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Many Body Localization

Aleiner et al (2006,2010)

If the model has bounded spectrum, one can attempt 
to drive the transition at inifinite temperature
Oganesyan and Huse (2007), Pal and Huse (2010)



Disordered Spin Chains

Poisson r=0.39

GOE r=0.53

= interacting fermions:

Ratio of adjacent energy gaps from 
exact diagonalization of 16 sites:
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Thermalization and dynamics of entanglement entropy

clean system localized system (?)
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Ssaturation ~ ξlocalization

Bounded entanglement 
allows efficient numerics
(using DMRG).
Approach transition 
from the localized side?
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Von-Neuman entropy generated in the dynamics:



Entanglement dynamics: numerics

S~ log(t) growth seen in the 
interacting disordered model.

De Chiara et. al. J. Stat. Mech (2006)

+Jz

Znidaric et. al. PRB 08  



Entanglement dynamics: numerics (preliminary)

Bardarson et. al. arXiv:1202.5532

+Jz

S~ log(t) growth seen in the 
interacting disordered model.



Outline

• Real space RG for quantum time evolution in strong disorder.
Basic idea and scheme 

• Application: random spin chain quenched from AFM state.
Flow to Infinite randomness fixed point

• Criterion for the Many-body localization transition.

• Evolution of entanglement entropy and number fluctuations. 
Non-thermalization and asymptotic GGE

• Generalization to generic initial state and generic disorder
(Preliminary)



Real space RG for the dynamics, general scheme

Model:

Basic idea:

Large local separation of scales (disorder)

solve the local fast time evolution exactly 

Compute effect on rest of chain perturbatively

Relation to but somewhat different philosophy than RSRG that 
targets the ground state (Dasgupta & Ma 1980, D. Fisher 1994, …)



Real space RG for the dynamics, general scheme

Model:

2. Compute feedback on the dynamics of the rest of the chain.

Or remain stuck if  initially parallel

1. Successively eliminate pairs of spins coupled by the largest J’s. 

These pairs perform rapid oscillations 
(frequency Ω) if initially anti-aligned.  

We obtain the full dynamics by solving only isolated pairs of spins at a time. 
The price: renormalization of the coupling constants with time

For classical dynamics: Fisher et. al. PRL 99, Polkovnikov and Mathey PRA 2009

Scheme:



Real space RG for dynamics, general scheme

To compute the evolution up to 
time             , successively 
eliminate all pairs precessing
at frequencies Ω0 down to Ω.



The RG decimation step: formal

Transform to interaction picture w.r.t the strong bond and compute the time 
dependent density matrix in second order perturbation theory starting from 
the non entangled initial state:

Average over time 

Average over fast oscillations and 
Equate term by term:

Heff depends on H and on initial state !



The RG decimation steps: anti-parallel pair

Simplest case ∆=0 :

This is all we will ever need if the initial state is a Neel state



The RG decimation step: anti-parallel pair

For ∆ > 0 need to keep track of  a new spin on the strong bond

The new spin initially points along x or –x therefore the evolution is a superposition of 
the dynamics given an up-spin on the bond and the dynamics with a down-spin:

This generates entanglement between 
decimated bond and the nearby spins after a time 

But no effect on subsequent 
renormalization of coupling constants!



Flow of distributions for initial Neel state

RG rules:

Scaling variables:

Flow equations for distributions:



Solution of the flow equations

Flow to an infinite randomness fixed point!

Like the “Random singlet” phase of spin chains
(Dasgupta&Ma 80, Baht&Lee 82, Fisher 94)
Here oscillating pairs play the role of singlets

Or in the original variables:

~
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/d
is
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~ interaction

Relation between frequency (or time) scale and length scale:

(Distance between remaining spins at that scale)



Phase diagram - Extent of the localized state

A criterion for initial conditions that lead to the localized fixed point 
can be found from the RG rule:

In order to flow to increasing randomness the typical J must 
decrease in the process. Therefore demand:

Disorder

Interaction



Evolution of the entanglement entropy

Compute entanglement entropy by counting the number of decimated 
bonds that cut the interface.
Each decimated bond crossing the interface contributes ~log2. 
(As in the ground state of random singlet phase – Refael & Moore PRL 2004)

Simplest case ∆=0 (“non interacting”): Only intra-pair entanglement 



Evolution of the entanglement entropy

∆>0 Neel initial state :

A bond eliminated at t1 builds entanglement 
with neighbors only at a later time t=t1+tent.

The interaction generates entanglement only 
after a delay time from the start of time evolution



Evolution of the entanglement entropy

∆>0 Neel initial state :

The interaction generates entanglement only 
after a delay time from the start of time evolution

How much entanglement is generated?

Reasonable to assume that by the time 
t=t1+tent that these spins become 
entangled the decimated pairs between 
them are also entangled with each other. 

Recall there is a decimated region of length 
L(Γ1)  between spins at Γ1

L(Γ1)



Saturation of entanglement entropy in a finite system

Entropy saturates to an extensive value:   S(L) ~ L

L

Saturation time:

What is the prefactor? 
Is it the expected thermalized value S(L)= L ln2 ?
(T is infinite for the given initial state)

No! in every decimated pair the states         and
are not populated therefore S(L)<(L/2)ln2 

No thermalization!

(Later we relate this to an infinite set of effective constants of motion) 



Evolution of particle number fluctuations

Since the        and        states of decimated pairs are not populated, 
only pairs that intersect the interface contribute to 

Much slower than the growth of the ent. Entropy
And independent of interaction!

Saturates to a non-extensive value in a finite system:



Generalize to random initial state

RG rule for a strong bond connecting parallel spins: 

Keep track of a new spin:

Generates slow switching between the          and          states.

But the and         states of the pair are not populated.

The operators          of decimated pairs are asymptotic 

constants of motion if the system still flows to infinite randomness. 

But the flow is complicated by the switching term (last term) and the 
generated interaction between the new spin and its neighbors.



RG flow for random initial state and random Zeeman 
fields neglecting resonances

Solved by the Ansatz: Gradual 
condensation

Flow to infinite rand. in J (peaked at small J) and large Local Zeeman fields



Summary

• Formulated RSRG for quantum spin chains

• Established fixed point depends both on H 
and on initial state!

• Infinite randomness fixed point for xxz chain
with initial Neel state.

• Evolution of entanglement entropy:

• Particle number fluctuations:

• Non thermal steady state can be understood as Generalized 
Gibbs ensemble with the asymptotic conserved quantities:



Summary

• Conjectured criterion for the many-body localization transition 
from the basin of attraction of the infinite-randomness FP.

Disorder

Interaction

Outlook
• Nature of the steady state for generic initial conditions and 

possibly generic disorder (allow local Zeeman fields)

• Access the critical point which controls the many-body 
localization transition



Thank you!


