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“topological phase”

“topological”’ quantity =

<> gapped phase Eqc. > 0 (massive)

invariant as long as Eex. > 0

Examples (electronic):

Conduction band
>
g urface states 1 I
o Insulator
w | Fermi level
Valence band
Momentum
2 5 s w12 w
Poc 30 " H t
integer
kQ¥sq 2*)

::h/e2 QHE

02

v 2 4 6 8 w0
Magnetc Field {T)

2

[

Q@ @@ @@ @mece=Q @

Yan Yoo

b
l ¢ l l
z
Ii Seenscieuie

x

a2 Yoz

s-wave superconductor

Tas a3

c

Tan Ton

super-
conductor

fractional

R =

‘ QHE




Topological phases: a simple example

BCS theory (Bardeen-Cooper-Schrieffer) of superconductivity:

= Z [ckck (AkC_ka+Aka f ):|

chemical potential p:

in 2D, with T et P broken:

Ay ~ No(ky — iky)




Topological phases: a simple example

Ay ~ Ao(ky — iky) (“px + ipy" superconductivity)

ground state:  [¢) = o7 2k 8(K) ety 0)

S2~CuU{x} — CuU{occ}~S?
k — g(k)

o-C 0-0

§

L4
p=0 H
topological quantum phase transition




Topological phases: a simple example

Ay ~ Dok — iky) (“px + ip," superconductivity)

topological excitation: vortex

no zero mode “Majorana” zero mode

=
I
=V

topological phase transition



Topological phases: a simple example

vortices and non-abelian statistics |[Read and Green, 2000]

/ time
\ (adiabatic transport)
O

» same physics in the FQHE at v = 3 [Moore and Read, 1991]
—  possible experimental observation (interferometry)

» topologically protected qubits [Kitaev, 1997]



Topologically non-trivial phases:

quadratic

Hamiltonian

o topol
(topological insulators+superconductors) (—|—ptr?5rct)):’§}c/>ns)

free particles + topology

— well-known methods are available

interacting particles )
3P difficult

(FQHE, 777) problem

— requires new methods



possible (difficult)
numerically

privileged method (at least for FQHE):
model wave function
ground state + excitations

— a powerful method: “Moore-Read construction”



Moore-Read construction

Ay ~ Dok — iky) (“px + ip," superconductivity)

ground state:  [1)) = o3/ a1 [ &2 g(21,22) ' (21)cT (22) 10)
8(21,22)| ~ e7 17 22l/% g(z1,22) ~1/(z1 — 22)

.\.

=V

p=0
topological phase transition



Moore-Read construction

Ay ~ Dok — iky) (“px + ip," superconductivity)

ground state:  [1)) = o3/ a1 [ &2 g(21,22) ' (21)cT (22) 10)

lg(z1, z2)| ~ el 22l/¢ g(z1, ) ~ 1/(z1 — )

topological phase transition



Moore-Read construction

with vortices

wvortex(Wla Wo, W3, Wa, 71, .., ZN)

= (o(m1)o(w2)o(ws)o(wa)e(z1).-6(2n)) 1sing

local magnetization in the Ising CFT:

o(w,w) = o(w) x o(w)

correspondence local operators (CFT) « topological excitations



Moore-Read construction

diagonalization
IIIIIIIIIIIIII)
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Moore-Read construction: what about the edge
excitations?

o Pxetipy vacuum
° [ )




Moore-Read construction: what about the edge
excitations?

o Pxetipy vacuum
0, ®

(e

/

gapless chiral edge mode

> gapless edge excitations described by a 1+1d CFT



Moore-Read construction: what about the edge
excitations?

osical o diagonalization edge states
to(pﬁaﬁilﬁingna)se EEEEEEEEEEEEESR > (massless theory)
— 1+1d CFT
(Laughlin) o7 77
\ o’ UNITARITY

Le*Buess work  CONTROVERSY

model
wave function
(ground state) \ od CFT

correlator (Moore-Read)



Plan of the talk

» a simple example: py + ip,, massive Ising and edge theory
» FQHE, conformal blocks and screening hypothesis

» application to the entanglement spectrum



Edge states for p, + ip, paired superfluids

A 4

) = s ep ([ P [ dus gl we) e ) 10)

where w = x + iy

L
sinh (2#@)

g(wi, wz) = L
27

o is an inverse length, related to the density



Edge states for p, + ip, paired superfluids

————-
4 .

