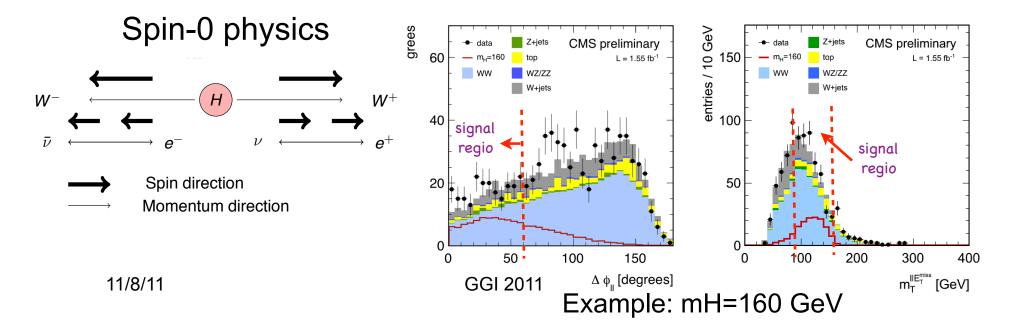
ww

Yields at WW selection

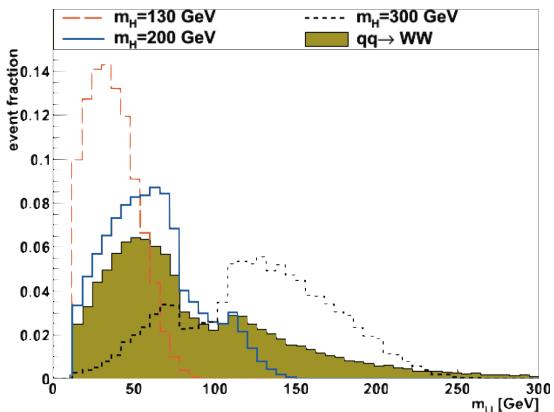
Summary of yields for 1.6/fb in the 0-, 1-, 2-jet bins.


[data all bkg. qq -		$qq \rightarrow W^+W^-$	$v \rightarrow W^+W^ gg \rightarrow W^+W^-$		$W + \gamma$	
[0-jet	811	771.2 ± 52.2	494.8 ± 2.5	23.8 ± 0.3	72.6 ± 17.4	12.3 ± 1.9	
	1-jet	435	427.6 ± 24.7	152.1 ± 1.4	8.2 ± 0.1	156.3 ± 15.6	3.4 ± 1.0	
	2-jet	252	235.4 ± 18.0	33.2 ± 0.7	1.5 ± 0.1	131.7 ± 13.2	1.6 ± 0.7	
	$ WZ/ZZ \text{ not in } Z/\gamma^* \rightarrow \ell^+ \ell^- $			$\ell^- \mid Z/\gamma^* \to \ell^-$	$\ell^+ \ell^- + WZ + ZZ$	$Z/\gamma^* \to \tau^+ \gamma$	$\tau^- W + je$	ets
0-jet	12.0 ± 0.4			15	15.2 ± 7.6		138.5 ± 4	49.8
1-jet	10.1 ± 0.4			16	16.3 ± 8.2		56.3 ± 2	20.3
2-jet	2.2 ± 0.2			28.	3 ± 14.2	4.3 ± 0.8	22.6 ±	8.1

Yields agree with expectations. Measure WW cross section as a crosscheck



- Irreducible background with no single striking discriminator
- Kinematic shapes in multidimensional space
 - low mass, $\Delta \Phi_{\parallel}$, lepton momenta, transverse mass of higgs



$m_{\rm H}[{ m GeV}]$	$p_{\mathrm{T}}^{\ell,\mathrm{max}}$ [GeV/c]	$p_{\mathrm{T}}^{\ell,\mathrm{min}}$ [GeV/c]	$m_{\ell\ell} [{\rm GeV}/c^2]$	$\Delta \phi_{\ell\ell}$ [dg.]	$m_T^{\ell\ell E_T^{ m miss}}$ [GeV/ c^2]
	>	>	<	<	[,]
130	25	10	45	90	[75,125]
150	27	25	50	90	[80,150]
160	30	25	50	60	[90,160]
					[120,180]
					[120,200]
					[120,300]

- For mH < 200GeV there is very little higgs contribution above 100GeV in dilepton mass.
- We thus can use that region to determine the normalization of WW bkg, and extrapolate into the higgs selection region using MC.

