# Geometric Phase Contribution to Quantum Nonequilibrium Many-Body Dynamics

#### Michael Tomka

Department of Physics University of Fribourg Group: Theory of Cold Atoms Vladimir Gritsev

April 25, 2012 The Galileo Galilei Institute for Theoretical Physics: "New quantum states of matter in and out of equilibrium"

PRL 108, 080404 (2012) with A. Polkovnikov

#### Outline

#### Introduction

Geometry - Dynamics General Setting - Quantum Geometric Tensor

#### Dynamics of the XY Spin Chain

The XY Spin Chain Results - "Dynamical Quantum Phase Transition"

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Dynamics of the Rotated Dicke Model

# Geometry - Dynamics



#### Foucault Pendulum





#### Berry Phase





Haldane Gap



# **General Setting**

Closed quantum non-equilibrium many-body system

$$\hat{\mathrm{H}}(\boldsymbol{\lambda}(t)), \quad \boldsymbol{\lambda}(t) = (\lambda^1(t), \dots, \lambda^p(t)) \in \mathcal{M}$$

Instantaneous basis

$$\hat{\mathrm{H}}(\boldsymbol{\lambda}(t))|n(\boldsymbol{\lambda}(t))\rangle = \epsilon_n(\boldsymbol{\lambda}(t))|n(\boldsymbol{\lambda}(t))\rangle$$

State of the system

i

$$|\psi(\boldsymbol{\lambda}(t))\rangle = \sum_{n} a_{n}(\boldsymbol{\lambda}(t))|n(\boldsymbol{\lambda}(t))\rangle$$



$$\partial_t |\psi(t)\rangle = \hat{H}(t)|\psi(t)\rangle$$
  

$$\implies i\partial_t a_n + i\sum_{m \neq n} \langle n|\partial_t|m\rangle a_m + i\langle n|\partial_t|n\rangle a_n = \epsilon_n a_n$$

Density of excitations: 
$$n_{\text{ex}} = \frac{1}{L^d} \sum_{n \neq 0} |a_n|^2$$

### Quantum Geometric Tensor

$$i\partial_t a_n + i \sum_{m \neq n} \langle n | \partial_t | m \rangle a_m + i \langle n | \partial_t | n \rangle a_n = \epsilon_n a_n$$
  
$$t \mapsto \lambda(t) \qquad \frac{\partial}{\partial \lambda^{\mu}} =: \partial_\mu$$
  
$$\sum_{\mu=1}^p \left[ i \partial_\mu a_n + i \sum_{m \neq n} \langle n | \partial_\mu | m \rangle a_m + i \langle n | \partial_\mu | n \rangle a_n \right] \dot{\lambda}^{\mu} = \epsilon_n a_n$$

$$Q_{\mu\nu}(\boldsymbol{\lambda},n) := \partial_{\mu} \left( \langle n | \right) \partial_{\nu} | n \rangle - \partial_{\mu} \left( \langle n | \right) | n \rangle \langle n | \partial_{\nu} | n \rangle, \quad \mu, \nu = 1, \dots, p.$$

J.P. Provost, G. Valle, (Commun. Math. Phys. 76, 289 (1980)).

•  $\operatorname{Re}Q_{\mu\nu} =: g_{\mu\nu}$  Riemannian metric tensor

• 
$$2 \operatorname{Im} Q_{\mu\nu} =: F_{\mu\nu}$$
 Berry curvature

#### Quantum Geometric Tensor

• Re $Q_{\mu\nu} =: g_{\mu\nu}$  Riemannian metric tensor:  $ds^2 = g_{\mu\nu}d\lambda^{\mu}d\lambda^{\nu}$ , which is related to the quantum fidelity

$$\mathcal{F}(\boldsymbol{\lambda}, \boldsymbol{\lambda} + d\boldsymbol{\lambda}) := |\langle 0(\boldsymbol{\lambda}) | 0(\boldsymbol{\lambda} + d\boldsymbol{\lambda}) \rangle| = 1 - \frac{1}{2}ds^2 + \dots$$

