Search for rare B decays in ATLAS

Alessandro Cerri, CERN

Search..? Or Search..!

- LHCb and CMS have already produced public results on rare B decays
- Why not ATLAS?
- A few silly rumors:
 - No adequate trigger
 - Poor invariant mass resolution makes it impossible
 - Please let me know if there's any other floating around!
- My hope was to bring here today the first public result, and, well... delays happen...
- I want however to tickle your interest on certain aspects of this analysis which might be overlooked, borrowing examples from our projections and other experiments

A. Cerri, CERN - Rare Decays with ATLAS - GGI, Florence

Not quite!

- What will I discuss today?
 - Overview of the analysis as described in publicly approved results
 - Rumors and reality: a few reasons why indeed we know that this analysis is viable with ATLAS (and actually well under way)
 - Experiment, theory and phenomenology: a few aspects of this kind of analysis that you should keep in mind when listening to experimentalists

Part I

How you shall we read results on the subject

Let's begin from (other's) results

• Much ado about nothing, or... noting?

- Filled vs empty symbols: increasing discrepancy of predicted vs measured
- Possible reasons:
 - 1. Approaching signal sensitivity
 - 2. Systematics (e.g. under estimation of the background)
- Let's go with 1, did you consider:
 - 1. Are experimental points for the same symbol independent?
 - 2. What is the difference between filled and empty going to do vs luminosity?
 - 3. What is the relationship between these experimental points and measurements of a BR?

95% CL Limits on $\mathcal{B}(B_s \rightarrow \mu\mu)$

Introduction

Imagine you have observed a signal and want to measure BR of $B_s \rightarrow \mu\mu$:

$$BR(B_{s} \rightarrow \mu\mu) = \frac{N_{B_{s} \rightarrow \mu\mu}}{\alpha_{B_{s} \rightarrow \mu\mu}} \varepsilon_{B_{s} \rightarrow \mu\mu}^{tot} \cdot \frac{\alpha_{reference}}{N_{reference}} \cdot \frac{f_{reference}}{f_{s}} \cdot BR(reference)$$

$$PDG \text{ For } J/\psi \text{ K}^{+}: 1.69 \pm 13\%$$

- Measure a relative BR to factor out uncertainties:
 - O Luminosity
 - Production mechanisms
 - Selection, reconstruction, analysis efficiencies and acceptances

This analysis is mostly about extracting relative efficiencies and acceptances, as well as the technique used to derive N_{Bs}

A. Cerri, CERN - Rare Decays with ATLAS - GGI, Florence

- Scale factor "translating" upper-limit on N_{Bs} to upper-limit on BR
- Very useful to gauge the reach of an experiment however:
 - Not accounting for uncertainties on relative efficiencies, PDG numbers
 - The same experiment can behave extremely well or extremely bad depending on the average expected Nobs, i.e. with large/ small background!

Back to the real world!

- Main uncertainty actually comes $N_{Bs} \rightarrow \mu\mu$ which is extracted with some variation of counting events in a tiny S/B environment:
 - (Nobs,Nbck)→Nsig
 - Statistically delicate procedure
 - Upper limit estimation vs measurement: in most approaches two different things!
- The remainder (B⁺ yield, relative efficiencies and acceptances, PDG inputs) can have rather generous uncertainties (10-20%) with marginal effect on the limit

N_{obs} to N_{sig}, big deal?

• Short answer:

- Unambiguous if you can tell there's a signal by eye
- Often ambiguous otherwise
- How, why? Well known issues with certain low event count approaches:
 - More background for the same N_{obs} → more stringent limit on signal
 - \circ Non-physical limits and/or measurements (e.g. infer negative N_{sig})
 - Flip-flopping (choice btw limit and measurement based on data)