~

-
’
A S

) = sew ([ [ Fwa glono) a0

where w = x + iy
g(wi, w2) = p (W(w1)V¥(w2))

V(w) is a free (Majorana) fermion field



Edge states for p, + ip, paired superfluids

) = 75 (o0 (Vi [ www) ;) )10

where w = x + iy

(W(wa)¥(wa)) = ¢

5 sinh (2#@)

is the fermion propagator (then use Wick's theorem)



Edge states for p, + ip, paired superfluids

_____

Now look at the norm of | 1))

1

(¥ ¥))
1 (o] <ex/ﬁfd2WWCwe\/ﬁfd2W“’(W) cx> 10))
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Edge theory for p, + ip, paired superfluids

_____

mass p > 0 mass = 0

7 — <eufd2W‘U(W)W>

note that u is the mass is the action

S = /d2w (WowV + Vo,V + W]



Edge theory for p, + ip, paired superfluids

_____
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>
mass 1 > 0 mass = 0

Model wave function for the edge excitations:

1

o)) = = (stm)itm)e (Vi [ @wiwict ) ) 10)



Edge theory for p, + ip, paired superfluids
w -, \

mass = 0

mass 1 > 0

Model wave function for the edge excitations:

o)) = = (vt e (Vi [ dPwvtet ) ) 10)

Question: what's the overlap between two edge states?
=7 <<1/), wy ’1/1, W2>> =7, etc.

<<¢ W}a wi, W2>>



Edge theory for p, + ip, paired superfluids

mass p > 0 mass = 0

Question: what's the propagator in the massless phase?

V)W) (Wm)¥(ws)) (W) V()



Edge theory for p, + ip, paired superfluids

wy [
®
Y wy :

[ ] “

A
- - —‘—
x =0 .

T L4

mass jt = o0 mass =0

Answer when g — oo:

(W(m)W(w2)) = (Wi, y1)¥ (s, 2))

corresponding to the conformal boundary condition

V(0,y)=v(0,y) (x=0)



Edge theory for p, + ip, paired superfluids

mass = 0

mass p > 0

Answer at finite u:
<‘|’(W1)‘U(W2)> = <‘V(X1,)/1) e~ Spere(k) ‘V(—X2,Y2)>

corresponding to a perturbed conformal boundary condition

L
Spert:)\/ dy¢(0ay)+
0



Conclusion for py + ip,

» Edge excitations natural in the MR construction

» Overlaps between edge excitations
& massive/massless interface in the 2d Ising model



FQHE, screening and the edge theory



FQHE: trial wave functions as conformal blocks

» N particles in the LLL
U(z1,. .., 2zN)
analytic in the z;'s, and antisymetric (Fermi statistics)
» Moore-Read: trial wave function given by conformal block
P(z1,...,2zn) = (a(zn) ... a(z1))

a(z3)
a(fl) (.2) 2(54)

chiral CFT



Screening hypothesis (1)
1 N

_ VZ,',E,' 2 . 2

Zv = 3 /C I_|_|1e Gz (21, ..., 2n)|

[Y(z1,. .., zv)? = (a(z1) ... a(zn)) x (3(z1) ... 3(zZn))

_CFT
3(z) 3@ 2



Screening hypothesis (I1)

Zy = & [T1eV@&)d?z; (a(z1) ... a(zn)) x (3(z1) ... 3(zy))

Screening No screening

some long-range correl.

short-range correl. only = NOT a gapped
phase of matter



Screening hypothesis (l11)

> thermodynamic limit N — oo, rescale the droplet to keep
radius fixed (say radius= 1)

» at the boundary of the droplet (|z| = 1), screening implies

3'(Z) x phase factor

5}
—~
N
~
I




Screening hypothesis (l11)

> thermodynamic limit N — oo, rescale the droplet to keep
radius fixed (say radius= 1)

» at the boundary of the droplet (|z| = 1), screening implies

a(z) = 3'(z) x phase factor



Screening hypothesis (l11)

» thermodynamic limit N — oo, rescale the droplet to keep
radius fixed (say radius= 1)
» at the boundary of the droplet (|z| = 1), screening implies

a(z) = a'(z) x phase factor

chiral CFT

» conformal mapping z — w(z) from the exterior of the droplet

to the cylinder: a(w) = 3f(w)



Edge states (1)

» Reminder: the ground state w.f. is defined as

Vgs(zi,...,zy) = (a(z1) ... a(zn))

> to construct the edge states w.f., we insert contour integrals

(f wotmydn.... § wpom)a o) .. a(an)

¢j(w;) is in the chiral algebra generated by a(w), af(w)

chiral CFT



Edge states (1)

» Reminder: the ground state w.f. is defined as

ng.s(zl, Ce 7ZN) = (a(zl) ce a(zN)>

» in other words (radial quantization):

(dual) CFT Hilbert sp. — edge theory Hilbert sp.