•  $2 \operatorname{Im} Q_{\mu\nu} =: F_{\mu\nu}$  Berry curvature:  $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ , where  $A_{\mu}(\boldsymbol{\lambda}, n) := i \langle n | \partial_{\mu} | n \rangle$  is the Berry connection (connection 1-form)



## Competition: Dynamical and Geometrical Phase

$$i\partial_t a_n + i \sum_{m \neq n} \langle n | \partial_t | m \rangle a_m + i \langle n | \partial_t | n \rangle a_n = \epsilon_n a_n$$

Gauge transformation:  $a_n = \tilde{a}_n \exp\left[\int_{t_i}^t d\tau (-i\epsilon_n(\tau) + iA_\tau(|n\rangle))\right]$ 

$$\partial_t \tilde{a}_n = -\sum_{m \neq n} \langle n | \partial_t | m \rangle \exp\left[i E_{nm}(t) - i \Gamma_{nm}(t)\right] \tilde{a}_m$$

$$E_{nm}(t) = \int_{t_i}^t \left[ \epsilon_n(\tau) - \epsilon_m(\tau) \right] d\tau, \qquad \Gamma_{nm}(t) = \int_{t_i}^t \left[ A_\tau(|n\rangle) - A_\tau(|m\rangle) \right] d\tau$$

- コン・4回シュービン・4回シューレー

# The XY Spin Chain

$$\begin{split} \hat{H}_{0}(g,h) &= -\sum_{l=1}^{N} \left( \frac{1+g}{2} \hat{\sigma}_{l}^{x} \hat{\sigma}_{l+1}^{x} + \frac{1-g}{2} \hat{\sigma}_{l}^{y} \hat{\sigma}_{l+1}^{y} + h \hat{\sigma}_{l}^{z} \right) \\ \hat{H}(g,h,\phi) &= \hat{U}(\phi) \,\hat{H}_{0}(g,h) \,\hat{U}^{\dagger}(\phi), \quad \hat{U}(\phi(t)) = \exp\left( -i \sum_{l=1}^{N} \hat{\sigma}_{l}^{z} \frac{\phi(t)}{2} \right) \end{split}$$



J.K. Pachos and C.M. Carollo, Phil. Trans. R. Soc. A15 364, (2006)

Criticalities of the XY Spin Chain

$$\hat{H}(g,h,\phi(t)) = \sum_{k} \epsilon_{k}(g,h) \left(b_{k}^{\dagger}b_{k}+1\right)$$

$$\epsilon_{k}(g,h) = \sqrt{(h-\cos k)^{2}+g^{2}\sin^{2}k}$$

$$h$$

$$\nu_{MC} = 1/2, z_{MC} = 2$$
Ising Critical  $\nu_{2} = 1, z_{2} = 1$ 

$$h = +1$$
Anisotropic Transition
$$\nu_{1} = 1, z_{1} = 1$$

$$g \sin(2\phi)$$

$$h = -1$$

#### **Circular Dynamics:**

Start in the ground state  $|\text{GS}\rangle$  at  $t_i = 0$ ,  $\phi(t) = \omega t$ ,  $\phi_f = \phi(t_f)$ 

$$\hat{\mathrm{H}}(g,h,\phi(t)) = -\sum_{k} \hat{\mathbf{c}}_{k}^{\dagger} \hat{\mathrm{H}}_{k}(g,h,\phi(t)) \, \hat{\mathbf{c}}_{k}$$

where

$$\hat{\mathbf{H}}_{k} = \begin{pmatrix} (h - \cos k) & i g \sin k e^{-2i\phi(t)} \\ -i g \sin k e^{2i\phi(t)} & -(h - \cos k) \end{pmatrix}, \quad \text{and} \quad \hat{\mathbf{c}}_{k}^{\dagger} = (c_{-k}, c_{k}^{\dagger}) \\ k = \frac{2\pi n}{N}, \quad n = \pm 1, \pm 2, \dots, \pm \frac{N}{2} \\ \boxed{|\Psi(t)\rangle = \bigotimes_{k} |\psi(t)\rangle_{k}, \qquad |\psi(t)\rangle_{k} = a_{\mathrm{gs},k}(t)|\mathrm{gs}\rangle_{k} + a_{\mathrm{es},k}(t)|\mathrm{es}\rangle_{k}} \\ \implies \qquad p_{\mathrm{ex},k} = |a_{\mathrm{es},k}(\phi_{f})|^{2}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