A. Cerri, CERN - Rare Decays with ATLAS - GGI, Florence

A few numerical examples

$\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$ Test for $\Delta B = 1$	weak ne	eutral current.		TECH	COLUMENT	Г ₃₈ /Г		
<4.2 × 10 ⁻⁸ ••• We do not use the	90 90 gfollow	¹¹⁵ ABAZOV ing data for averages	10S s, fits,	D0 limits,	$p\overline{p}$ at 1.96 TeV etc. • • •	I		
$<4.7 \times 10^{-8}$ $<9.4 \times 10^{-8}$ $<4.1 \times 10^{-7}$ $<1.5 \times 10^{-7}$	90 90 90 90	¹¹⁵ AALTONEN ¹¹⁶ ABAZOV ¹¹⁷ ABAZOV ¹¹⁸ ABULENCIA	08i 07q 05e 05	CDF D0 D0 CDF	p戸 at 1.96 TeV p戸 at 1.96 TeV p戸 at 1.96 TeV p戸 at 1.96 TeV			
$<5.8 \times 10^{-7}$ $<2.0 \times 10^{-6}$	90 90	¹¹⁹ ACOSTA ¹²⁰ ABE	04D 98	CDF CDF	Nobs	Nback		Nsig
$<3.8 \times 10^{-5}$	90	121 ACCIARRI	97B	L3	4 [5,16,]	4 []	_	CDF 2011
<8.4 × 10 ⁻⁰	90	122 ABE	96L	CDF	1079	1091±25	5	ABAZOV 10S
					0 [4,11]	0.7±0.1	[3.7,10.3]	AALTONEN 08I
					2	1.24±1		ABAZOV 07Q
					4	3.7±1.1		ABAZOV 05E
					0	0.81±0.	12	ABULENCIA 05
					1	1.1±0.3		ACOSTA 04D
					1	2.6		ACCIARRI 97B
					1	0		ABE 96L
					A. Cerri, C	ERN - Rare I	Decays with A	TLAS - GGI, Florence

How important?

A numerical toy exercise $(N_{obs}, N_{bck}) \rightarrow Upper Limit on N_{sig}$:

(0,3)→2.3	(3,3)→4.37	(3,0)→6.68
(0,3) → -XXX	(3,3)→3.68	(3,0)→6.68
(0,3)→2.3	(3,3)→5.49	(3,0)→6.68
(0,3)→1.08	(3,3)→4.42	(3,0)→6.74

•The statistical method we use to derive the answer in a low-statistics experiment MATTERS A LOT

Comparing and combining makes sense if the same common approach is used
For large statistics, all this is irrelevant (i.e.: when you see a peak, it's a peak, no matter how you measure it!!!)

A. Cerri, CERN - Rare Decays with ATLAS - GGI, Florence

Let's read those results, again:

- Circles and triangles: not the same language
- In fact, even circles with circles and triangles with triangles speak different languages, rather consistent though
- I was careful in highlightig discrepancies c-c or t-t in the same paper exactly for this reason!

95% CL Limits on $\mathcal{B}(B_s \rightarrow \mu\mu)$

What about those numerical examples?

$\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$	unak n	outral current				Г ₃₈ /Г			
$\frac{1}{VALUE} = 1 \text{ Visc}$	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT				
<4.2 × 10 ⁻⁸	90	¹¹⁵ ABAZOV	10s	D0	<i>pp</i> at 1.96 TeV				
• • • We do not use the	e follov	ving data for average	s, fits,	limits,	etc. • • •				
$<4.7 \times 10^{-8}$ $<9.4 \times 10^{-8}$ $<4.1 \times 10^{-7}$ $<1.5 \times 10^{-7}$	90 90 90 90	115 AALTONEN 116 ABAZOV 117 ABAZOV 118 ABULENCIA	081 07Q 05E 05	CDF D0 D0 CDF	<i>pp</i> at 1.96 TeV <i>pp</i> at 1.96 TeV <i>pp</i> at 1.96 TeV <i>pp</i> at 1.96 TeV				
$< 5.8 \times 10^{-7}$	90	119 ACOSTA	04D	CDF	Nobs	Nback		Nsig	
$<2.0 \times 10^{-6}$ $<3.8 \times 10^{-5}$	10^{-6} 90 120 ABE 98 CDF 10^{-5} 90 121 ACCIARRI 978 L3 4 [5,16,] 4 []		CDF 2011						
$< 8.4 \times 10^{-6}$ 90	90	¹²² ABE	96L	505	1079	1091±25		ABAZOV 10S	
		/	1	7	0 [4,11]	0.7±0.1 [3.	7,10.3]	AALTONEN 08I	
Thous	and	s!	/ /	1	2	1.24±1		ABAZOV 07Q	
	4 3.7±1.1 ABAZOV 05E 0 0.81±0.12 ABULENCIA 05								
	1 1.1±0.3 ACC	ACOSTA 04D							
					1	2.6		ACCIARRI 97B	
And the	n	what's in			1	0		ABE 96L	
the squa	re b	orackets?							
					A. Cerri, C	ERN - Rare Dee	cays with A	TLAS - GGI, Florence	11/11/11

