Motivations 0000 Solution 00000 0000 Conductance and numerics

Edge states at spin quantum Hall transitions

Roberto Bondesan (LPTENS/IPhT Saclay)

With: I. Gruzberg (Chicago), J. Jacobsen (Paris), H. Obuse (Karlsruhe), H. Saleur (Saclay)

Workshop at GGI, Florence: New quantum states of matter in and out of equilibrium 24/04/2012

Based on BJS: arXiv:1101.4361, BGJOS: arXiv:1109.4866

Motivations	The model	Solution	Conductance and numerics	Conclusion
0000	000	00000		
0	0000	0000		

1 Motivations

Outline

Anderson transitions: IQHE, SQHE Edge states

2 The model

Quantum network models Quantum-classical localization

3 Solution

Superspins and σ -models Universality and critical exponents

Onductance and numerics

Motivations	The model	Solution	Conductance and numerics	Conclusion
●000 ○	000	00000		
Andersor	transitions			

- Disordered non-interacting electrons
 - Symmetry classification [Dyson '62, Altland, Zirnbauer '97]
 - 10 classes (WD, Chiral, BdG)
 - E. g. : IQHE in class A, $e^{it\mathcal{H}} \in U(N)$
 - Escaping localization in 2d [Evers, Mirlin '08]
 - MIT

Motivations	The model	Solution	Conductance and numerics	Conclusion
0 • 0 0 0	000 0000	00000 0000		

Integer Quantum Hall Effect

- 2DEG at high B, low T
- Plateaus $\rho_{xy} = \frac{h}{e^2 \nu}$ [Von Klitzing Nobel '85]

Motivations	The model	Solution	Conductance and numerics	Conclusion
0 ●00 0	000 0000	00000 0000		

Integer Quantum Hall Effect

- 2DEG at high B, low T
- Plateaus $\rho_{xy} = \frac{h}{e^2 \nu}$ [Von Klitzing Nobel '85]

Motivations	The model	Solution	Conductance and numerics	Conclusion
0000 0	000	00000		

Spin quantum Hall effect (SQHE)

- d + id disordered superconductors [Senthil, Marston, Fisher '99]
- $e^{it\mathcal{H}} \in Sp(2N)$, class C
- Topological superconductor in 2d: $\sigma^{\mathsf{spin}} \in 2\mathbb{Z}$
- eq QSH (\in AII, $\mathcal{T}^2=-1$, [Kane,Mele '05])
- Some aspects exactly solvable!

	00000	00	Conclusion
	-		

Low-energy field theories

• Non linear σ -model [Wegner '79, Efetov '83]:

$$S \;=\; rac{1}{2g_\sigma^2}\int \mathrm{d}^2 z\, \partial^\dagger_\mu Z^\dagger_lpha \partial_\mu Z_lpha$$

• IQHE criticality: topological term [Pruisken '84]

$$S_{top} = i\theta N[Z]$$

• At $\theta = \pi \pmod{2\pi}$, $g_{\sigma} = O(1)$, LogCFT c = 0 (?)

• Bulk exponents, ξ , etc. indep. of θ (if $\theta = \pi \pmod{2\pi}$)

Motivations	The model	Solution	Conductance and numerics	Conclusion
0000	000 0000	00000 0000		

Edge states and the θ -angle

• Bulk-boundary

• Edge states as θ increased

• 1D QED: quark-antiquark screen $F \propto heta$ [Coleman '75, Affleck '85]

 $\#(\text{edge states}) = \sigma_R - \sigma_L$

• Boundary properties dep. on exact value θ [Xiong,Read,Stone '97]

Aim of the talk Edge states for SQHE

Motivations	The model	Solution	Conductance and numerics	Conclusion
0000 •	000 0000	00000 0000		

Edge states and the θ -angle

Bulk-boundary

• Edge states as θ increased

1D QED: quark-antiquark screen $F \propto heta$ [Coleman '75, Affleck '85]

 $\#(\text{edge states}) = \sigma_R - \sigma_I$

• Boundary properties dep. on exact value θ [Xiong,Read,Stone '97]

