Jets and Missing at the LHC

Jay Wacker SLAC

BSM: Results from the 7 TeV LHC

Nov. 9, 2011

w/ E. Izaguire D. Alves R. Essig J.Kaplan A. Hook M. Lisanti

Outline

Simplified Models

Two Examples Light Flavored Models Heavy Flavored Models

Future Directions Stops High Multiplicity Searches Quark/Gluon Tagging All started a few years back... Had an MSSM model that predicted a spectrum

All started a few years back... Had an MSSM model that predicted a spectrum

Surely this must be excluded! The production cross section at the Tevatron is $\sigma(p\bar{p} \rightarrow \tilde{g}\tilde{g}) \simeq 2 \text{ nb}$

I went through the 25 years of squark and gluino searches They all came back to versions of this:

mSugra has "Gaugino Mass Unification" $m_{\tilde{g}}: m_{\tilde{W}}: m_{\tilde{B}} = \alpha_3: \alpha_2: \alpha_1 \simeq 6: 2: 1$ Most models look like this

A shocking lack of diversity (see the pMSSM)

Jets + MET

Solution to Hierarchy Problem If the symmetry commutes with SU(3)_C, new colored top partners (note twin Higgs exception)

Dark Matter

Wimp Miracle: DM a thermal relic if mass is 100 GeV to 1 TeV Usually requires a dark sector, frequently contains new colored particles

Fewest requirements on spectroscopy Doesn't require squeezing in additional states to decay chains

Spectrum in Different Theories

Universal Extra Dimensions

Low Cut-Off **Small Mass Splittings** $\delta m = \frac{g^2}{16\pi^2} \frac{\Lambda^2}{m}$ g_1 ${w_1\atop b_1}$

Radiative Corrections to Kaluza-Klein Masses Cheng, Matchev, Schmaltz (2002)

Radiative Corrections to Kaluza-Klein Masses Cheng, Matchev, Schmaltz (2002)

Effective Field Theories for Collider Physics

Limits of specific theories Only keep particles and couplings relevant for searches Still a full Lagrangian description

Removes superfluous model parameters Masses, Cross Sections, Branching Ratios (*e.g.* MARMOSET) Add in relevant modification to models (*e.g.* singlets)

Not fully model independent, but greatly reduce model dependence

Captures specific models Including ones that aren't explicitly proposed Easy to notice & explore kinematic limits

When an anomaly appears, we want evidence of discovery for each particle

We want to know that we need $\tilde{g}, \tilde{\chi}^{\pm}, \chi^0$

but nothing else to explain the anomaly

Then design searches to piece together the rest of the spectrum

Important to keep the cross section free All searches at LHC are model dependent

Easy to dilute signal with small branching ratios

Rate ~
$$\sigma \times (\operatorname{Br}(\tilde{g} \to X))^2$$

If
$$Br(\tilde{g} \to X) \sim \frac{1}{3}$$

the rate drops by an order of magnitude

If g is a scalar, σ drops by ~1/6

Dropping S/B by an order of magnitude dramatically changes discovery prospects

Putting it all together There could have been discoveries!

Much easier to interpret!

$$\begin{split} m_{\tilde{g}} &= 800 \ \text{GeV} \qquad m_{\chi^0} = 50 \ \text{GeV} \qquad \sigma \times \text{Br} \leq 20 \ \text{fb} \\ m_{\tilde{g}} &= 800 \ \text{GeV} \qquad m_{\chi^0} = 600 \ \text{GeV} \qquad \sigma \times \text{Br} \leq 2 \ \text{pb} \end{split}$$

Outline

Simplified Models

Two Examples Light Flavored Models Heavy Flavored Models

Future Directions Stops High Multiplicity Searches Quark/Gluon Tagging

Light Flavored Simplified Models

4 Topologies Studied Based On Gluino Pair Production

Light Flavored Squark Pair Production Not Studied Yet

Squark Gluino Associated Production Not Studied Yet

Direct Decays

One-Step Cascade Decays

Two-Step Cascade Decays

Hunting for Optimal Cuts

Want to have good coverage for all these models for all kinematic ranges

 $\sigma_{\rm lim}({\rm cut})$

Want to minimize:

 $\sigma_{
m optimal \ lim}$

QUESTION: Is there a single cut whose sensitivity is close to optimal for all masses and decay modes?

ANSWER: No

Hunting for Optimal Cuts

TASK: Find the *minimum* set of cuts on MET and H_T whose *combined* reach is close to optimal (within a given accuracy) for all models.

Hunting for Optimal Cuts

Multiple Search Regions

• minimal set of cuts (*multiple search regions*) whose combined reach is within optimal to a given accuracy

 \rightarrow for all masses and decay modes

Set up a genetic algorithm to optimize search strategies

- size of the set depends on the optimal accuracy
 - + 5% $\rightarrow O(30 \text{ cuts})$
 - + 10% $\rightarrow O(16 \text{ cuts})$
 - + $30\% \rightarrow \mathcal{O}(6 \text{ cuts})$
 - + 50% $\rightarrow O(4 \text{ cuts})$
- not sensitive to exact values of the cuts
- only *comprehensive* when *combined*

• 6 search regions necessary:

Dijet high MET

Trijet high MET

Multijet low MET

Multijet very high H_T

Multijet moderate MET

Multijet high MET

Multiple Search Regions

Multijet high MET

cut	ch	MET	Η _T
	2+j	500	750
	3+j	450	500
	4+j	100	450
	4+j	100	650
	4+j	150	950
	4+j	250	300
	4+j	350	600