<V| — w<v| = (V ’8(21) .. .a(zN)] 0>
A

Laa) az)

(v| Tmmeee .= -

chiral CFT



Edge states (1)

> Reminder: the ground state w.f. is defined as

VYgs(zi,...,zn) = (a(z1) ... a(zn))

» in other words (radial quantization):

(dual) CFT Hilbert sp. —  edge theory Hilbert sp.
(v| = (vl]a(z1)...a(zn)| 0)

» straightforward generalization of the previous constructions of
edge states for specific w.f.
an example (Laughlin):

CPRTCIED SEd SR | CRR

k<l



Edge states (II)

» quantum-mechanical inner product

(ot 1900 = g [ T B () i ()
(| | P(wel Zy N! vt [BRLUIANEY (v \ 140

> P ({zi}) [ ({2H)] = (vl a(z1) .. 10)(v] a(z1) ... [0)




Edge states (II)

» quantum-mechanical inner product

(ot 190)) = 5 [ TT ¥ oG] v ()
(v (o] Zy N ov i ¥ (va] i (v i

> P, ({2}) [P (2] = (vela(z1)...[0) (vi] a(z1) ... [0)

-
e
9"
o
n

(va| i [v)

chiral CFT .

» Consequence: <<¢<V1| ’¢<V2| >> = (va|v1) when N — oo.



Bulk/edge correspondence

Screening implies that

(dual) CFT Hilbert sp. —  edge theory Hilbert sp.
inner product (.|.) inner product ({.|.))

(vl — P = (v]a(z1). .- a(zn)] 0)

is a Hilbert sp. isomorphism in the thermodynamic limit N — oo:

(Yl [Pl )) = (v2lw)

(for the Laughlin w.f., similar argument appeared first in )



Entanglement spectrum: what are we talking about?



Entanglement spectrum: what are we talking about?

Starting point:

» quantum many-body systems: different phases matter
gsh =] -@tetetete..)
gs2) = |  —CO-ED—ED—E>~ )

» some phases are “very entangled”, some are “less entangled”

» study entanglement in the g.s. and use it as
(theoretical /numerical) diagnostic tool



Entanglement spectrum: what are we talking about?

[) € H=Ha®@Hp

Hly) =0

» Schmidt decomposition:
) =Y e k) @ kg
k=1

AlklkY 4 = Bk, K')g = Ok
r < min(dimH a, dimHg)

{&k} is the entanglement spectrum



ES in quantum Hall systems

Physical scenario (part of [Qi, Katsura, Ludwig, 2011])

» gapped bulk

» gapless, chiral edge
modes

H = Ha+ Hp



ES in quantum Hall systems

Physical scenario (part of [Qi, Katsura, Ludwig, 2011])

» gapped bulk

» gapless, chiral edge
modes

H = Ha+ Hg + Has

» rotational invariance:
[Hag, L§ + LZ] =
[HA7 L?] = [HBa LgB] =0

> plot the ES vs. angular
momentum L?

§

L2

“level counting”: in each L%
subsector

#{&k(L2)} < dimH5ES

(by construction)



ES in quantum Hall systems

» relation between counting of Schmidt eigenvalues and edge
states conjectured by

> coined the term “entanglement spectrum”, and proposed it as
a numerical diagnostic tool

(a) P[0[0]

60 65LA

> anticipated in the last few lines of



ES in quantum Hall systems

...in summary:

cut/glue argument | trial wave-functions | real-life system
(edge only) (bulk — edge) (complicated)

-
S _m

w(Zl, Ce. ,ZN)

No oo

CR =)

3

(a) P[0j0]
5658 60 67 64
45 50 55 60 65LA




ES in quantum Hall systems

...in summary:

cut/glue argument | trial wave-functions | real-life system
(edge only) (bulk — edge) (complicated)