Motivations	The model	Solution	Conductance and numerics	Conclusion
0000 0	000 0000	00000		

Network models: quantum percolation

• Chalker-Coddington model [Chalker,Coddington '88]:

•
$$A$$
, B , $S = \begin{pmatrix} \sqrt{1-t^2} & t \\ -t & \sqrt{1-t^2} \end{pmatrix}$

 $\Rightarrow \mathcal{U}_{e,e'} = S_{e',e} \mathcal{U}_{e}, \ \mathcal{U}_{e} \in \mathcal{U}(1)$

Motivations	The model	Solution	Conductance and numerics	Conclusion
0000 0	0000	00000 0000		

Edge states in CC model

Extreme limits

t = 1: Insulator

 $t_c = \frac{1}{\sqrt{2}}$ t = 0: QH state $\nu = 1$

Motivations	The model	Solution	Conductance and numerics	Conclusion
	000	00000		
0	0000	0000		

Edge states in CC model

• Extreme limits

- t=1: Insulator $t_c=rac{1}{\sqrt{2}}$ t=0: QH state u=1
- Higher plateaus: chiral extra edge channels [BGJOS '12]:

Motivations	The model	Solution	Conductance and numerics	Conclusion
0000 0	000	00000		

•
$$\mathcal{L} = m, \mathcal{R} = n$$
:

Motivations	The model	Solution	Conductance and numerics	Conclusion
0000 0	000	00000		

•
$$\mathcal{L} = m, \mathcal{R} = -n$$
:

Motivations	The model	Solution	Conductance and numerics	Conclusion
0000 0	000	00000		

•
$$\mathcal{L} = -m, \mathcal{R} = n$$
:

Motivations	The model	Solution	Conductance and numerics	Conclusion
0000 0	000	00000		

•
$$\mathcal{L} = -m, \mathcal{R} = -n$$
:

Motivations	The model	Solution	Conductance and numerics	Conclusion
0000	000 ●000	00000 0000		

Disorder average I

[Gruzberg,Read,Ludwig '99,Beamond,Cardy,Chalker '02,Mirlin,Evers,Mildenberger '03,Cardy '04]

•
$$G(e, e', z) = \langle e | (1 - z\mathcal{U})^{-1} | e' \rangle = \sum_{\gamma(e, e')} \cdots z U_{e_j} s_j \cdots$$

- SUSY path integral
 - $x_{\sigma}(e), \eta_{\sigma}(e), \sigma = \uparrow, \downarrow$
 - Lattice action: $W[x,\eta] = zx^*(e')\mathcal{U}_{e',e}x(e) + z\eta^*(e')\mathcal{U}_{e',e}\eta(e)$
 - $\langle \bullet \rangle = \int D\mu(x,\eta) \bullet \exp(W[x,\eta])$

 $\Rightarrow G(e, e', z) = \langle x(e)x^*(e') \rangle$

Motivations 0000 0	The model ○○○ ○●○○	Solution 00000 0000	Conductance and numerics	Conclusion
Disorder	average II			

$$\int dU = \text{projects } \mathcal{S}(\mathbb{C}^2 \otimes \mathbb{C}^{1|1}) \text{ onto } SU(2)\text{-inv.} :$$

$$\text{Truncation: } \Psi = \left(1, \frac{1}{\sqrt{2}}(x_{\uparrow}\eta_{\downarrow} - x_{\downarrow}\eta_{\uparrow}), \eta_{\uparrow}\eta_{\downarrow}\right)$$

2 Dilute-dense mapping:

$$e_1'$$
 e_2 e_2' e_2'

 $\prod_{i} \Psi_{\alpha_{i}'}(e_{i}') \left[\delta_{\alpha_{1},\alpha_{1}'} \delta_{\alpha_{2},\alpha_{2}'} S_{11} S_{22} - \delta_{\alpha_{1},\alpha_{2}'} \delta_{\alpha_{2},\alpha_{1}'} S_{12} S_{21} \right] \prod_{j} \Psi_{\alpha_{j}}^{*}(e_{j})$