Designing Optimal Regions

- Choice of multiple search regions depends upon
 - backgrounds
 - detector efficiencies & acceptances
 - how good is good enough
 - etc
- Not something a theorist should be designing too closely
- Scans are expensive for experiments, providing benchmark theories saves effort
- We've done rough exploration of corners of parameter space looking for

List of Benchmark Models

- Chosen to maximize differences in how they appear in given searches
- Simple and easy to define
- Consistent theories on their own

Name	$m_{ ilde{g}}~({ m GeV})$	$m_{ ilde{\chi}^0}~({ m GeV})$	Decay	
\mathcal{M}_1	800	100	direct 2-body	
\mathcal{M}_2	800	350	direct 2-body	
\mathcal{M}_3	550	300	direct 2-body	
\mathcal{M}_4	350	150	direct 2-body	
\mathcal{M}_5	250	50	direct 3-body	
\mathcal{M}_6	400	100	direct 3-body	
\mathcal{M}_7	400	350	direct 3-body	
\mathcal{M}_8	650	300	direct 3-body	
\mathcal{M}_9	150	50	1-step cascade $(x=1/4)$	
\mathcal{M}_{10}	400	80	1-step cascade $(x=1/4)$	
\mathcal{M}_{11}	450	350	1-step cascade $(x=1/4)$	
\mathcal{M}_{12}	600	200	1-step cascade $(x=1/4)$	
\mathcal{M}_{13}	250	200	1-step cascade $(x=1/2)$	
\mathcal{M}_{14}	300	50	1-step cascade $(x=1/2)$	
\mathcal{M}_{15}	550	500	1-step cascade (x=1/2)	
\mathcal{M}_{16}	700	200	1-step cascade $(x=1/2)$	
\mathcal{M}_{17}	250	0	1-step cascade $(x=3/4)$	
\mathcal{M}_{18}	350	200	1-step cascade $(x=3/4)$	
\mathcal{M}_{19}	450	100	1-step cascade $(x=3/4)$	
\mathcal{M}_{20}	900	400	1-step cascade $(x=3/4)$	
\mathcal{M}_{21}	300	50	2-step cascade	
\mathcal{M}_{22}	750	150	2-step cascade	
\mathcal{M}_{23}	750	550	2-step cascade	
\mathcal{M}_{24}	800	750	2-step cascade	

$$m_{\chi^{\pm}} = m_{\chi^0} + x(m_{\tilde{g}} - m_{\chi^0})$$

Heavy Flavor Susy Jets+MET

10 Topologies

2 Topologies

Have 3 Free Parameters in Each Topology 2 Masses & Cross Section x BR

What are these searches?

(searches useful for 1/fb)

	Search Region	$\mid N_j$	N_ℓ	$N_{\rm bjet}$	$\not\!$	H_T
High HT	1	2^+	0	0	300	700
High MET	2	$ 4^+$	0	0	500	900
1 b Low multiplicity	3	2^+	0	1+	300	400
1 b High HT	4	4^+	0	1+	300	600
3 b	8	4^+	0	3^+	150	400
$b \ \mathrm{SSDL}$	9	2^+	SSDL	$ 1^+$	0	200