#### **Circular Dynamics:**

$$n_{\mathrm{ex}}(\omega,\phi_f) = \int_{-\pi}^{\pi} \frac{dk}{2\pi} p_{\mathrm{ex},k} = \int_{-\pi}^{\pi} \frac{dk}{2\pi} \mathbf{g}_{\phi\phi}(|\mathbf{gs}\rangle_k) \frac{\sin^2\left[\frac{1}{2}\Omega_k(\omega)\phi_f\right]}{\left[\frac{1}{2}\Omega_k(\omega)\right]^2}$$
$$\Omega_k(\omega) := \sqrt{\left[\frac{\epsilon_{\mathrm{gs},k} - \epsilon_{\mathrm{es},k}}{\omega} - (A_{\phi}(|\mathbf{gs}\rangle_k) - A_{\phi}(|\mathbf{es}\rangle_k))\right]^2 + 4\mathbf{g}_{\phi\phi}(|\mathbf{gs}\rangle_k)}$$

• Slow driving  $\omega \sim 0$ :

$$\Omega_k(\omega) = \frac{\epsilon_{\mathrm{gs},k} - \epsilon_{\mathrm{es},k}}{\omega} - (A_\phi(|\mathrm{gs}\rangle_k) - A_\phi(|\mathrm{es}\rangle_k)) + \mathcal{O}(\omega)$$

• Fast driving  $\omega \to \infty$ :

$$\Omega_k(\omega) = 2 - \frac{1}{2} \frac{\epsilon_{\mathrm{gs},k} - \epsilon_{\mathrm{es},k}}{\omega} \left( A_\phi(|\mathrm{gs}\rangle_k) - A_\phi(|\mathrm{es}\rangle_k) \right) + \mathcal{O}(\frac{1}{\omega^2})$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Circular Dynamics: Limit of large  $\phi_f$ 

$$n_{
m ex} \sim \int\limits_{-\pi}^{\pi} rac{dk}{2\pi} \mathbf{g}_{\phi\phi} (|
m gs
angle_k) rac{\omega^2}{\epsilon_k^2}, \quad \omega \ll \Delta \epsilon$$

$$n_{\mathrm{ex}} \sim \mathbf{g}_{\phi\phi}(|\mathrm{GS}\rangle) \frac{1}{2}, \quad \omega \gg \Delta\epsilon$$



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Circular Dynamics: Limit of large  $\phi_f$ 

$$n_{
m ex} \sim \int\limits_{-\pi}^{\pi} rac{dk}{2\pi} \mathbf{g}_{\phi\phi} (|
m gs\rangle_k) rac{\omega^2}{\epsilon_k^2}, \quad \omega \ll \Delta \epsilon$$

$$n_{\mathrm{ex}} \sim \mathbf{g}_{\phi\phi}(|\mathrm{GS}\rangle) \frac{1}{2}, \quad \omega \gg \Delta\epsilon$$



Sac

### Summary

- How the geometric phase influences quantum many-body non-equilibrium dynamics.
- Signatures of quantum criticalities in the dependence of the density of excited quasi-particles on the driving velocity, "Dynamical quantum phase transition". Which allows to probe quantum phase transitions in an indirect way, without crossing the critical point.
- Outlook
  - Generalization to more complex systems.