11/8/11

GGI 2011

Outline

- Introduction
- H to WW to lv lv
 - Background Suppression & Estimation
 - Results
- H to ZZ to II vv
 - Background Suppression & Estimation
 - Results
- Outlook

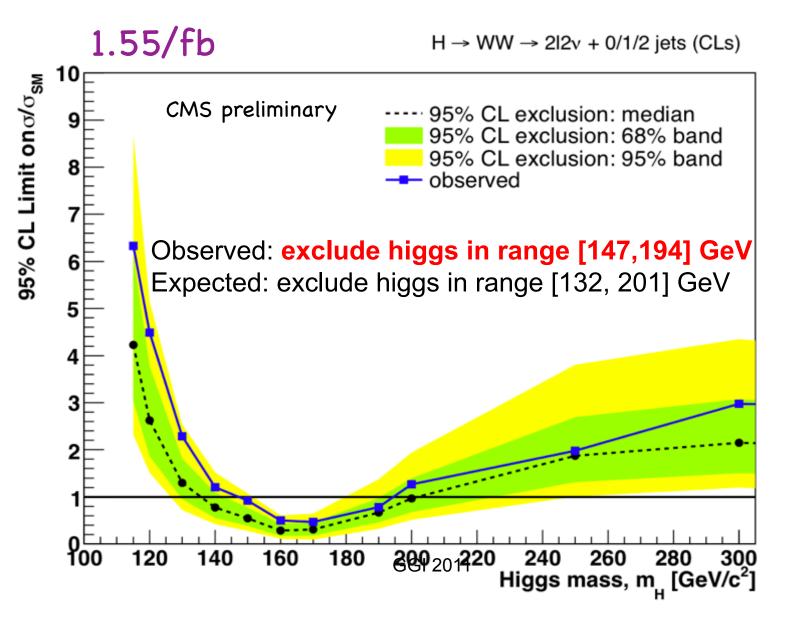
Example: mH=140GeV

Process	0-j OF	0-j SF	1-j OF	1-j SF	2-ј
qqWW	31.5 ± 5.5	29.1 ± 5.1	8.3 ± 3.1	5.8 ± 2.2	0.6 ± 0.2
m ggWW	1.5 ± 0.8	1.3 ± 0.7	0.5 ± 0.3	0.3 ± 0.2	0.1 ± 0.1
\overline{VV}	0.8 ± 0.1	0.5 ± 0.1	0.5 ± 0.1	0.3 ± 0.1	0.0 ± 0.0
Top	3.1 ± 1.1	1.4 ± 0.5	5.6 ± 1.2	3.2 ± 0.8	2.6 ± 1.5
Zjets	0.1 ± 0.0	3.1 ± 4.2	0.2 ± 0.1	1.2 ± 2.7	0.8 ± 0.6
Wjets	5.6 ± 2.3	5.3 ± 2.2	2.4 ± 1.1	1.5 ± 0.9	1.0 ± 0.6
${ m W}\gamma$	1.5 ± 0.7	0.0 ± 0.0	0.0 ± 0.0	0.2 ± 0.2	0.0 ± 0.0
$\mathrm{Z} au au$	0.0 ± 0.0	0.0 ± 0.0	0.2 ± 0.2	0.0 ± 0.0	0.2 ± 0.2
Tot. Bkg.	44.0 ± 6.2	40.6 ± 7.0	17.8 ± 3.5	12.6 ± 3.7	5.3 ± 1.7
Higgs	19.1 ± 4.3	16.1 ± 3.6	7.7 ± 2.6	5.3 ± 1.8	2.5 ± 0.3
Data	46	41	23	23	7