2 Normal Light Flavor

2 Normal Heavy Flavor

2 Low BG Heavy Flavor

Not surprising, not unique

Benchmarks Distributed Over 10 Topologies

Name	$m_{\tilde{g}} \ (\text{GeV})$	$m_{\chi^0}~({ m GeV})$	$\sigma_{1 \text{ fb}^{-1}}^{\text{reach}}$ (fb)	$\sigma_{5 \text{ fb}^{-1}}^{\text{reach}}$ (fb)	$\sigma_{15 \text{ fb}^{-1}}^{\text{reach}}$ (fb)	$\sigma_{\rm prod}^{\rm QCD}$ (fb)
$\mathcal{G}_{ ilde{B}}^{ extsf{TT}}$	500	115	592	129	44	2310
$\mathcal{G}_{ ilde{B}}^{ extsf{TT}}$	500	40	428	95	32	2310
$\mathcal{G}_{ ilde{B}}^{ extsf{TT}}$	650	40	139	65	26	335
$\mathcal{G}_{\widetilde{B}}^{\mathrm{TT}}$	800	415	469	129	44	61
$\mathcal{G}_{ ilde{B}}^{TT}$	800	40	92	27	13	61
$\mathcal{G}^{\mathtt{BB}}_{ ilde{B}}$	100	40	353000	265000	226000	21.2×10^{6}
$\mathcal{G}_{ ilde{B}}^{ extsf{BB}}$	200	15	17800	11400	10400	625000
$\mathcal{G}_{ ilde{B}}^{ extsf{BB}}$	200	165	3360	3230	3210	625000
$\mathcal{G}_{ ilde{B}}^{ ilde{B}B}$	350	165	875	591	373	24200
$\mathcal{G}_{\widetilde{B}}^{\widetilde{\mathtt{BB}}}$	500	40	94	37	24	2310
$\mathcal{G}_{ ilde{B}}^{ ilde{B}B}$	600	365	236	112	70	617
$\mathcal{G}_{ ilde{B}}^{ ilde{B}B}$	700	265	57	20	11	186
$\mathcal{G}_{ ilde{B}}^{ extsf{BB}}$	750	490	153	62	41	106
$\mathcal{G}_{ ilde{B}}^{ ilde{B}B}$	800	765	4056	1840	1490	61
$\mathcal{G}_{ ilde{B}}^{ extsf{BB}}$	800	40	42	11	5.2	61
$\mathcal{G}_{ ilde{B}}^{ extsf{BB}}$	900	540	65	23	13	21
Name	$m_{\tilde{a}}$ (GeV)	$m_{a,0}$ (GeV)	σ^{reach} (fb)	$\sigma_{\rm reach}^{\rm reach}$ (fb)	σ^{reach} (fb)	$\sigma^{\rm QCD}$ (fb)
Name C TM	$m_{\tilde{g}} (\text{GeV})$	$\frac{m_{\chi^0} \text{ (GeV)}}{115}$	$\frac{\sigma_{1 \text{ fb}^{-1}}^{\text{reach}} \text{ (fb)}}{422}$	$\frac{\sigma_{5 \text{ fb}^{-1}}^{\text{reach}} \text{ (fb)}}{184}$	$\frac{\sigma_{15 \text{ fb}^{-1}}^{\text{reach}} \text{ (fb)}}{63}$	$\sigma_{\rm prod}^{\rm QCD}$ (fb)
$\frac{\mathcal{G}_{\tilde{W}}^{\text{TM}}}{\mathcal{G}_{\tilde{W}}^{\text{TM}}}$	$\frac{m_{\tilde{g}} \text{ (GeV)}}{500}$	$\frac{m_{\chi^0} \text{ (GeV)}}{115}$	$\frac{\sigma_{1 \text{ fb}^{-1}}^{\text{reach}} \text{ (fb)}}{422}$	$\frac{\sigma_{5 \text{ fb}^{-1}}^{\text{reach}} \text{ (fb)}}{184}$		$ \begin{array}{c} \sigma_{\rm prod}^{\rm QCD} \ ({\rm fb}) \\ \hline 2310 \\ 2310 \end{array} $
$ \begin{array}{c} \hline \mathcal{B} \\ \hline \mathbf{Name} \\ \hline \mathcal{G}_{\tilde{W}}^{\texttt{TM}} \\ \mathcal{G}_{\tilde{W}}^{\texttt{TM}} \\ \mathcal{C}^{\texttt{TM}} \end{array} $	$m_{\tilde{g}} (\text{GeV})$ 500 500 650	$\overline{\frac{m_{\chi^0} \ ({ m GeV})}{115}}_{40}$	$\frac{\sigma_{1 \text{ fb}^{-1}}^{\text{reach}} \text{ (fb)}}{422}$ 324 115	$\sigma_{5 \text{ fb}^{-1}}^{\text{reach}}$ (fb) 184 126 52	$ \begin{array}{c} \sigma^{\text{reach}}_{15 \text{ fb}^{-1}} \text{ (fb)} \\ 63 \\ 44 \\ 25 \end{array} $	$ \begin{array}{c} \sigma_{\rm prod}^{\rm QCD} \ ({\rm fb}) \\ \hline 2310 \\ 2310 \\ \hline 335 \end{array} $
$ \begin{array}{c} \hline \mathcal{B} \\ \hline \mathbf{Name} \\ \hline \mathcal{G}_{\tilde{W}}^{TM} \\ \mathcal{G}_{\tilde{W}}^{TM} \\ \mathcal{G}_{\tilde{W}}^{TM} \\ \mathcal{C}_{\tilde{W}}^{TM} \end{array} $	$ m_{\tilde{g}} (\text{GeV}) 500 500 650 800 $	$m_{\chi^0} (\text{GeV})$ 115 40 40 415	$ \frac{\sigma_{1 \text{ fb}^{-1}}^{\text{reach}} \text{ (fb)}}{422} \\ 324 \\ 115 \\ 243 $	$\sigma^{\text{reach}}_{5 \text{ fb}^{-1}}$ (fb) 184 126 52 130		$ \begin{array}{c} \sigma_{\rm prod}^{\rm QCD} \ ({\rm fb}) \\ \hline 2310 \\ 2310 \\ \hline 335 \\ 61 \end{array} $