• Dicke model  

$$\hat{H}(\phi(t)) = \omega_0 \hat{J}_z + \omega \hat{a}^{\dagger} \hat{a} + \frac{\lambda}{\sqrt{N}} \left( \hat{a}^{\dagger} + \hat{a} \right) \left( e^{i\phi(t)} \hat{J}_+ + e^{-i\phi(t)} \hat{J}_- \right),$$
  
 $\lambda_c = \sqrt{\frac{\omega\omega_0}{2}} \longrightarrow \lambda_c = \sqrt{\frac{\omega(\omega_0 + \delta_{\phi})}{2}}$ 

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### Rotated Dicke Model R.H. Dicke, Phys. Rev. 93, 99 (1954)

j = N/2



$$\begin{split} \hat{\mathbf{H}}_{0,\mathrm{D}} &= \omega_0 \hat{\mathbf{J}}_z + \omega \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} + \frac{\lambda}{\sqrt{N}} \left( \hat{\mathbf{a}}^{\dagger} + \hat{\mathbf{a}} \right) \left( \hat{\mathbf{J}}_+ + \hat{\mathbf{J}}_- \right) \\ \hat{\mathbf{H}}_{\mathrm{D}}(\phi(t)) &= \hat{\mathbf{U}}(\phi) \, \hat{\mathbf{H}}_{0,\mathrm{D}} \, \hat{\mathbf{U}}^{\dagger}(\phi), \quad \hat{\mathbf{U}}(\phi(t)) = \exp\left(-i\phi(t)\hat{\mathbf{J}}_z\right) \end{split}$$

$$\hat{\mathbf{H}}(\phi(t)) = \omega_0 \hat{\mathbf{J}}_z + \omega \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} + \frac{\lambda}{\sqrt{N}} \left( \hat{\mathbf{a}}^{\dagger} + \hat{\mathbf{a}} \right) \left( e^{i\phi(t)} \hat{\mathbf{J}}_+ + e^{-i\phi(t)} \hat{\mathbf{J}}_- \right)$$

 $\stackrel{\phi}{\blacktriangleright} \hat{\vec{J}} = \sum_{i=1}^{N} \frac{\hat{\vec{\sigma}}_i}{2}$ 

F. Plastina, G. Liberti and A. Carollo, Europhys. Lett., 76, 182188 (2006)

ω

## Criticalities of the Dicke Model

Solved in the TDL  $(N \rightarrow \infty)$  using Holstein-Primakoff transformation and Displacement of the bosonic modes: C. Emary and T. Brandes, Phys. Rev. E 67, 066203 (2003)

$$\lambda_c = \frac{1}{2}\sqrt{\omega\omega_0}$$

K. Baumann et al., Nature 464, 1301-1306 (29 April 2010)



# Criticalities of the Dicke Model

Solved in the TDL  $(N \rightarrow \infty)$  using Holstein-Primakoff transformation of SU(2) and Displacement of the bosonic modes: C. Emary and T. Brandes, Phys. Rev. E 67, 066203 (2003)



#### **Coherent States**

Spin (atomic) coherent states

$$|\zeta(t)\rangle := \exp\left(\zeta(t)\hat{\mathbf{J}}_{+} - \zeta^{*}(t)\hat{\mathbf{J}}_{-}\right)|j, -j\rangle, \qquad \zeta(t) \in \mathbb{C}$$

where  $|j, -j\rangle$  is the "minimal-weight" eigenstate:  $\hat{J}_z |j, -j\rangle = -j|j, -j\rangle$ .



$$\hat{1} = \int d^2 \zeta \frac{2j+1}{\pi (1+\zeta \zeta^*)^2} |\zeta\rangle \langle \zeta|$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 = ∽ � � �

#### **Coherent States**

Field (oscillator) coherent states

$$|\alpha(t)\rangle := \exp\left(\alpha(t)\hat{a}^{\dagger} - \alpha^{*}(t)\hat{a}\right)|0\rangle, \qquad \alpha(t) \in \mathbb{C}$$

where  $|0\rangle$  is the vacuum state  $\hat{a}|0\rangle = 0$ .