• Example: $\Psi = 1$: $(1 - t^2) + t^2 = 1$

IQH: U(1)-inv. is infinite-dim. space, but [Ikhlef,Fendley,Cardy '11]

Motivations 0000 0	The model ○○○ ○●○○	Solution 00000 0000	Conductance and numerics	Conclusion
Disorder	average II			

$$\int dU = \text{projects } \mathcal{S}(\mathbb{C}^2 \otimes \mathbb{C}^{1|1}) \text{ onto } SU(2)\text{-inv.} :$$

$$\text{Truncation: } \Psi = \left(1, \frac{1}{\sqrt{2}}(x_{\uparrow}\eta_{\downarrow} - x_{\downarrow}\eta_{\uparrow}), \eta_{\uparrow}\eta_{\downarrow}\right)$$

2 Dilute-dense mapping:

$$e_1'$$
 e_2 e_2' e_2'

 $\prod_{i} \Psi_{\alpha_{i}^{\prime}}(e_{i}^{\prime}) \left[\delta_{\alpha_{1},\alpha_{1}^{\prime}} \delta_{\alpha_{2},\alpha_{2}^{\prime}} S_{11} S_{22} - \delta_{\alpha_{1},\alpha_{2}^{\prime}} \delta_{\alpha_{2},\alpha_{1}^{\prime}} S_{12} S_{21} \right] \prod_{j} \Psi_{\alpha_{j}}^{*}(e_{j})$

• Example: $\Psi = 1$: $(1 - t^2) + t^2 = 1$

• IQH: U(1)-inv. is infinite-dim. space, but [Ikhlef,Fendley,Cardy '11]

Motivations	The model	Solution	Conductance and numerics	Conclusion
0000 0	000 00●0	00000		

New geometrical model

Decomposition:

\Rightarrow Classical loops (fug. = 1):

Motivations	The model	Solution	Conductance and numerics	Conclusion
0000 0	000 00●0	00000 0000		

New geometrical model

Decomposition:

 \Rightarrow Classical loops (fug. = 1):

Motivations	The model	Solution	Conductance and numerics	Conclusion
0000	000 000●	00000 0000		

Conductance

- Landauer: PCC $g = {\sf Tr}\, {f tt}^{\dagger}$, ${f t} = \langle e^{{\sf out}} | \left(1 {\cal U}
 ight)^{-1} | e^{{\sf in}}
 angle$
- No replicas: $\overline{g} = 2 \langle \eta_{\downarrow}(e^{\text{out}}) \eta_{\uparrow}(e^{\text{out}}) \eta_{\uparrow}^{*}(e^{\text{in}}) \eta_{\downarrow}^{*}(e^{\text{in}}) \rangle = 2P(e^{\text{in}}, e^{\text{out}})$

 \Rightarrow Loops \equiv transport

What next:

Solve loop model, then go back to SQH.

Motivations	The model	Solution	Conductance and numerics	Conclusion
0000 0	000 0000	00000		

Conductance

- Landauer: PCC $g = {\sf Tr}\, {f tt}^{\dagger}$, ${f t} = \langle e^{{\sf out}} | \left(1 {\cal U}
 ight)^{-1} | e^{{\sf in}}
 angle$
- No replicas: $\overline{g} = 2 \langle \eta_{\downarrow}(e^{\text{out}}) \eta_{\uparrow}(e^{\text{out}}) \eta_{\uparrow}^{*}(e^{\text{in}}) \eta_{\downarrow}^{*}(e^{\text{in}}) \rangle = 2P(e^{\text{in}}, e^{\text{out}})$

 \Rightarrow Loops \equiv transport

What next:

Solve loop model, then go back to SQH.