$ \begin{array}{c} \hline \mathcal{B} \\ \hline \mathbf{Name} \\ \hline \mathcal{G}_{\tilde{W}}^{TM} \\ \mathcal{G}_{\tilde{W}}^{TM} \\ \mathcal{G}_{\tilde{W}}^{TM} \\ \mathcal{G}_{\tilde{W}}^{TM} \\ \mathcal{G}_{\tilde{W}}^{TM} \end{array} $	$ m_{\tilde{g}} (\text{GeV}) 500 500 650 800 800 800 $	$\overline{m_{\chi^0} (\text{GeV})}$ 115 40 40 415 40	$ \frac{\sigma_{1 \text{ fb}^{-1}}^{\text{reach}} \text{ (fb)}}{422} \\ 324 \\ 115 \\ 243 \\ 81 $	$\sigma^{\rm reach}_{5~{\rm fb}^{-1}}$ (fb) 184 126 52 130 25	$ \begin{array}{c} \sigma^{\rm reach}_{15 \ {\rm fb}^{-1}} \ {\rm (fb)} \\ 63 \\ 44 \\ 25 \\ 66 \\ 12 \end{array} $	$ \begin{array}{c} \sigma_{\rm prod}^{\rm QCD} \ ({\rm fb}) \\ 2310 \\ 2310 \\ 335 \\ 61 \\ 61 \\ \end{array} $
Name $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$	$ \begin{array}{c} m_{\tilde{g}} \ (\text{GeV}) \\ 500 \\ 500 \\ 650 \\ 800 \\ 800 \\ 800 \\ 200 \end{array} $	$ \frac{m_{\chi^0} \text{ (GeV)}}{115} \\ 40 \\ 415 \\ 40 415 40 45 45 $	$ \frac{\sigma_{1 \text{ fb}^{-1}}^{\text{reach}} \text{ (fb)}}{422} \\ 324 \\ 115 \\ 243 \\ 81 \\ 1270 $	$\sigma^{\text{reach}}_{5 \text{ fb}^{-1}}$ (fb) 184 126 52 130 25	$ \begin{array}{c} \sigma^{\rm reach}_{15 \ {\rm fb}^{-1}} \ {\rm (fb)} \\ 63 \\ 44 \\ 25 \\ 66 \\ 12 \\ 1010 \end{array} $	$ \begin{array}{c} \sigma_{\rm prod}^{\rm QCD} \ ({\rm fb}) \\ 2310 \\ 2310 \\ 335 \\ 61 \\ 61 \\ 61 \\ \end{array} $
Name $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{BM}$ $\mathcal{G}_{\tilde{W}}^{BM}$	$m_{\tilde{g}} (\text{GeV})$ 500 500 650 800 800 300 400	$ \begin{array}{r} m_{\chi^0} \ (\text{GeV}) \\ 115 \\ 40 \\ 40 \\ 415 \\ 40 \\ 45 \\ 220 \\ \end{array} $	$ \frac{\sigma_{1 \text{ fb}^{-1}}^{\text{reach}} \text{ (fb)}}{422} \\ 324 \\ 115 \\ 243 \\ 81 \\ 1370 \\ 2660 $	$ \begin{array}{c} \sigma^{\rm reach}_{5~{\rm fb}^{-1}} \ ({\rm fb}) \\ 184 \\ 126 \\ 52 \\ 130 \\ 25 \\ 1180 \\ 1200 \end{array} $	$ \begin{array}{c} \sigma^{\rm reach}_{15 \ \rm fb^{-1}} \ \rm (fb) \\ 63 \\ 44 \\ 25 \\ 66 \\ 12 \\ 1010 \\ 610 \end{array} $	$ \begin{array}{c} \sigma^{\rm QCD}_{\rm prod} \ ({\rm fb}) \\ 2310 \\ 2310 \\ 335 \\ 61 \\ 61 \\ 62100 \\ 10400 \end{array} $
Name $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{BM}$ $\mathcal{G}_{\tilde{W}}^{BM}$ $\mathcal{G}_{\tilde{W}}^{BM}$	$m_{\tilde{g}} (\text{GeV})$ 500 500 650 800 800 300 400 600	$ \frac{m_{\chi^0} \text{ (GeV)}}{115} \\ 40 \\ 40 \\ 415 \\ 40 \\ 45 \\ 220 \\ 170 $	$ \frac{\sigma_{1 \text{ fb}^{-1}}^{\text{reach}} \text{ (fb)}}{422} \\ 324 \\ 115 \\ 243 \\ 81 \\ 1370 \\ 2660 \\ 112 $	$\sigma_{5 \text{ fb}^{-1}}^{\text{reach}}$ (fb) 184 126 52 130 25 1180 1300 40	$ \begin{array}{c} \sigma^{\rm reach}_{15 \ \rm fb^{-1}} \ (\rm fb) \\ \hline 63 \\ 44 \\ 25 \\ 66 \\ 12 \\ \hline 1010 \\ 619 \\ 25 \\ \end{array} $	$ \begin{array}{c} \sigma^{\rm QCD}_{\rm prod} \ ({\rm fb}) \\ 2310 \\ 2310 \\ 335 \\ 61 \\ 61 \\ 62100 \\ 10400 \\ 617 \end{array} $
Name $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{BM}$ $\mathcal{G}_{\tilde{W}}^{BM}$ $\mathcal{G}_{\tilde{W}}^{BM}$ $\mathcal{G}_{\tilde{W}}^{BM}$ $\mathcal{G}_{\tilde{W}}^{BM}$ $\mathcal{G}_{\tilde{W}}^{BM}$	$\frac{m_{\tilde{g}} (\text{GeV})}{500}$ 500 650 800 800 300 400 600 200	$ \begin{array}{r} m_{\chi^0} (\text{GeV}) \\ 115 \\ 40 \\ 40 \\ 415 \\ 40 \\ 45 \\ 220 \\ 170 \\ 55 \end{array} $	$ \frac{\sigma_{1 \text{ fb}^{-1}}^{\text{reach}} \text{ (fb)}}{422} \\ 324 \\ 115 \\ 243 \\ 81 \\ 1370 \\ 2660 \\ 113 \\ 1120 \\ $	$ \begin{array}{c} \sigma^{\rm reach}_{5~{\rm fb}^{-1}} \ ({\rm fb}) \\ 184 \\ 126 \\ 52 \\ 130 \\ 25 \\ 1180 \\ 1300 \\ 40 \\ 40 \\ 450 \end{array} $	$ \begin{array}{c} \sigma^{\rm reach}_{15~{\rm fb}^{-1}} \ ({\rm fb}) \\ 63 \\ 44 \\ 25 \\ 66 \\ 12 \\ 1010 \\ 619 \\ 25 \\ 25 \\ 240 \end{array} $	$ \begin{array}{c} \sigma_{\rm prod}^{\rm QCD} \ ({\rm fb}) \\ 2310 \\ 2310 \\ 335 \\ 61 \\ 61 \\ 62100 \\ 10400 \\ 617 \\ 61 \\ \end{array} $