Good agreement between observed and expected No sign of Higgs

11/8/11

Example: mH=140GeV

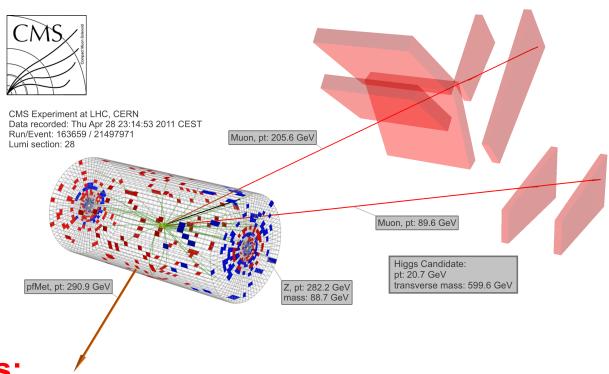

Process	0-j OF	0-j SF	1-j OF	1-j SF	2-ј
qqWW	31.5 ± 5.5	29.1 ± 5.1	8.3 ± 3.1	5.8 ± 2.2	0.6 ± 0.2
ggWW	1.5 ± 0.8	1.3 ± 0.7	0.5 ± 0.3	0.3 ± 0.2	0.1 ± 0.1
\overline{VV}	0.8 ± 0.1	0.5 ± 0.1	0.5 ± 0.1	0.3 ± 0.1	0.0 ± 0.0
Top	3.1 ± 1.1	1.4 ± 0.5	5.6 ± 1.2	3.2 ± 0.8	26 ± 15
Zjets	0.1 ± 0.0	3.1 ± 4.2	0-jet has m	ost of the s	ensitivity
Wjets	5.6 ± 2.3	5.3 ± 2.2	2.4 ± 1.1	1.5 ± 0.9	1.0 ± 0.6
$ m W\gamma$	1.5 ± 0.7	0.0 ± 0.0	0.0 ± 0.0	0.2 ± 0.2	0.0 ± 0.0
$\mathrm{Z} au au$	0.0 ± 0.0	0.0 ± 0.0	40.2 ± 0.2	0.0 ± 0.0	0.2 ± 0.2
Tot. Bkg.	44.0 ± 6.2	40.6 ± 7.0	17.8 ± 3.5	12.6 ± 3.7	5.3 ± 1.7
Higgs	19.1 ± 4.3	16.1 ± 3.6	7.7 ± 2.6	5.3 ± 1.8	2.5 ± 0.3
Data	46	41	23	23	7

Good agreement between observed and expected

No sign of Higgs

11/8/11

Outline



- Introduction
- H to WW to lv lv
 - Background Suppression & Estimation
 - Results
- H to ZZ to II vv
 - Background Suppression & Estimation
 - Results
- Outlook

H to ZZ to II vv

Key Issues:

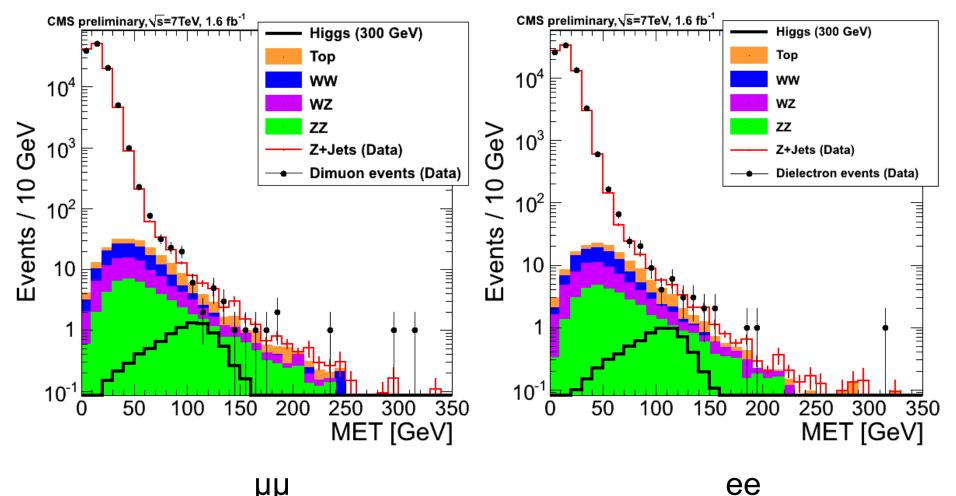
- MET resolution and its non-gaussian tails Zjets
- Estimating WW & top via eµ
- MC used to estimate WZ/ZZ bkg GGI 2011