< E

Motivations 0000 0	The model 000 0000	Solution • 0000 • 0000	Conductance and numerics 00	Conclusion

Edge states in superspin chains

• $\mathfrak{sl}(2|1)$ -irreps. $\downarrow \equiv V, \not \equiv V^*$ dim= 3, sdim= 1

•
$$\mathcal{H}^{\mathcal{L},\mathcal{R}} = \begin{cases} V^{\otimes m} \otimes (V \otimes V^*)^{\otimes L} \otimes (V^*)^{\otimes n} & (m;n) \\ V^{\otimes m} \otimes (V \otimes V^*)^{\otimes L} \otimes V^{\otimes n} & (m;-n) \\ (V^*)^{\otimes m} \otimes (V \otimes V^*)^{\otimes L} \otimes (V^*)^{\otimes n} & (-m;n) \\ (V^*)^{\otimes m} \otimes (V \otimes V^*)^{\otimes L} \otimes V^{\otimes n} & (-m;-n). \end{cases}$$

Motivations 0000 0	The model 000 0000	Solution 0000 0000	Conductance and numerics	Conclusion
11 11				

Hamiltonian

- $P_i^{\mathfrak{sl}}$: $V_i \otimes V_{i+1}$ $(V_i^{\star} \otimes V_{i+1}^{\star})$
- $E_i^{\mathfrak{sl}}$: $V_i \otimes V_{i+1}^{\star}$ $(V_i^{\star} \otimes V_{i+1})$

$$\Rightarrow H = -u \sum_{i} P_{i}^{\mathfrak{sl}} - \sum_{i} E_{i}^{\mathfrak{sl}} - v \sum_{i} P_{i}^{\mathfrak{sl}}$$

$$\uparrow$$
bulk
boundary

• Indefinite inner product, Jordan cells, ... [Read,Saleur '07]

Motivations 0000 0	The model 000 0000	Solution	Conductance and numerics	Conclusion

Bulk topological σ -models

- Continuum limit periodic chain [Gruzberg,Read,Ludwig '99, Read,Saleur '01]:
 - Target: $\mathbb{CP}^{1|1}=\frac{\mathrm{U}(2|1)}{\mathrm{U}(1)\times\mathrm{U}(1|1)}$, $\pi_2=\mathbb{Z}$

•
$$S = \frac{1}{2g_{\sigma}^2} \int \mathrm{d}^2 z \, D_{\mu}^{\dagger} Z_{\alpha}^{\dagger} D_{\mu} Z_{\alpha} - \frac{i\theta}{2\pi} \int \mathrm{d}^2 z \, \epsilon^{\mu\nu} \partial_{\mu} a_{\nu}$$

- At $\theta = \pi \pmod{2\pi}$, $g_{\sigma} = O(1)$, percolation
- \Rightarrow Bulk exponents (*n*-hulls), Loc. length ($\nu = 4/3$)

Motivations	The model	Solution	Conductance and numerics	Conclusion
0000 0	000	00000	00	

Bulk topological σ -models

- Continuum limit periodic chain [Gruzberg,Read,Ludwig '99, Read,Saleur '01]:
 - Target: $\mathbb{CP}^{1|1} = \frac{\mathrm{U}(2|1)}{\mathrm{U}(1) \times \mathrm{U}(1|1)}$, $\pi_2 = \mathbb{Z}$

•
$$S = \frac{1}{2g_{\sigma}^2} \int \mathrm{d}^2 z \, D_{\mu}^{\dagger} Z_{\alpha}^{\dagger} D_{\mu} Z_{\alpha} - \frac{i\theta}{2\pi} \int \mathrm{d}^2 z \, \epsilon^{\mu\nu} \partial_{\mu} a_{\nu}$$

- At $\theta = \pi \pmod{2\pi}$, $g_{\sigma} = O(1)$, percolation
- \Rightarrow Bulk exponents (*n*-hulls), Loc. length ($\nu = 4/3$)

Motivations	The model	Solution	Conductance and numerics	Conclusion
0000 0	000 0000	00000 0000		

Edge states as conformal boundaries

• Symmetric CBC [Candu,Mitev,Quella,Saleur,Schomerus '10]

$$(\partial_y + ia_y)Z_{lpha} = \Theta_1 g_{\sigma}^2 (\partial_x + ia_x)Z_{lpha} ,$$