Name $\mathcal{G}_{\tilde{W}}^{\text{TM}}$ $\mathcal{G}_{\tilde{W}}^{\text{TM}}$ $\mathcal{G}_{\tilde{W}}^{\text{TM}}$ $\mathcal{G}_{\tilde{W}}^{\text{TM}}$ $\mathcal{G}_{\tilde{W}}^{\text{TM}}$ $\mathcal{G}_{\tilde{W}}^{\text{BM}}$ $\mathcal{G}_{\tilde{W}}^{\text{BM}}$ $\mathcal{G}_{\tilde{W}}^{\text{BM}}$ $\mathcal{G}_{\tilde{W}}^{\text{BM}}$ $\mathcal{G}_{\tilde{W}}^{\text{BM}}$ $\mathcal{G}_{\tilde{W}}^{\text{BM}}$ $\mathcal{G}_{\tilde{W}}^{\text{BM}}$	$m_{\tilde{g}} (\text{GeV})$ 500 500 650 800 800 300 400 600 8	$\begin{array}{c} m_{\chi^0} \ ({\rm GeV}) \\ \hline 115 \\ 40 \\ 40 \\ 415 \\ 40 \\ \hline 45 \\ 220 \\ 170 \\ 595 \\ \hline 15 \\ \hline \end{array}$	$ \begin{array}{c} \sigma_{1\rm fb^{-1}}^{\rm reach} \ (\rm fb) \\ 422 \\ 324 \\ 115 \\ 243 \\ 81 \\ \hline 1370 \\ 2660 \\ 113 \\ 1160 \\ \hline - 5 \end{array} $	$ \begin{array}{c} \sigma^{\rm reach}_{5~{\rm fb}^{-1}} \ ({\rm fb}) \\ 184 \\ 126 \\ 52 \\ 130 \\ 25 \\ 1180 \\ 1300 \\ 40 \\ 452 \\ 15 \\ \end{array} $	$ \begin{array}{c} \sigma^{\rm reach}_{15~{\rm fb}^{-1}} \ ({\rm fb}) \\ 63 \\ 44 \\ 25 \\ 66 \\ 12 \\ 1010 \\ 619 \\ 25 \\ 240 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$ \begin{array}{c} \sigma_{\rm prod}^{\rm QCD} \ ({\rm fb}) \\ 2310 \\ 2310 \\ 335 \\ 61 \\ 61 \\ 62100 \\ 10400 \\ 617 \\ 61 \\ 01 \\ 01 \\ 01 \\ 01 \\ 01 \\ 01 \\ 01$
Name $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{BM}$ $\mathcal{G}_{\tilde{W}}^{BM}$ $\mathcal{G}_{\tilde{W}}^{BM}$ $\mathcal{G}_{\tilde{W}}^{BM}$ $\mathcal{G}_{\tilde{W}}^{BM}$ $\mathcal{G}_{\tilde{W}}^{BM}$	$m_{\tilde{g}} (\text{GeV})$ 500 500 650 800 800 300 400 600 800 800 800 800	$m_{\chi^0} (\text{GeV})$ 115 40 40 415 40 45 220 170 595 45	$ \begin{array}{c} \sigma_{1\rm fb}^{\rm reach} \ (\rm fb) \\ 422 \\ 324 \\ 115 \\ 243 \\ 81 \\ \hline 1370 \\ 2660 \\ 113 \\ 1160 \\ 55 \\ \end{array} $	$ \begin{array}{c} \sigma^{\rm reach}_{5~{\rm fb}^{-1}} \ ({\rm fb}) \\ 184 \\ 126 \\ 52 \\ 130 \\ 25 \\ 1180 \\ 1300 \\ 40 \\ 452 \\ 15 \\ \end{array} $	$ \begin{array}{c} \sigma^{\rm reach}_{15~{\rm fb}^{-1}} \ ({\rm fb}) \\ \hline 63 \\ 44 \\ 25 \\ 66 \\ 12 \\ \hline 1010 \\ 619 \\ 25 \\ 240 \\ 6.9 \\ \end{array} $	$\begin{matrix} \sigma_{\rm prod}^{\rm QCD} \ ({\rm fb}) \\ 2310 \\ 2310 \\ 335 \\ 61 \\ 61 \\ 61 \\ 62100 \\ 10400 \\ 617 \\ 61 \\ 61 \\ 61 \\ 61 \\ \end{matrix}$
$\begin{array}{c} \mathbb{P} \\ \mathbb{N} ame \\ \mathbb{G}_{\tilde{W}}^{TM} \\ \mathbb{G}_{\tilde{W}}^{TM} \\ \mathbb{G}_{\tilde{W}}^{TM} \\ \mathbb{G}_{\tilde{W}}^{TM} \\ \mathbb{G}_{\tilde{W}}^{TM} \\ \mathbb{G}_{\tilde{W}}^{BM} \\ \end{array}$	$m_{\tilde{g}} (GeV)$ 500 500 650 800 800 300 400 600 800 800 800 300 300 300 800 800 800 8	$\begin{array}{c} m_{\chi^0} \ ({\rm GeV}) \\ \hline 115 \\ 40 \\ 40 \\ 415 \\ 40 \\ \hline 45 \\ 220 \\ 170 \\ 595 \\ 45 \\ \hline 45 \\ \hline 45 \\ \hline \end{array}$	$ \begin{array}{c} \sigma_{1\rm fb}^{\rm reach} \ (\rm fb) \\ 422 \\ 324 \\ 115 \\ 243 \\ 81 \\ \hline 1370 \\ 2660 \\ 113 \\ 1160 \\ 55 \\ \hline 3230 \\ \end{array} $	$ \begin{array}{c} \sigma^{\rm reach}_{5~{\rm fb}^{-1}} \ ({\rm fb}) \\ 184 \\ 126 \\ 52 \\ 130 \\ 25 \\ 1180 \\ 1300 \\ 40 \\ 452 \\ 15 \\ 695 \\ \end{array} $	$ \begin{array}{c} \sigma^{\rm reach}_{15~{\rm fb}^{-1}} \ ({\rm fb}) \\ \hline 63 \\ 44 \\ 25 \\ 66 \\ 12 \\ \hline 1010 \\ 619 \\ 25 \\ 240 \\ 6.9 \\ \hline 272 \\ \end{array} $	$ \begin{array}{c} \sigma_{\rm prod}^{\rm QCD} \ ({\rm fb}) \\ 2310 \\ 2310 \\ 335 \\ 61 \\ 61 \\ 61 \\ 62100 \\ 10400 \\ 617 \\ 61 \\ 61 \\ 61 \\ 61 \\ 61 \\ 61 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $
Name $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{BM}$ $\mathcal{G}_{\tilde{W}}^{BM}$ $\mathcal{G}_{\tilde{W}}^{BM}$ $\mathcal{G}_{\tilde{W}}^{BM}$ $\mathcal{G}_{\tilde{W}}^{BM}$ $\mathcal{G}_{\tilde{W}}^{BM}$ $\mathcal{G}_{\tilde{W}}^{BM}$ $\mathcal{G}_{\tilde{W}}^{BM}$ $\mathcal{G}_{\tilde{W}}^{BM}$	$\frac{m_{\tilde{g}} (\text{GeV})}{500}$ 500 650 800 800 300 400 600 800 800 300 400 600 800 800 800 800 800 800 800 800 8	$ \begin{array}{r} \hline m_{\chi^0} \ ({\rm GeV}) \\ \hline 115 \\ 40 \\ 40 \\ 415 \\ 40 \\ \hline 45 \\ 220 \\ 170 \\ 595 \\ 45 \\ \hline 45 \\ 270 \\ \end{array} $	$ \begin{array}{c} \sigma_{1 \text{ fb}^{-1}}^{\text{reach}} \text{ (fb)} \\ 422 \\ 324 \\ 115 \\ 243 \\ 81 \\ 1370 \\ 2660 \\ 113 \\ 1160 \\ 55 \\ 3230 \\ 3190 \\ \end{array} $	$ \begin{array}{c} \sigma^{\rm reach}_{5~{\rm fb}^{-1}} \ ({\rm fb}) \\ 184 \\ 126 \\ 52 \\ 130 \\ 25 \\ 1180 \\ 1300 \\ 40 \\ 452 \\ 15 \\ 695 \\ 1530 \\ \end{array} $	$ \begin{array}{c} \sigma^{\rm reach}_{15~\rm fb^{-1}} \ (\rm fb) \\ 63 \\ 44 \\ 25 \\ 66 \\ 12 \\ 1010 \\ 619 \\ 25 \\ 240 \\ 6.9 \\ 272 \\ 674 \\ \end{array} $	$ \begin{array}{c} \sigma_{\rm prod}^{\rm QCD} \ ({\rm fb}) \\ 2310 \\ 2310 \\ 335 \\ 61 \\ 61 \\ 61 \\ 62100 \\ 10400 \\ 617 \\ 61 \\ 61 \\ 61 \\ 61 \\ 61 \\ 61 \\ 6$
Name $\mathcal{G}_{\tilde{W}}^{\text{TM}}$ $\mathcal{G}_{\tilde{W}}^{\text{TM}}$ $\mathcal{G}_{\tilde{W}}^{\text{TM}}$ $\mathcal{G}_{\tilde{W}}^{\text{TM}}$ $\mathcal{G}_{\tilde{W}}^{\text{TM}}$ $\mathcal{G}_{\tilde{W}}^{\text{TM}}$ $\mathcal{G}_{\tilde{W}}^{\text{BM}}$ $\mathcal{G}_{\tilde{W}}^{\text{BM}}$ $\mathcal{G}_{\tilde{W}}^{\text{BM}}$ $\mathcal{G}_{\tilde{W}}^{\text{BM}}$ $\mathcal{G}_{\tilde{W}}^{\text{BM}}$ $\mathcal{G}_{\tilde{W}}^{\text{BM}}$ $\mathcal{G}_{\tilde{W}}^{\text{MM}}$ $\mathcal{G}_{\tilde{W}}^{\text{MM}}$ $\mathcal{G}_{\tilde{W}}^{\text{MM}}$	$m_{\tilde{g}} (GeV)$ 500 500 650 800 800 300 400 600 800 800 300 450 550	$m_{\chi^0} (\text{GeV})$ 115 40 40 415 40 45 220 170 595 45 45 270 45	$ \begin{array}{c} \sigma_{1\rm fb}^{\rm reach} \ (\rm fb) \\ 422 \\ 324 \\ 115 \\ 243 \\ 81 \\ \hline 1370 \\ 2660 \\ 113 \\ 1160 \\ 55 \\ \hline 3230 \\ 3190 \\ 150 \\ \end{array} $	$ \begin{array}{c} \sigma^{\rm reach}_{5~{\rm fb}^{-1}} \ ({\rm fb}) \\ 184 \\ 126 \\ 52 \\ 130 \\ 25 \\ 1180 \\ 1300 \\ 40 \\ 452 \\ 15 \\ 695 \\ 1530 \\ 86 \\ \end{array} $	$ \begin{array}{c} \sigma^{\rm reach}_{15~{\rm fb}^{-1}} \ ({\rm fb}) \\ 63 \\ 44 \\ 25 \\ 66 \\ 12 \\ 1010 \\ 619 \\ 25 \\ 240 \\ 6.9 \\ 272 \\ 674 \\ 51 \\ \end{array} $	$ \begin{array}{c} \sigma^{\rm QCD}_{\rm prod} \ ({\rm fb}) \\ 2310 \\ 2310 \\ 335 \\ 61 \\ 61 \\ 61 \\ 62100 \\ 10400 \\ 617 \\ 61 \\ 61 \\ 61 \\ 61 \\ 61 \\ 61 \\ 6$
Name $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{TM}$ $\mathcal{G}_{\tilde{W}}^{BM}$ $\mathcal{G}_{\tilde{W}}^{BM}$ $\mathcal{G}_{\tilde{W}}^{BM}$ $\mathcal{G}_{\tilde{W}}^{BM}$ $\mathcal{G}_{\tilde{W}}^{BM}$ $\mathcal{G}_{\tilde{W}}^{BM}$ $\mathcal{G}_{\tilde{W}}^{MM}$ $\mathcal{G}_{\tilde{W}}^{MM}$ $\mathcal{G}_{\tilde{W}}^{MM}$	$m_{\tilde{g}} (GeV)$ 500 500 650 800 800 300 400 600 800 800 300 400 600 800 800 800 800 800 800 800 800 8	$\begin{array}{c} m_{\chi^0} \ ({\rm GeV}) \\ \hline 115 \\ 40 \\ 40 \\ 415 \\ 40 \\ \hline 45 \\ 220 \\ 170 \\ 595 \\ 45 \\ \hline 45 \\ 270 \\ 45 \\ 595 \\ \hline \end{array}$	$ \begin{array}{c} \sigma_{1\rm fb}^{\rm reach} \ (\rm fb) \\ 422 \\ 324 \\ 115 \\ 243 \\ 81 \\ \hline 1370 \\ 2660 \\ 113 \\ 1160 \\ 55 \\ \hline 3230 \\ 3190 \\ 150 \\ 1290 \\ \end{array} $	$ \begin{array}{c} \sigma^{\rm reach}_{5~{\rm fb}^{-1}} \ ({\rm fb}) \\ 184 \\ 126 \\ 52 \\ 130 \\ 25 \\ 1180 \\ 1300 \\ 40 \\ 452 \\ 15 \\ 695 \\ 1530 \\ 86 \\ 727 \\ \end{array} $	$ \begin{array}{c} \sigma^{\rm reach}_{15~{\rm fb}^{-1}} ~({\rm fb}) \\ \hline 63 \\ 44 \\ 25 \\ 66 \\ 12 \\ \hline 1010 \\ 619 \\ 25 \\ 240 \\ 6.9 \\ \hline 272 \\ 674 \\ 51 \\ 413 \\ \end{array} $	$\begin{matrix} \sigma_{\rm prod}^{\rm QCD} \ ({\rm fb}) \\ 2310 \\ 2310 \\ 335 \\ 61 \\ 61 \\ 61 \\ 62100 \\ 10400 \\ 617 \\ 61 \\ 61 \\ 61 \\ 61 \\ 62100 \\ 4760 \\ 1170 \\ 61 \\ 61 \\ \end{matrix}$