Analysis Strategy

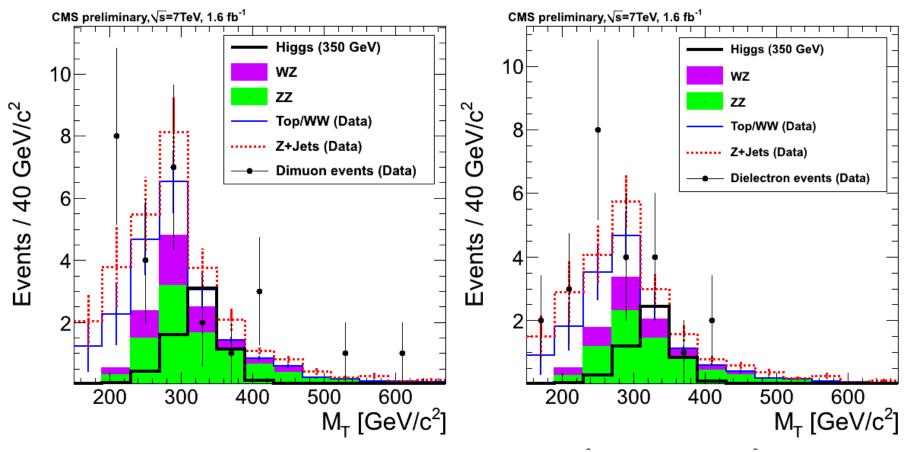
- Two high pT isolated same flavor leptons (ee, $\mu\mu$).
- Tight dilepton mass window (+- 15GeV) around Z mass.
- Large MET to suppress Zjets
- Veto events with:
 - small $\Delta \phi$ between MET and nearest jet
 - Suppress Zjets with MET from large undermeasurements of jets
 - b-tagged jets => suppress top
 - third lepton => suppress WZ/ZZ

Cut	Cut Value
Lepton transverse momenta	$p_T > 20 \mathrm{GeV/c}$
Z mass window	$ m_{ll} - 91.1876 \le 15 \mathrm{GeV/c^2}$
Z transverse momentum	$Z p_T > 25 \text{ GeV/c}$
Transverse momentum of vetoed 3rd lepton	$p_T > 10 \mathrm{GeV/c}$
Reject events with a soft muon ($p_T > 3 \text{ GeV/c}$)	-
b-tag veto (jet $p_T > 30 \text{ GeV/c}$)	TCHE discriminator < 2

Higgs mass (GeV/ c^2)	$\Delta \phi$ (MET, jet)	MET (GeV)	$M_T ({\rm GeV}/{\rm c}^2)$
250	> 0.62	> 69	> 216 AND < 272
300	> 0.28	> 83	> 242 AND < 320
350	> 0.14	> 97	> 267 AND < 386
400	_	> 112	> 292 AND < 471
450		> 126	> 315 AND < 540
500		> 141	> 336 AND < 600
550		> 155	> 357 AND < 660
600		> 170	> 377 AND < 720


Bkg Estimation

- Data Driven:
 - MET tails measured in γ +jets to estimate Zjets.
 - Top, WW using eµ events
- From MC:
 - -WZ, ZZ


11/8/11

Higgs transverse mass

Transverse mass of Higgs larger than all backgrounds only for very large higgs masses.

