Tzu-Chieh Wei | lan Affleck
(1: Stony Brook University, 2: U

GGl Florence,
April 19,2012



What is the

computational power
of quantum states?

)



How to extract the computational result?
—_

Allowed operations:
e Unitary gates and measurement
e Classical communication and simple processing

Organizing principle: Unitaries and measurements are n-local

1-local 2-local 3-local



How to extract the computational result?
T ————.————————S

unitaries only

unitaries &
measurement

measurement
only

local 2-local 3-local 4-local

no computation

7. Is this computation universal?

I.e.: Can anything computable by a quantum computer be computed in this
fashion, with polynomial overhead?
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Quantum computation by measurement

circuit time

e Use an entangled quantum state |W) as computational re-

source.
e Information written onto |W), processed and read out by

one-qubit measurements only.



Quantum computation by measurement

© © ©

circuit time

>

e Are there universal resource states |W)7 — Yes: cluster states.

e Can universal states |W) be ground states of simple Hamilto-
nians? — Yes: 2D AKLT states.



Simulating a universal gate set
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CNOT gate general one-qubit rotation

Measurement-based realization of a universal set of gates, for
the cluster state.



Cluster states are universal

e Cluster states |®)- can be created from a product state
via unitary evolution under the Ising Hamiltonian [1].
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e Cluster states do not arise as ground states of two-body
Hamiltonians [2].

[1] Raussendorf and Briegel, PRL 86, 910 (2001);
[2] M. Nielsen, Math. Phys. 57, 147 (2006).



But ... 7
N

Individual measurement outcomes are random. How can one
compute in a deterministic fashion?

A: Measurement outcomes are random but correlated. Only the
correlations represent output bits.

The support of the quantum correlations K(|W)) used for the computa-
tion is of the order of the system size

(K (|W))| ~ supp(|W))

e In addition: Measurement bases need to be adjusted to mea-
surement outcomes obtained at other qubits.

— Leads to temporal order.




The role of entanglement




Entanglement as a resource
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e Burn entanglement to obtain a computational result.

e Resource state |W) can be used only once.



Entanglement as a resource
|

Theorem (Van den Nest et al., '06) The operational cost O of
classically simulating measurement-based quantum computation

on an n-qubit state |W) is at most

O = Poly(n) exp(x),

where x is the entanglement width of |W).

Remark: x is an entanglement measure.

Message: Substantial entanglement is necessary for a speedup.

MBQC e entanglement theory e tensor networks e graph theory



But is entanglement sufficient ?

Consider geometric entanglement £(|WV)) [Wei & Goldbart '03]:

entangled states

-
-
-

product
states

5(|W>)1=—|092< max |<¢|w>|2) (1)

prod. states |¢)

By probability conservation: If |W) is an n-qubit state, then
E(JW)) < n.



Too entangled to be useful

(O O O O O) n-qubit state
13413

n o
2" possible measurement outcomes

VR

good fraction G bad fraction B

computation succeeds computation fails

Assumptions:

e Entanglement is close to maximal: E(|WV)) =n -9

e Computation succeeds with high probability: psuccess = 1/2.



Too entangled to be useful

CO Q0O O) n-qubit state Assumptions:
l l l l l 1. Entanglement: E=n-0

n .
2" possible measurement outcomes

/ / \. 2. Success probability: 1/2

good fraction G bad fraction B

computation succeeds computation fails

Q: What is the fraction of “good” outcomes |G|/2" 7

For all post-measurement states |4(s)):
(p(s)|W)]2 < 276V = o7nHd,
Hence,

1 _
Psuccess — = — Z |<¢(S)|\U>|2 <|G|-2 n+o,
2 sed



Too entangled to be useful

CO Q0O O) n-qubit state Assumptions:
l l l l l 1. Entanglement: £=n-0

n .
2" possible measurement outcomes

/ / E 2. Success probability: 1/2

good fraction G bad fraction B

computation succeeds computation fails

Q: What is the fraction of “good” outcomes |G|/2" 7

Answer:

e [his MBQC can be efficiently simulated by coin flipping.
No quantum speedup!

[Gross D, Flammia ST, Eisert J. 2009. Phys. Rev. Lett. 102:190501]



MBQC and Statistical Mechanics




MBQC and the Ising model

2D cluster state corresp.lsing interaction graph

universal partition function hard

<¢Ioc|w> ~ ZIsing ({Je/kT})

(2)



MBQC and the Ising model

Kitaev surface code state corresp.lsing interaction graph

Not useful for MBQC partition function easy to compute

<§b|oc|w> ~ ZIsing({Je/kT})



2D AKLT states are universal resources




Why ground states?

e EXperiment:
Create computational resource states by cooling.

e [ heory:
Make contact with condensed matter physics.

Connections already made for 1D AKLT states:
* Stability by symmetry [1],
* Renormalization group [2],
* Holographic principle [1].

[1] A. Miyake, Phys. Rev. Lett. 105, 040501 (2010).
[2] S.D. Bartlett et al., Phys. Rev. Lett. 105, 110502 (2010).