Name	$m_{\tilde{g}} \ (\text{GeV})$	$m_{\chi^0}~({\rm GeV})$	$\sigma_{1 \text{ fb}^{-1}}^{\text{reach}}$ (fb)	$\sigma_{5 \text{ fb}^{-1}}^{\text{reach}}$ (fb)	$\sigma^{\rm reach}_{15~{\rm fb}^{-1}}$ (fb)	$\sigma_{\rm prod}^{\rm QCD}$ (fb)]
$\mathcal{G}_{ ilde{B}}^{ extsf{TB}}$	500	115	239	146	92	2310]
$\mathcal{G}_{\tilde{B}}^{\mathtt{TB}}$	500	40	175	100	63	2310	
$\mathcal{G}_{\tilde{B}}^{\mathtt{TB}}$	650	40	88	29	14	335	
$\mathcal{G}_{\tilde{B}}^{\mathtt{TB}}$	800	415	152	59	37	61	
$\mathcal{G}_{ ilde{B}}^{ extsf{TB}}$	800	40	66	17	8.3	61	
$\mathcal{G}_{ ilde{B}}^{ extsf{TJ}}$	450	65	1680	1320	1080	4760]
$\mathcal{G}_{\tilde{B}}^{\mathrm{TJ}}$	550	140	653	470	354	1170	
$\mathcal{G}_{\tilde{B}}^{\tilde{\mathtt{TJ}}}$	650	40	177	102	83	335	
$\mathcal{G}_{\tilde{B}}^{\mathrm{TJ}}$	800	415	349	234	183	61	
$\mathcal{G}_{\tilde{B}}^{\mathrm{TJ}}$	800	40	79	39	24	61	
${\cal G}_{ ilde{B}}^{ t BJ}$	200	165	25000	17900	13000	625000]
$\mathcal{G}_{\tilde{B}}^{\mathtt{BJ}}$	200	40	35100	25400	11800	625000	
$\mathcal{G}_{\tilde{B}}^{\mathtt{BJ}}$	500	40	311	197	179	2310	
$\mathcal{G}_{\tilde{B}}^{\mathtt{B}\mathtt{J}}$	800	765	4120	2960	2510	61	
$\mathcal{G}_{ ilde{B}}^{ extsf{B}}$	800	40	58	29	17	61	
Nom		\overline{I} m $(Coll$	(7) - reach (4	(h) reach (fla) - reach ($(\mathbf{f}_{b}) = \mathbf{Q}^{CD}$	(fb)
Inam		$\frac{1}{1} \frac{1}{1} \frac{1}$	$v) 0_{1 \text{ fb}^{-1}}$	$\frac{10}{0} \frac{0}{5 \text{ fb}^{-1}}$	$\frac{10}{0} \frac{0}{15 \text{ fb}^{-1}}$	(ID) 0 prod	
$\mathcal{I}_{\tilde{B}}$	250		15100	9960	5980	1800	00
$\mathcal{I}_{\tilde{B}}$	350	50	1970	1500	1104	2420)0
$\mathcal{I}_{\tilde{B}}$	500	200	536	349	289	231	0
$\mathcal{I}_{\tilde{B}}$	500	50	240	124	104	231	0
$\mathcal{I}_{\tilde{B}}$	650	350	321	178	144	335)
$\mathcal{T}_{\tilde{B}}$	650	50	96	49	32	335)
$\mathcal{B}_{\tilde{B}}$	100	0	219000) 203000) 124000	$) 21.2x^{2}$	106
$\mathcal{B}_{\tilde{B}}$	200	50	11200	8620	5370	6250	00
$\mathcal{B}_{\tilde{B}}$	350	200	2260	1680	1260	2420)0
$\mathcal{B}_{\tilde{B}}$	350	50	481	438	427	2420)0
$\mathcal{B}_{\tilde{B}}$	400	50	263	209	171	1040)0
$\mathcal{B}_{\tilde{B}}$	450	150	230	168	133	476	0
$ \mathcal{B}_{\tilde{B}} $	500	350	989	586	348	231	0
$\mathcal{B}_{\tilde{B}}$	500	50	142	71	54	231	0
$\mathcal{B}_{\tilde{B}}$	550	0	121	65	45	117	0
$\mathcal{B}_{\tilde{B}}$	600	350	233	153	120	617	7