 $(\partial_y - ia_y)Z_{lpha}^{\dagger} = -\Theta_1 g_{\sigma}^2 (\partial_x - ia_x)Z_{lpha}^{\dagger} ,$

$$\Theta_1 = (2\mathcal{L} + heta/\pi)$$
, $\Theta_2 = (2\mathcal{R} + heta/\pi)$

 \Rightarrow Dep. on exact value of θ :

$$\theta \to \theta + 2\pi p \iff (V \otimes V^{\star})^{\otimes L} \to V^{\otimes p} \otimes (V \otimes V^{\star})^{\otimes L} \otimes (V^{\star})^{\otimes p}$$

• \mathcal{L}, \mathcal{R} monopole charges

Motivations	The model	Solution	Conductance and numerics	Conclusion
0000 0	000	00000		

Remarks on conformal boundary conditions

- Disorder leads to non unitary, non rational (Log) CFT
- Trivial in unitary, rational case. E.g. O(3) model:
 - Bulk CFT: SU(2)₁ WZW, spin chain: XXX
 - Only two *SU*(2) CBC (*P_i* ∼ *E_i*).
- Situation is far richer in our case.

Motivations	The model	Solution	Conductance and numerics	Conclusion
0000 0	000 0000	00000 •000		

Relation blob-edge states

•
$$\tilde{H} := -u \frac{1}{(m+1)!} \sum_{\sigma \in \mathfrak{S}_L} \sigma - \sum E_i - v \frac{1}{(n+1)!} \sum_{\sigma \in \mathfrak{S}_R} \sigma$$

\Rightarrow When $L \rightarrow \infty$: $H \simeq \tilde{H}$

\Rightarrow Effective boundary loops

Motivations	The model	Solution	Conductance and numerics	Conclusion
0000 0	000 0000	00000 •000		

Relation blob-edge states

•
$$\tilde{H} := -u \frac{1}{(m+1)!} \sum_{\sigma \in \mathfrak{S}_L} \sigma - \sum E_i - v \frac{1}{(n+1)!} \sum_{\sigma \in \mathfrak{S}_R} \sigma$$

- \Rightarrow When $L \rightarrow \infty$: $H \simeq \tilde{H}$
- \Rightarrow Effective boundary loops

Motivations	The model	Solution	Conductance and numerics	Conclusion
0000 0	000 0000	00000 0000		

Boundary loop models

Blob algebra [Martin,Saleur '94]

 $\bullet \bigodot = \delta$

- $h_{r(\delta),r(\delta)+2j}$ [Jacobsen,Saleur '06] 1 Irrational 2 Indep. of λ
- Two-bdry [Dubail, Jacobsen, Saleur'09]

< ∃ >

What we compute

Leading exponents $h^{m,n}(k)$ in sector k

Motivations	The model	Solution	Conductance and numerics	Conclusion
0000 0	000	00000 0000		

Boundary loop models

• Blob algebra [Martin,Saleur '94]

 $\bullet \bigodot = \delta$

- $h_{r(\delta),r(\delta)+2j}$ [Jacobsen,Saleur '06] 1 Irrational 2 Indep. of λ
- Two-bdry [Dubail, Jacobsen, Saleur'09]

What we compute

Leading exponents $h^{m,n}(k)$ in sector k

$$\overset{\mathsf{P}}{\longrightarrow} \overset{\mathsf{E. g. :}}{\longrightarrow} \overset{\mathsf{I}}{\longrightarrow} \overset{\mathsf{I}}{\longrightarrow} \overset{\mathsf{I}}{\longleftarrow} \overset{\mathsf{I}}{\longleftrightarrow} \overset{\mathsf{I}}{$$
} \overset{\mathsf{I}}{\bullet} \overset{\mathsf

Motivations	The model	Solution	Conductance and numerics	Conclusion
0000 0	000 0000	00000 0000		