Different analysis approaches

- Pure "cut and count":
 - N variables, optimize in an N-dim space
 - Cut and count surviving events
- MVA "cut and count":
 - N variables \rightarrow 1 classifier (NN, BDT, XYZ)
 - Optimize cut
 - Count surviving events
- MVA "binned cut and count":
 - N variables \rightarrow 1 classifier
 - Optimize cuts
 - Count surviving events in each bin (1D, 2D)
- MVA fit:
 - N variables \rightarrow 1 classifier
 - Fit classifier distribution i.e. compare against S+B and B likelihood

A. Cerri, CERN - Rare Decays with ATLAS - GGI, Florence

Pure cut and count

- Limited sensitivity (no use 0 whatsoever of shapes)
- Robustness to systematics 0

11/11/11

A. Cerri, CERN - Rare Decays with ATLAS - GGI, Florence

MVA cut and count PRL 95 221805

- Build a combined variable "q" that discriminates S and B
- Optimize cut in (m,q)
- Count!
- Improved sensitivity:
 - Even with same variables, correlations can be better exploited
 - Can use more variables
- Robustness:
 - Two sharp cuts on well defined variables

MVA Binned cut & count

- Again a combined classifier...
- Exploit not only the "q" bin with highest expected S/B, but also "some" below
- Exploit more variables
- Exploit more of the data to extract information
- How many bins?
 - More: increase use of information but also sensitivity to systematics
 - Less: more robust, less powerful

11/11/11

A. Cerri, CERN - Rare Decays with ATLAS - GGI, Florence

MVA "Fit"

- Maximal use of information contained in the events (except, in this example, for the binning)
- Maximal sensitivity also to systematics!
- Do you realize why the title says "Fit" rather than Fit?

11/11/11

A. Cerri, CERN - Rare Decays with ATLAS - GGI, Florence

Cut optimization/classifier tuning

At the cost of being pedantic:

- Two independent background samples are needed!
 - Cut optimization and/or classifier tuning
 - Background extrapolation (extraction of N_{bck})
- If same sample used for both then you can (and will) get a bias!

A simple toy experiment: •Generate N_{bck} events with Poisson distribution •Optimize selection on sidebands •Measure (y axis) bias on Nbck after optimized cut

The bias is sizeable especially for low event counts!

A. Cerri, CERN - Rare Decays with ATLAS - GGI, Florence

Conclusions I

- As long as we wander in the dark, the exact upper limit is strongly dependent on the statistical technique used
- Larger datasets (increased luminosity) and better use of the information in the datasets improve the "sensitivity" (no matter how it is defined)
 - Beware of robustness though!
- At discovery and beyond, all results are consistent, for a real signal and well behaved analyses
- Searches can be very involuted from the point of view of the analysis techniques: progressing using the simpler as a cross-check for the most complicated is essential!
- Beware of where you step when you optimize!

A. Cerri, CERN - Rare Decays with ATLAS - GGI, Florence

Part II

What ATLAS promised, few years back? Will we maintain our promise?

Rules of the game

- I cannot quote or mention non approved work in progress
- What I will discuss are mostly results which have been public since years
- Discussion oriented towards addressing common misconceptions about why we didn't publish a result yet
- ...again: expect a result soon!

A. Cerri, CERN - Rare Decays with ATLAS - GGI, Florence

ATLAS performance in $B \rightarrow \mu\mu$

A few critical ingredients to the analysis which are sometimes questioned:

- Trigger efficiency
- Reconstruction efficiency
- Mass resolution
- Proper time/vertexing resolution
- Any other?

Muon reconstruction

CSC assumption

ATLAS observed and simulated

Perfectly consistent with expectations! Even better!

A. Cerri, CERN - Rare Decays with ATLAS - GGI, Florence

Trigger Efficiency

- For B→µµ we select two 4 GeV muons at trigger level, and confirm them in reconstruction
- Many studies already performed (e.g. J/ ψ production crosssection) which prove our degree of understanding of trigger efficiencies, and the consistency with expectations!