2D: A known universal 2-body ground state

IUWELLLE SPIL Operators. Hj ..~ is translationally invari-
ant along sublattice A and is a sum over three sets of
local terms at every site a in A:

Hiic =Y (has + hyu + hy) - )

hab, hpe and hg describe interactions along the three bond
directions at each site a, where b is to the right, to the
left and above a respectively. They can be expressed
explicitly as:

s =

2(25a, — 5)(2S,, — 3)(2S,, — 1)(25a, +1)(4S,, +11)
(28, +5)(25s, +3)(255, — 1)(2Sp. + (S, — 11)

— 75v28,, (25.. — 5)(25,, + 3)(25,, — 1)(28,, + 1)
(485} + 6457 — 28087 — 2728, + 67)

+ T5V2(485:. — 6453 — 28082 + 2728, + 67)
Sb, (2Sh, — 5)(285, — 3)(2Sh. — 1)(2Ss, +3)

+ 4V1082, (28,, —1)(25,, — 3)x
(12857 + 56057 — 284057 — 38485, + 675)

+ 4V10(12855 — 56052 + 284052 — 38485, — 675)
82 (25, — 5)(25s, — 3) + h.c.

where h.c. denotes the Hermitian conjugate, as usual. hy,
can be obtained by exchanging a, b in the above. hg is:

h, =
~25(28,, — 5)(2Sa, — 3)(2Sa, + 3)(2S., +5) .
+ 2583 (35, — 5)(25, - 1) e Universal resource
(22455, - 165;. — 196857 + 40S2 + 35505;, — 9)
- 1288,
(41655 — 80SE — 360055 + 52082, + 59945, — 125) o - b O d \Y; g roun d state

+ he.+(asb),

where (a < b) denotes an exchange of a and b in the pre- ® Spi n 5/2’ honeycom b

ceeding expression. Because each positive-semidefinite

Xie Chen et al., Phys. Rev. Lett. 102, 220501 (2009).
Also see [for different construction]: J. Cai et al., arXiv:1004.1907



The AKLT state in two dimensions

projection on
spin-3 subspace

One spin 3/2 particle per lattice site
o W o o W o o W o o W o o W o o W o

It is the ground state of the Hamiltonian

H=J Z P3 . (3)
ecE(L)

Ps . is the projector on the spin-3 subspace of six spins 1/2.



The AKLT state in two dimensions

symmetric
subspace

One spin 3/2 particle per lattice site
o W o o W o o W o o W o o W o) o W o

The AKLT-state on a honeycomb lattice L is

AKLT) .= @ Pzpa| @ [s=0)e. (4)
a=V (L) e€E(L)

P3/2,a is the projector on the spin-3/2 subspace of three spin 1/2.



Our result

One spin 3/2 particle per lattice site

A oA OO MM O O

The AKLT state on the honeycomb lattice is universal for quan-
tum computation by local measurements.

PRL 107, 070501 (2011)
Also see: A. Miyake, Ann. Phys. 326:165671 (2011)



Away from the AKLT point

Deformed AKLT-type Hamiltonian
H(a) = ) D(a); ® D(a);P3 (; ;yD(a); ® D(a);,
(4,9
where D(a) = diag(v/3/a,1,1,v/3/a). (AKLT: a = /3)

e Known: Phase transition to Neel order at a = 6.46 [Nigge-
mann et al. '97]

e Phase transition in computational power from universal to
non-universal at the same point!

[A. Darmawan et al., New. J. Phys. 14, 013023 (2012)]



Proof outline:
The 2D AKLT is universal for MBQC




Strategy — reduction to cluster state

local
* measurement
- ... ... e classical
communication
AKLT state cluster state

Steps:

1. Devise a symmetry breaking measurement.
2. Map to percolation. Universality is a connectivity problem!

3. Monte-Carlo shows: System is in the percolating phase.



Step 1: Symmetry-breaking measurement

Apply to every lattice site a POVM with the three elements

o= \/7[124-2122]234-2223
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{1,2,3}: qubit locations at given lattice site, |+) = [0)£]1) ill | £ = [0)£il1)

e This is indeed a POVM, FiF; + FJF, + FIF, = Isym.
e Post-POVM state: [W(A)) = Q,ecv(r) Fo.a [AKLT) .

Claim: |W(A)) is an encoded graph state.

What is that & what’s the graph?



Cluster states and graph states

A graph state |G) corresponding to a graph G is the single com-
mon eigenstate of the stabilizer operators {K,},

Kq|G) = |G), Ya € V(G),
with

Kq = Xa X Zy, VaecV(G). (5)
b|(a,b)eE(Q)

Therein, E(G) is the set of edges of G.



Step2: Rules for mapping to percolating graph

a) Rule 1:

(=X

Rule 2:

S -

R1 (Edge contraction): Contract all edges e € E(L) that con-
nect sites with the same POVM outcome.

R2 (Mod-2 edge deletion): In the resultant multi-graph, delete
all edges of even multiplicity and convert all edges of odd
multiplicity into conventional edges of multiplicity 1.
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Illustration of the graph rules

... and apply the 3-outcome POVM (5).



Illustration of the graph rules

Neighboring sites with same outcome form a domain.



Illustration of the graph rules

R1: Contract the domains. One encoded qubit per domain.



Illustration of the graph rules

R2: Reduce multiple edges. Odd - keep, even - remove.



Illustration of the graph rules

Resulting graph defines an encoded graph state.



The percolation problem

e Require two properties of typical resulting graphs:

t
,o # N
t4,t¢
Domains are microscopic. Left-right path always exists.
= Percolation = Supercritical phase
e [0 show:

* If 2 properties obeyed then reduction to 2D cluster possible.
* Typical resulting graph states have these properties.



Step 3: Monte Carlo
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domains are small e average vertex degree d = 3.5 > 2



Step 3: Monte Carlo
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path always exists e stable against edge deletion



Conclusion

e \We have shown that the AKLT state on a honeycomb lattice
IS a universal resource for measurement-based QC.

e T he AKLT state is the ground state of a simple, highly sym-
metric Hamiltonian with only 2-body interactions.

e Universality extends beyond the AKLT point.

What does condensed matter physics have to say
about computational universality?