Outline

- Introduction
- H to WW to lv lv
 - Background Suppression & Estimation
 - Results
- H to ZZ to II vv
 - Background Suppression & Estimation
 - Results
- Outlook

Final Yields

Channel	ZZ	WZ	Top/WW/W+Jets	Z+Jets	Total	mH(250)	Data
μμ	$9.2\pm0.18\pm0.9$	$6.1 \pm 0.25 \pm 0.71$	$16\pm1.9\pm3.1$	$7.4\pm1.4\pm1.5$	39 ± 4.3	5.5 ± 0.73	35
ee	$6.6 \pm 0.16 \pm 0.7$	$4.7 \pm 0.23 \pm 0.58$	$12\pm2.1\pm2.3$	$5\pm0.86\pm0.96$	29 ± 3.5	4.2 ± 0.59	32
Channel	ZZ	WZ	Top/WW/W+Jets	Z+Jets	Total	mH(300)	Data
μμ	$7.3 \pm 0.16 \pm 0.71$	$4.1 \pm 0.21 \pm 0.48$	$5.3 \pm 0.61 \pm 1.8$	$4.4 \pm 0.64 \pm 1.1$	21 ± 2.4	5.4 ± 0.72	18
ее	$5.4 \pm 0.15 \pm 0.58$	$2.8 \pm 0.18 \pm 0.35$	$4\pm0.66\pm1.3$	$3\pm0.42\pm0.74$	15 ± 1.9	4.2 ± 0.59	22
Channel	ZZ	WZ	Top/WW/W+Jets	Z+Jets	Total	mH(350)	Data
μμ	$5.8 \pm 0.15 \pm 0.57$	$2.8 \pm 0.17 \pm 0.32$	$2.3\pm0.27\pm1.2$	$2.8 \pm 0.47 \pm 0.85$	14 ± 1.7	5.6 ± 0.85	10
ee	$4.6 \pm 0.14 \pm 0.49$	$2\pm0.15\pm0.25$	$1.8 \pm 0.3 \pm 0.88$	$1.9 \pm 0.31 \pm 0.58$	10 ± 1.3	4.4 ± 0.7	9
Channel	ZZ	WZ	Top/WW/W+Jets	Z+Jets	Total	mH(400)	Data
μμ	$4.6 \pm 0.14 \pm 0.45$	$1.8 \pm 0.14 \pm 0.21$	$0.58 \pm 0.067 \pm 0.58$	$2.3 \pm 0.48 \pm 0.85$	9.3 ± 1.3	4.5 ± 0.6	7
ee	$3.7\pm0.13\pm0.4$	$1.5 \pm 0.13 \pm 0.19$	$0.44 \pm 0.074 \pm 0.44$	$1.7 \pm 0.33 \pm 0.6$	7.4 ± 0.95	3.6 ± 0.5	9
Channel	ZZ	WZ	Top/WW/W+Jets	Z+Jets	Total	mH(500)	Data
μμ	$2.7 \pm 0.11 \pm 0.26$	$0.92 \pm 0.1 \pm 0.11$	0	$1.7 \pm 0.41 \pm 0.8$	5.3 ± 0.95	2 ± 0.28	6
ee	$2.1 \pm 0.097 \pm 0.22$	$0.77 \pm 0.093 \pm 0.095$	0	$1.3 \pm 0.31 \pm 0.62$	4.2 ± 0.74	1.6 ± 0.24	3
Channel	ZZ	WZ	Top/WW/W+Jets	Z+Jets	Total	mH(600)	Data
μμ	$1.6 \pm 0.085 \pm 0.15$	$0.51 \pm 0.075 \pm 0.06$	0	$0.91 \pm 0.22 \pm 0.53$	3 ± 0.61	0.8 ± 0.12	5
ee	$1.3 \pm 0.077 \pm 0.14$	$0.37 \pm 0.064 \pm 0.046$	0	$0.78 \pm 0.19 \pm 0.45$	2.4 ± 0.51	0.66 ± 0.1	2

Observed and predicted agree well. No sign of higgs.