Figure 2: Efficiency of EF_mu4_Jpsimumu as a function of the p_T (top) and η (bottom) of the reconstructed muon with higher p_T in the di-muon pair [2].

Trigger & reconstr. efficiency I

A. Cerri, CERN - Rare Decays with ATLAS - GGI, Florence

•Yields perfectly consistent with expectations from CSC studies

•Most of these signals based on identical dimuon trigger used for rare decays

•Mass-window for rare decays shifted higher → smaller di-muon background

A. Cerri, CERN - Rare Decays with ATLAS - GGI, Florence

Mass Resolution

REM: detector alignment knowledge is improving with integrated luminosity, and the spectrometer resolution will follow this trend as well!

- CSC document predicts 70-124 MeV
- I don't have a signal, so I can't compare 1-1 however many other peaks are extremely well reproduced in data/MC
- About 2x the resolution quoted in the CMS paper

The dimuon mass resolution for signal events depends on the pseudorapidity of the B candidate and ranges from 36 MeV for $\eta \approx 0$, to 85 MeV for $|\eta| > 1.8$, as determined from simulated signal.

A. Cerri, CERN - Rare Decays with ATLAS - GGI, Florence

Data/MC dimuon resolution

Ο J/ ψ →µµ, fit 2–track vertex

• Mass value and dependency on $\eta (J/\psi)$ consistent with PDG/MC:

Proper-time & vertexing?

Hits on tracks / 4 µm

- PV determined with 13-16 μ m precision
- Tracker residuals within expected performance, not fully consistent with simulation, but well within specs!

• Resolutions under control!

A. Cerri, CERN - Rare Decays with ATLAS - GGI, Florence

The CSC estimate

- Pure cut & count exercise
- MC based
- Background modeled with $bb \rightarrow \mu\mu$, $B \rightarrow hh$ and $B \rightarrow Kl \nu$
- Large uncertainties due to assumptions on BR, production crosssections etc!

A. Cerri, CERN - Rare Decays with ATLAS - GGI, Florence

The CSC estimate II

0

0

$B_s^0 \rightarrow \mu^+ \mu^-$ efficiency
0.24
0.26
0.23
0.76
0.04
5.7

- Projection to 10 fb⁻¹
- $bb \rightarrow \mu\mu$, $B \rightarrow hh$ and $B \rightarrow Kl \nu$ taken into acount
 - SES @ 10 fb⁻¹ estimated back-of-theenvelope:
 - Assuming $B(B \rightarrow \mu \mu) 3.5 \cdot 10^{-9}$:
 - SES_{10fb}= $(3.5/5.7) \cdot 10^{-9} \approx 6 \cdot 10^{-10}$

Scaling just by luminosity:

SES_{3fb}≈1.1•10⁻⁹

Compare to CMS@ 1fb⁻¹: SES_{CMS}≈2•10⁻⁹

Take all this with a grain of salt: it's a back-of -the-envelope extrapolation from numbers dating back to before data taking!

A. Cerri, CERN - Rare Decays with ATLAS - GGI, Florence

CSC estimate

A few things to keep in mind:

- MC based
- Effect of background not taken into account in SES
- Don't quote this as the "ATLAS reach": you will get the actual number soon!

Another quick back-of-the envelope estimate could be done taking the CMS numbers and correcting for mass resolution effects (≈sqrt(2))...

The current landscape

Questions

- Is the white band consistent/inconsistent with the rest?
- Are all the upper limits speaking the same "statistical language"?
- My questions!
- Why nobody looks below SM?
- Did you see any horizontal line? Do you know why?

A. Cerri, CERN - Rare Decays with ATLAS - GGI, Florence

Answer to question #1:

- Contours are gaussian-equivalent iso-probability lines
- Cross is the CDF measurement

What do you think? Is it incompatible at all?!?

Conclusions

- When you look at these results, there may be significant small prints
- A little late... yes! But we are aiming at an healthy defendable and well understood result
- Many studies ongoing in ATLAS, thousands of physicists and yet... we're late basically because resource-limited!
- Be patient: we won't disappoint you!

We want to produce an high-quality well-understood result! You'll hear about it, shortly!