-
S ™

Y(z1,. .., 2zn)

CR =)

3

Ne oo

H (a) P[0j0]
EE 64
50 55 60 65LA

5658 60
45




ES in quantum Hall systems

...in summary:
cut/glue argument | trial wave-functions real-life system
(edge only) (bulk — edge) (complicated)

-

O N B B ® S m

w(zl, e ,ZN)

[

(a) P[0j0]
40 45 50 55 60 65LZ

’.,(w,"

-
@




ES in quantum Hall systems
..in summary:

cut/glue argument | trial wave-functions
(edge only) (bulk — edge)

real-life system
(complicated)

w(zl,...,z,v) s

""" (a) P[0I0]
soﬁew_g
45 50 55 60 65LA

,(!’




Application to the entanglement spectrum (1)

» what's the Schmidt decomp. of ¢gs(z1,...,2n) ?
Ve = 30X 2 |2)) | 2)
Na=0 n

» we focus on Real Space Partition



Application to the entanglement spectrum (II)

» divide the N = N4 + Np coordinates z;'s into two sets

Z15- 52Ny W1 = ZNg+15 -+ -5 WNg = ZNy+Np

> because 145 is a conformal correlator, one has

Ves({zi} {wi}) = (a(z1)--alzw,) a(wi)..a(wg))
= > _{a(z1)--a(zn,)| va) (va |a(w1)..a(wn))

vn)

= > Gz} D ({wed)

[vn)



Application to the entanglement spectrum (II)
» divide the N = Ny + Npg coordinates z;'s into two sets

215+ 52Ny W1 = ZNp+1s -+ -5 WNg = ZNp+Npg

> because 145 is a conformal correlator, one has

L4 LR -
-__.-- “ea,
-" o Y @
.* e z
o* o ® J
S
S @ R
& L ) .
EX e . L J Id = E |Vn
-
[ J ‘e L J -
. -
L ) "thamamm==®



Application to the entanglement spectrum (II)

» divide the N = Ny + Np coordinates z;'s into two sets

Z1,. -5 2N, W1 = ZNj41, - - -5 WNg = ZNy+Np

> because 145 is a conformal correlator, one has

Ve.s({z}, {m}) = (a(z1)-.a(zn,) a(wi)..a(wi,))
= Z (a(z1).-a(zn,)| va) (va|a(wi)..a(wng))

vn)

= S YUz} P, ((wed)

[Vn)

> we get the entanglement spectrum using the overlaps

(Wil [ 10m))) = (Vi |va) + O(1/VN)




Application to the entanglement spectrum (II)

Result: the entanglement spectrum is given by

§(ANa, ALS) = @R — iopo + O(1/R)

in other words, the spectrum is infinitely degenerate (!11) up to
O(1/R) corrections



Application to the entanglement spectrum (II)

Result: the entanglement spectrum is given by

E(ANA, ALY) = @R — “iopo + O(1/R)

more seriously. . .

44 46 48 50 52 54 56

01~ T T T T T T T T
15 20 25 30 35 40 45 50 55

Laughlin v =1/3



Overlaps beyond the leading order

» finite \V effects captured by a perturbation of the CFT action
at the boundary of the droplet

S0 =30 [ odled

lz|=R

> ¢, has scaling dimension h, = \, ~ ()1

3

» the overlaps become

~S

<<w<vl‘ ‘w(vz|>> = <V2|<:_75b>|vl>

> in many cases, the stress-tensor T(Zz) is the least irrelevant
boundary perturbation

= ({W) | ) = (vele” W2 ) + O(1/N)



Application to the entanglement spectrum (llI)

This proves the so-called “scaling property”

the entanglement spectrum is the spectrum of the Hamiltonian

of a perturbed by operators
Hes = aR — Sopo + £ LwZA /|| (2)\dz
z|=R

of the entanglement
Hamiltonian

4 46 48 50 52 54 56 - z

T T T T T T T T T
15 20 25 30 35 40 45 50 55




Summary

v

provided , we are left with a CFT the droplet
with a (perturbed) conformal boundary condition

v

allows to compute between edge states when N — oo

<<w<v1| }¢<vz\>> N:; <V2’V1>

v

precise formulation of the bulk/boundary correspondence:
between Hilbert spaces

v

proof of the of the entanglement Hamiltonian

Thank you.
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