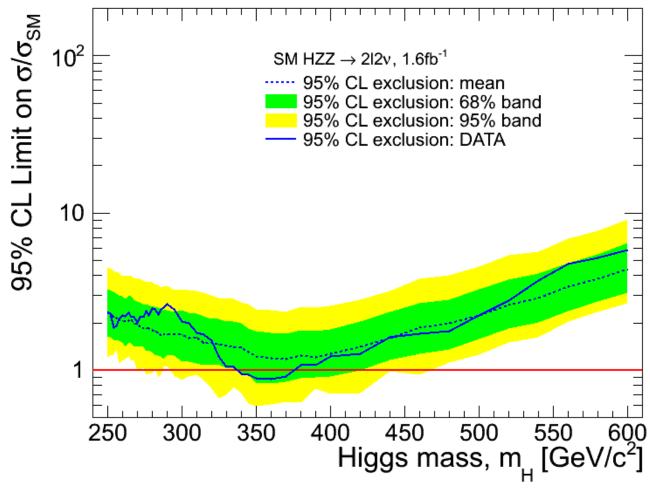
GGI 2011

Final Yields

Channel	ZZ	WZ	Top/WW/W+Jets	Z+Jets	Total	mH(250)	Data
μμ	$9.2\pm0.18\pm0.9$	$6.1 \pm 0.25 \pm 0.71$	$16\pm1.9\pm3.1$	$7.4 \pm 1.4 \pm 1.5$	39 ± 4.3	5.5 ± 0.73	35
ee	$6.6 \pm 0.16 \pm 0.7$	$4.7 \pm 0.23 \pm 0.58$	$12\pm2.1\pm2.3$	$5\pm0.86\pm0.96$	29 ± 3.5	4.2 ± 0.59	32
Channel	ZZ	WZ	Top/WW/W+Jets	Z+Jets	Total	mH(300)	Data
μμ	$7.3 \pm 0.16 \pm 0.71$	$4.1 \pm 0.21 \pm 0.48$	$5.3 \pm 0.61 \pm 1.8$	$4.4 \pm 0.64 \pm 1.1$	21 ± 2.4	5.4 ± 0.72	18
ee	$5.4 \pm 0.15 \pm 0.58$	$2.8 \pm 0.18 \pm 0.35$	$4\pm0.66\pm1.3$	$3\pm0.42\pm0.74$	15 ± 1.9	4.2 ± 0.59	22
Channel	ZZ	WZ	Top/WW/W+Jets	Z+Jets	Total	mH(350)	Data
μμ	$5.8 \pm 0.15 \pm 0.57$	$2.8 \pm 0.17 \pm 0.32$	$2.3 \pm 0.27 \pm 1.2$	$2.8 \pm 0.47 \pm 0.85$	14 ± 1.7	5.6 ± 0.85	10
ee	$4.6 \pm 0.14 \pm 0.49$	$2\pm0.15\pm0.25$	$1.8\pm0.3\pm0.88$	$1.9 \pm 0.31 \pm 0.58$	10 ± 1.3	4.4 ± 0.7	9
Channel	ZZ	WZ	Top/WW/W+Jets	Z+Jets	Total	mH(400)	Data
μμ	$4.6 \pm 0.14 \pm 0.45$	$1.8 \pm 0.14 \pm 0.21$	$0.58 \pm 0.067 \pm 0.58$	$2.3 \pm 0.48 \pm 0.85$	9.3 ± 1.3	4.5 ± 0.6	7
ee	$3.7\pm0.13\pm0.4$	$1.5 \pm 0.13 \pm 0.19$	$0.44 \pm 0.074 \pm 0.44$	$1.7 \pm 0.33 \pm 0.6$	7.4 ± 0.95	3.6 ± 0.5	9
Channel	ZZ	WZ	Top/WW/W+Jets	Z+Jets	Total	mH(500)	Data
μμ	$2.7 \pm 0.11 \pm 0.26$	$0.92 \pm 0.1 \pm 0.11$	0	$1.7 \pm 0.41 \pm 0.8$	5.3 ± 0.95	2 ± 0.28	6
ee	$2.1 \pm 0.097 \pm 0.22$	$0.77 \pm 0.093 \pm 0.095$	0	$1.3 \pm 0.31 \pm 0.62$	4.2 ± 0.74	1.6 ± 0.24	3
Channel	ZZ	WZ	Top/WW/W+Jets	Z+Jets	Total	mH(600)	Data
μμ	$1.6 \pm 0.085 \pm 0.15$	$0.51 \pm 0.075 \pm 0.06$	0	$0.91 \pm 0.22 \pm 0.53$	3 ± 0.61	0.8 ± 0.12	5
ee	$1.3 \pm 0.077 \pm 0.14$	$0.37 \pm 0.064 \pm 0.046$	0	$0.78 \pm 0.19 \pm 0.45$	2.4 ± 0.51	0.66 ± 0.1	2