 $\hat{a}|\alpha\rangle = \alpha|\alpha\rangle$ 

▲□▶▲□▶▲□▶▲□▶ □ のQで

 $\{|\alpha\rangle\}$  over-complete set!

$$\hat{1} = \int d^2 \alpha \frac{1}{\pi} |\alpha\rangle \langle \alpha|$$

### Time-Dependent Mean-Field Approach

$$\mathcal{S}\left[\alpha(t),\zeta(t)\right] = \int_{t_i}^{t_f} dt \left[ \langle \alpha \zeta | i \partial_t - \hat{H}_{\mathsf{D}}(\phi(t)) | \zeta \alpha \rangle \right]$$

 $\delta \mathcal{S}\left[ \alpha(t), \zeta(t) \right] = 0$ 

$$\zeta(t) = \frac{q_1(t) + ip_1(t)}{\sqrt{4j - (q_1^2(t) + p_1^2(t))}}$$
$$\alpha(t) = \frac{1}{\sqrt{2}}(q_2(t) + ip_2(t))$$

$$\begin{aligned} \mathcal{H}_{\rm cl} &:= \langle \alpha \zeta | \hat{\rm H}_{\rm D}(\phi(t)) | \zeta \alpha \rangle \\ \frac{\partial \mathcal{H}_{\rm cl}}{\partial q_i} &= -\dot{p}_i, \qquad \frac{\partial \mathcal{H}_{\rm cl}}{\partial p_i} = \dot{q}_i \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

# Time-Dependent Mean-Field Approach

$$\begin{split} \dot{q}_1 &= \omega_0 p_1 - 2\lambda \frac{(\cos \phi(t)q_1 + \sin \phi(t)p_1)p_1q_2}{\sqrt{4j\left(4j - (q_1^2 + p_1^2)\right)}} + \\ &+ 2\lambda \sqrt{\frac{4j - (q_1^2 + p_1^2)}{4j}} \sin \phi(t)q_2 \\ \dot{p}_1 &= -\omega_0 q_1 + 2\lambda \frac{q_1\left(\cos \phi(t)q_1 + \sin \phi(t)p_1\right)q_2}{\sqrt{4j\left(4j - (q_1^2 + p_1^2)\right)}} + \\ &- 2\lambda \sqrt{\frac{4j - (q_1^2 + p_1^2)}{4j}} \cos \phi(t)q_2 \\ \dot{q}_2 &= \omega p_2 \end{split}$$

$$\dot{p}_2 = \omega q_2 + 2\lambda \sqrt{\frac{4j - (q_1^2 + p_1^2)}{4j}} \left(\cos \phi(t)q_1 + \sin \phi(t)p_1\right)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Fixed Points 
$$\phi(t) = \delta_{\phi} t$$
  
 $q_{1,c_1} = 0, p_{1,c_1} = 0, q_{2,c_1} = 0, p_{2,c_1} = 0, \text{ stable if } \lambda < \frac{\sqrt{\omega(\omega_0 + \delta_{\phi})}}{2}$ 

$$q_{1,c_{2,3}} = \mp \sqrt{2j\left(1 - \frac{\omega(\omega_0 + \delta_{\phi})}{4\lambda^2}\right)} \cos \phi(t)$$

$$p_{1,c_{2,3}} = \mp \sqrt{2j\left(1 - \frac{\omega(\omega_0 + \delta_{\phi})}{4\lambda^2}\right)} \sin \phi(t)$$

$$q_{2,c_{2,3}} = \frac{2\lambda}{\omega} \sqrt{j\left(1 - \left(\frac{\omega(\omega_0 + \delta_{\phi})}{4\lambda^2}\right)^2\right)}$$

$$p_{2,c_{2,3}} = 0$$
real and stable if  $\lambda > \frac{\sqrt{\omega(\omega_0 + \delta_{\phi})}}{2}$ 



 $\lambda < \lambda_{c,(\text{ROT})} = \frac{1}{2} \sqrt{\omega(\omega_0 + \delta_\phi)} \qquad \qquad \lambda > \lambda_{c,(\text{ROT})}$ 