More Novel Simplified Models Being Discovered

Gluino-Squark-LSP Simplified Model not studied

Stealth Susy

Fan, Reece, Ruderman

Eviscerates MET even with stable LSP

Outline

Simplified Models

Two Examples Light Flavored Models Heavy Flavored Models

Future Directions Stops High Multiplicity Searches Quark/Gluon Tagging

Stops

Critical for understanding naturalness

 $\lambda_{\text{susy}} = \frac{1}{8} \left(g^2 + g'^2 \right) \cos^2 2\beta$ $m_{h^0}^2 = 2\lambda v^2 = -2\mu^2$ $m_{h^0} < M_{Z^0}$

 $\delta \lambda = \frac{3y_{\text{top}}^4}{8\pi^2} \log \frac{m_{\text{stop}}}{m_{\text{top}}} + \frac{3a^2 y_{\text{top}}^4}{8\pi^2} \left(1 - \frac{a^2}{12}\right)$

 $\delta\mu^2 = -\frac{3y_{\rm top}^2}{8\pi^2}m_{\rm stop}^2$

But with a low cross section

Cut-and-Count not sufficient

Stop Searches $\tilde{t} \rightarrow t\chi^0$

It's not clear whether this simplified model will be effectively explored at the 7TeV LHC

Working groups are attempting multivariate analyses Reconstructing tops High Multiplicity Final States Multi-Top Final States (4 tops ~ 12 jets) Long Cascades (2 Step Cascade ~ 12 jets) UDD R-Parity Violation (~ 10 jets)

Lowers Missing Energy

Can't Calculate Backgrounds $d\sigma(12j) \sim (\alpha_s(\mu))^{12}$

Data-Driven Backgrounds have Large errors

Change Approach

Use Large Cone Jets e.g. CA w/ R = 1.2

High Multiplicity Event Turns into a Small Multiplicity Event

Grouping doesn't necessarily represent topology

How to Distinguish

Jet Mass

Jet Masses are now becoming standard tools

Historically not used because of UE/PU sensitivity

Stray radiation changes jet mass

Different methods for removing stray radiation Jet Filtering/Pruning/Trimming Solves Problem

Jet Filtering at ATLAS

Jet Masses are (mostly) Uncorrelated

The probability of getting 1st anomalously massive jet nearly unrelated to getting the 2nd anomalously massive jet

10% to 20% correlations in MC between jet masses

Can do data driven estimates of BGs

Perform searches requiring several jets with anomalously large mass/pTs

Top events have few events with $m_j > 180 \text{ GeV}$

 $m_{j1} > 200 \text{ GeV removes } 95\%$

Preliminarily looks like sizable gains in significance are possible

Quark/Gluon Tagging

Recent work by Schwartz & Gallicchio

$$g = \sum_{i \in \text{jet}} \frac{p_T^i}{p_T^{jet}} \left| r_i \right|$$

R	Ag	Abdt
100	22%	23%
30	36%	43%
10	51%	65%

Can enhance S/B by a factor of 5 by requiring double Quark tags

Outlook

We're rapidly increasing our knowledge of the TeV scale

We don't have a target to aim at

New physics can be subtle and hidden under backgrounds

Lots of new techniques to use

Joint Theory-Experiment effort to ensure we're not letting physics hide