Bkg decreases tenfold from low to high mass. Sensitivity to higgs largely a matter of luminosity.

Final Yields


Channel	ZZ	WZ	Top/WW/W+Jets	Z+Jets	Total	mH(250)	Data
μμ	$9.2\pm0.18\pm0.9$	$6.1 \pm 0.25 \pm 0.71$	$16\pm1.9\pm3.1$	$7.4\pm1.4\pm1.5$	39 ± 4.3	5.5 ± 0.73	35
ee	$6.6 \pm 0.16 \pm 0.7$	$4.7 \pm 0.23 \pm 0.58$	$12 \pm 2.1 \pm 2.3$	$5\pm0.86\pm0.96$	29 ± 3.5	4.2 ± 0.59	32
Channel	ZZ	WZ	Top/WW/W+Jets	Z+Jets	Total	mH(300)	Data
μμ	$7.3 \pm 0.16 \pm 0.71$	$4.1 \pm 0.21 \pm 0.48$	$5.3 \pm 0.61 \pm 1.8$	$4.4 \pm 0.64 \pm 1.1$	21 ± 2.4	5.4 ± 0.72	18
ee	$5.4 \pm 0.15 \pm 0.58$	$2.8 \pm 0.18 \pm 0.35$	$4 \pm 0.66 \pm 1.3$	$3\pm0.42\pm0.74$	15 ± 1.9	4.2 ± 0.59	22
Channel	ZZ	WZ	Top/WW/W+Jets	Z+Jets	Total	mH(350)	Data
μμ	$5.8 \pm 0.15 \pm 0.57$	$2.8 \pm 0.17 \pm 0.32$	$2.3 \pm 0.27 \pm 1.2$	$2.8 \pm 0.47 \pm 0.85$	14 ± 1.7	5.6 ± 0.85	10
ee	$4.6 \pm 0.14 \pm 0.49$	$2\pm0.15\pm0.25$	$1.8 \pm 0.3 \pm 0.88$	$1.9 \pm 0.31 \pm 0.58$	10 ± 1.3	4.4 ± 0.7	9
Channel	ZZ	WZ	Top/WW/W+Jets	Z+Jets	Total	mH(400)	Data
μμ	$4.6 \pm 0.14 \pm 0.45$	$1.8 \pm 0.14 \pm 0.21$	$0.58 \pm 0.067 \pm 0.58$	$2.3 \pm 0.48 \pm 0.85$	9.3 ± 1.3	4.5 ± 0.6	7
ее	$3.7 \pm 0.13 \pm 0.4$	$1.5 \pm 0.13 \pm 0.19$	$0.44 \pm 0.074 \pm 0.44$	$1.7 \pm 0.33 \pm 0.6$	7.4 ± 0.95	3.6 ± 0.5	9
Channel	ZZ	WZ	Top/WW/W+Jets	Z+Jets	Total	mH(500)	Data
μμ	$2.7 \pm 0.11 \pm 0.26$	$0.92 \pm 0.1 \pm 0.11$	0	$1.7 \pm 0.41 \pm 0.8$	5.3 ± 0.95	2 ± 0.28	6
ee	$2.1 \pm 0.097 \pm 0.22$	$0.77 \pm 0.093 \pm 0.095$	0	$1.3 \pm 0.31 \pm 0.62$	4.2 ± 0.74	1.6 ± 0.24	3
Channel	ZZ	WZ	Top/WW/W+Jets	Z+Jets	Total	mH(600)	Data
μμ	$1.6 \pm 0.085 \pm 0.15$	$0.51 \pm 0.075 \pm 0.06$	0	$0.91 \pm 0.22 \pm 0.53$	3 ± 0.61	0.8 ± 0.12	5
ee	$1.3 \pm 0.077 \pm 0.14$	$0.37 \pm 0.064 \pm 0.046$	0	$0.78 \pm 0.19 \pm 0.45$	2.4 ± 0.51	0.66 ± 0.1	2