Critical exponents

k	#(legs)	$h^{m,n}(k)$
0	m - n	$h_{r_0,r_0}=0$
1	m - n + 2	h_{r_1,r_1}
÷	:	:
п	n + m	h_{r_n,r_n}
n+1	n+m+2	$h_{1,3}$
÷	÷	:
n+j	n+m+2j	$h_{1,1+2j}$
:	:	÷
$r_k = \frac{6}{\pi}$ a	$\operatorname{rccos}\left(\frac{\sqrt{3}}{2}\sqrt{\frac{(n+1-1)}{(m-1)}}\right)$	$\left(\frac{k(m+1+k)}{k+1(n+1)}\right)$
$h_{r,s} = ($	$\frac{(3r-2s)^2-1}{24}$	

- Indep. of *m*, *n* for #(legs) > *n* + *m*
- Irrational
- Indep. of couplings: boundary RG flow

Motivations	The model	Solution	Conductance and numerics	Conclusion
0000 0	000	00000 0000		

Symmetries and other cases

1 Left
$$\leftrightarrow$$
 Right: $h^{\mathcal{L},\mathcal{R}}(k) = h^{\mathcal{R},\mathcal{L}}(k)$

 $2 \downarrow \leftrightarrow \uparrow$ $\Rightarrow h^{-m,-n}(k) = h^{m-1,n-1}(k)$ **3** $\mathcal{L} \cdot \mathcal{R} < 0$, $\#(\text{legs}) > |\mathcal{L}| + |\mathcal{R}|$ $\Rightarrow h^{-m,n}(k) = h^{m,-n}(k) = h_{1,2+2k} = \frac{k(2k+1)}{3}$

Motivations	The model	Solution	Conductance and numerics	Conclusion
0000 0	000 0000	00000 0000	00	

Critical conductance in a strip

• Bottom-top
$$\bar{g}^{\mathcal{L},\mathcal{R}} = 2\max(0,\mathcal{L}-\mathcal{R}) + 2\sum_{k=1}^{\infty} kP(k,L_T/L)$$

• In quasi 1D geometry:

$$ar{g}^{\mathcal{L},\mathcal{R}} \sim 2 \max(0,\mathcal{L}-\mathcal{R}) + Ae^{-\pi h^{\mathcal{L},\mathcal{R}}(1)rac{L_T}{L}}$$

Motivations	The model	Solution	Conductance and numerics	Conclus
0000 0	000	00000	0•	

Numerics for network model

- $g^{\mathcal{L},\mathcal{R}}$ from transfer matrices
 - Fit $\bar{g}^{\mathcal{L},\mathcal{R}} \sim g_{\infty} + C e^{-\lambda \frac{L_T}{L}}$
 - Typically L_T/L ∈ [2, 40], disorder O(10⁵) ~ O(10⁶)
 - \Rightarrow Confirmed $h^{\mathcal{L},\mathcal{R}}(1)$
 - ⇒ Verified indep. on bdry couplings (even random)

CD	numerics	analytical	
\mathcal{L}, \mathcal{K}	$h^{\mathcal{L},\mathcal{R}}(1)$	$h^{\mathcal{L},\mathcal{R}}(1)$	
0,0	0.3333(12)	1/3	
0,1	0.3330(7)	1/3	
0,10	0.3325(24)		
1, 1	0.03775(25)	0.037720	
2,2	0.01600(2)	0.015906	
1,2	0.0520(25)	0.052083	
2,4	0.02954(7)	0.029589	
-2, -2	0.0377(4)	0.037720	
-3, -2	0.0522(2)	0.052083	
-1,0	0.999(9)	1	
-2,0	0.999(3)	1	
-2, 1	0.998(3)]	

Motivations	The model	Solution	Conductance and numerics	Conclusion
0	0000	0000		

Conclusions and Outlooks

- Mapping SQH extra edge channels to classical loop model
- Exact critical exponents of boundary CFT
- Verified predictions of decay conductance
- Outlooks
 - Fractal properties of wave function near extra edges [Mirlin,Evers,Mildenberger '03]
 - Exact conductance [Cardy '00]
 - Edge states of wires in other AZ classes