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

#### Mean Photon Number

$$\phi(t) = \delta_{\phi} t$$

$$\begin{aligned} \langle \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} \rangle &= \langle \psi(t_f) | \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} | \psi(t_f) \rangle = |\alpha_{c_2}|^2 = \\ &= \begin{cases} \frac{1}{2} \left(\frac{2\lambda}{\omega}\right)^2 \left[ 1 - \left(\frac{\omega(\omega_0 + \delta_{\phi})}{4\lambda^2}\right)^2 \right] & \text{if } \lambda \ge \frac{1}{2}\sqrt{\omega(\omega_0 + \delta_{\phi})} \\ 0 & \text{if } \lambda < \frac{1}{2}\sqrt{\omega(\omega_0 + \delta_{\phi})} \end{cases} \end{aligned}$$

$$\omega = 1, \omega_0 = 1$$



Check validity of TDMF equations

 $\phi(t) = \delta_{\phi} t, \quad \phi_f = 2\pi, \qquad n_{\max} = 50$ 



|▲□▶▲圖▶▲圖▶▲圖▶ = 三 のへで

Check validity of TDMF equations

 $\phi(t) = \delta_{\phi} t, \quad \phi_f = 2\pi, \qquad n_{\max} = 50, 40, \qquad |\psi(0)\rangle = |\alpha_{c_2}\rangle |\zeta_{c_2}\rangle$  $\delta_{\phi}=1, \omega=1, \omega_0=1, \phi_f=2\pi, j=10$ 4 3  $(a^{\dagger}a)/j$ 0 0.4 0.6 0.8 1.01.2 1.4 λ

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …のへ⊙

### Summary

• The geometric phase

$$\gamma = \int_{\mathcal{C}} i \langle n | \partial_j | n 
angle \, d\lambda^j$$

can induces "dynamical quantum phase transition" in different rotationally driven quantum systems. Which allows one to probe quantum phase transitions in an indirect way, without crossing the critical point.



# Thank you!



$$\begin{split} \hat{\mathbf{H}}(\phi(t)) &= \omega_0 \hat{\mathbf{J}}_z + \omega \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} + \frac{\lambda}{\sqrt{N}} \left( \hat{\mathbf{a}}^{\dagger} + \hat{\mathbf{a}} \right) \left( e^{i\phi(t)} \hat{\mathbf{J}}_+ + e^{-i\phi(t)} \hat{\mathbf{J}}_- \right) \\ \langle \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} \rangle &= \langle \psi(t_f) | \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} | \psi(t_f) \rangle = \langle 0 | \langle j, -j | \hat{\mathbf{U}}^{\dagger}(t_f) \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} \hat{\mathbf{U}}(t_f) | j, -j \rangle | 0 \rangle \\ \phi(t) &= \delta_{\phi} t, \quad t_f = \frac{2\pi}{\delta_{\phi}}, \end{split}$$



$$\begin{split} \hat{\mathbf{H}}(\phi(t)) &= \omega_0 \hat{\mathbf{J}}_z + \omega \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} + \frac{\lambda}{\sqrt{N}} \left( \hat{\mathbf{a}}^{\dagger} + \hat{\mathbf{a}} \right) \left( e^{i\phi(t)} \hat{\mathbf{J}}_+ + e^{-i\phi(t)} \hat{\mathbf{J}}_- \right) \\ \langle \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} \rangle &= \langle \psi(t_f) | \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} | \psi(t_f) \rangle = \langle \mathbf{GS}_T | \hat{\mathbf{U}}^{\dagger}(t_f) \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} \hat{\mathbf{U}}(t_f) | \mathbf{GS}_T \rangle \\ \phi(t) &= \delta_{\phi} t, \quad t_f = \frac{2\pi}{\delta_{\phi}}, \end{split}$$



$$\frac{\alpha}{j} = \frac{1}{2} \left(\frac{2\lambda}{\omega}\right)^2 \left[1 - \left(\frac{\omega(\omega_0 + \delta_\phi)}{4\lambda^2}\right)^2\right]$$



Figure: (left) start in  $|j, -j\rangle |0\rangle$  (right) start in  $|\text{GS}_T\rangle$ 

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

# Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●