ZZ dominates except for low mass. Zjets remains second largest bkg even at high mass. WZ bkg with lost 3rd lepton significant at all masses. ^{11/8/11} 33

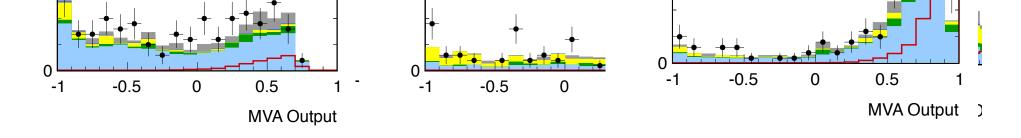
Limits on H to ZZ to II vv

Higgs excluded in range 340-375 GeV

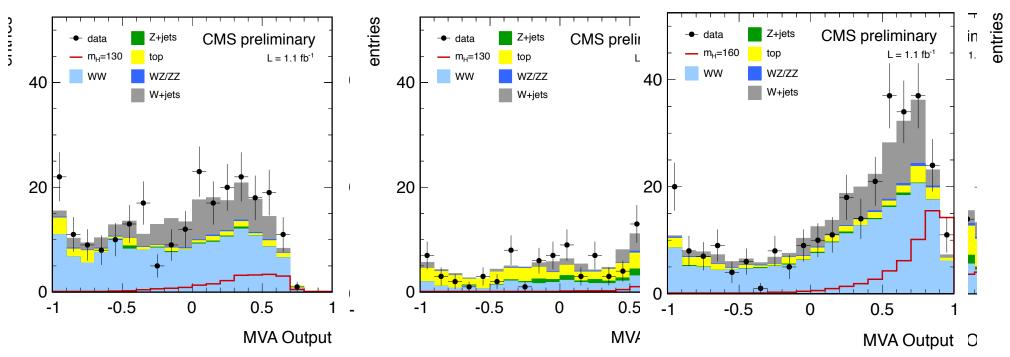
GGI 2011

Outline

- Introduction
- H to WW to lv lv
 - Background Suppression & Estimation
 - Results
- H to ZZ to II vv
 - Background Suppression & Estimation
 - Results
- Outlook



Yields table of H->WW for a few mass points:


mH	ggH	qqWW	ggWW	VV	Тор	Zjets 🏼	Wjets	Wgam	Ztt	∑Bkg	Data
120	7.6±1.7	33.7±5.9	1.3±0.7	0.8±0.1	3.0±1.1	0.1±0.0	19.4±7.3	3.9±1.2	0.0±0.0	62.3±9.5	67
140	18.0±4.2	31.5±5.5	1.5±0.8	0.8±0.1	3.1±1.1	0.1±0.0	5.0-2.3	1.5±0.7	0.0±0.0	44.0±6.2	46
160	26.6±6.1	13.5±2.4	1.3±0.7	0.3±0.1	1.9±0.9	0.0±0.0	2.0±1.1	0.0±0.0	0.0±0.0	19.0±2.9	18

For higgs mass of 120 GeV the systematic error on Wjets is roughly the same as the expected higgs signal.

Progress requires innovation in addition to luminosity !!!

MVA output for eµ 0-jet and 130,140,160GeV higgs

- There is information left inside the cuts
- There is information in correlations of the kinematic variables that is not fully exploited by square cuts.

11/8/11

GGI 2011

Conclusions

- No higgs found
 - H to WW to Iv Iv excludes mH from 147 194 GeV
 - H to ZZ to II vv excludes mH from 340 375 GeV
- Pushing the sensitivity towards lower mass higgs requires innovation and luminosity.
- Pushing the sensitivity towards higher mass higgs requires mostly luminosity.