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Physical systems are generally inhomogeneneous, homogeneous

systems are often an ideal limit of experimental conditions.

General issue: How quantum and thermal critical behaviors
develop in the presence of external space-dependent fields

Ex.: interacting particles trapped within critia Wod%‘
a limited region of space by an external

potential, such as in experiments of

trap
Bose-Einstein condensation in diluted atomic vapors and of cold atoms in

optical lattices — interplay between quantum and statistical behaviors

Trap effects at thermal and quantum transitions are discussed in the
framework of the trap-size scaling (M.Campostrini, EV, PRL
102,240601,2009; PRA 81,023606,2010)



Finite-T' transition related to the Bose-
Einstein condensation in interacting
gases, experiments show an increasing correla-
tion length compatible with a continuous tran-
sition (Donner, etal, Science 2007). Moreover,
experimental evidences of the Kosterlitz-Thouless

transition in 2D (e.g., Hung etal, Nature 2010)

Quantum Mott insulator to superfluid
transitions and different Mott phases (where
the density is independent of ) have been ob-
served in many experiments with ultracold
atomic gases loaded in optical lattices (e.g.,
Folling etal 2006, Inguscio etal 2009)
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A common feature is a confining potential, which can be varied to achieve

different spatial geometries, allowing also to effectively reduce the spatial dims



A classical example:

The lattice gas model in a confining field V(r) = (|7]/1)?,
Higas = —4J Y pipj — 1Y pi+ » 2V (ri)pi,
(i7) z z

where p; = 0,1 whether the site is empty or occupied.

Far from the origin (p.) — 0 (as (pz) ~ e=2V(#)), thus particles are trapped.

It can be exactly mapped to a standard Ising model:

H:—JZSng‘—i—hZSi—ZV(W)Si, s; =1 —2p;, h=2qJ + pn/2
(i7) i i

In the absence of the trap, liquid-gas transition and Ising critical behavior

with a diverging length scale, at T'=T, and yu = pu. = —4qJ (h = he. = 0).

No diverging length scale in the presence of the confining potential

How is the critical behavior distorted by the trap, and recovered in

the limit [ — oo?



A quantum example:

Atomic gases loaded in optical lattices are generally described
by the Bose-Hubbard (BH) model with a confining potential

J
(25) .
where n; = b;.rbi, V(r) = vPrP, and the trap length scale [ = Jl/p/v

The trapping potential strongly affects the critical behavior at
the Mott transitions and within the superfluid phases: correlation

functions are not expected to develop a diverging length scale.

A theoretical description of the critical correlations in trapped

systems is important for experimental investigations.



In a trap, correlations do not develop a diverging length scale.

The critical behavior of the homoge- citid Wc’des
neous system is observed around the
middle of the trap only when £ < li,ap

A
trap

If £ 2 livap, it gets distorted by the trap, although it may still show
universal effects controlled by the universality class of the transition

of the unconfined system.

These universal effects are described by the trap-size scaling
theory, resembling the finite-size scaling theory in critical
phenomena, but characterized by a further nontrivial trap critical

exponent v , which describes how the critical length scale & depends on the

0

trap (the above naive relations in

trap size at criticality, i.e., f ~ [

magenta thus become respectively & < lfrap and £ 2 lfrap )



Plan of the rest of the talk:
® Trap-size scaling at thermal transitions

e Lattice gas model, e Finite-1" transitions related to the formation

of BEC in interacting gases

® TSS at T' = 0 quantum transitions in D-dim quantum systems
(described by (D + z)-dim QFT’s)

e The XY chain in the presence of a space-dependent transverse
field, as a laboratory model

e The Bose-Hubbard (BH) model, describing cold bosonic atoms in
optical lattices

® list of related issues and further developments



Scaling law of homogeneous systems
fsing(ul, ugy ..., Uk, .. ) = b_d]'_singa?ylul, by2u2, c e bykuk, . )

ur are nonlinear scaling fields (analytic functions of the model parameters)

In a standard continuous transition: two relevant scaling fields
ur ~t=T/T. — 1 (with y; = 1/v) and up ~ h (external field, with
yn = (d — 2+ 1n)/2), and irrelevant u; (¢ > 3) with y; < 0.

When u;,t — 0 and up,h — 0
Fang = & [f(RE™) + & fu(hE") +...] vt

O(£™) arises from the leading irrelevant us, and w = —ys.

Finite-size scaling in a finite system
fsing(ul, ug, . .. ,L) = b_dfsing(bylul, byQ’UJQ, c v ey L/b)

thus Faing (e, up) = L_dfsing(Lytut, LY up)



Trap-size scaling (T'SS) in the presence of the confining potential
V(r) =o"|7", [ =1/v is the trap size

Ex.: Higas = —4J 32 5y pips — w2 pi + 22 2V (ri)ps with p; = 0,1

Scaling Ansatz to allow for the confining potential:
F(ug, Un, o, ) = b “F(ueb?, upb¥™, u,b?", 2 /b)
where y; = 1/v, yn = (d + 2 — 1) /2, while y, must be determined.

Then, fixing u,bY” = 1, and defining the trap exponent 0=1 / Yo,

TSS F = 17V F (u 0% up % 217
resembling FSS: Faing (ue, up) = L_dfsing (ue LYt up LY") | with L — 1°
Critical dynamics by adding a time dependence, through the scaling

variable £/ —20

Finite-size effects by adding the L dependence, through Ll =0 (de Queiroz,
dos Santos, Stinchcombe, PRE 81,051122,2010)



The correlation length & around the middle of the trap, or any

generic length scale associated with the critical modes, behaves as
c=010xt),  X(y)~y ¥ for y—0

The trap induces a critical length scale € ~ % at t = 0.

A generic quantity S is expected to asymptotically behave as

S =17 £ (110V, 2170) = 1799 F (179, 2l™Y)

The hard-wall limit, p — oo of V(1) = (|F]/1)?, — homogeneous

system of size L = 21 with open boundary conditions.

Standard finite size scaling for p — oo, thus lim,_,..0 = 1 (in FSS the RG

dimension of the size L is y, = —1, since £ ~ L at T¢)



The trap exponent 6 can be computed by analyzing the RG
properties of the corresponding perturbation at the critical point.

In the lattice gas model, Hrgas = —4J > 5y pip; — 12, pi + 2, 2V (73) pi,
the trapping potential is coupled to the order parameter, thus

Py = [d%zV(z)p(x) to Hys = [d%x [(0u9)” + 1¢* + up?].
Using scaling relations (yy =p/0 —p=d —yg, yp = (d—2+1n)/2) —
0=2p/(d+2—n+2p), p=2:6=16/31, 0.4462, 2/5 in 2,3 and 4D.

0 T T T T T

< L=8
L % s L=16 |
¢ o =32
Go(x) = (popz) — (po)(pz) 4 e, o %
26y 0/v _1—6 InG,| Yo T LEee
=1 ¢ fo(t17"", xl™") -
a "%, ) i
Results of MC simulations: Go(z) = | - .
l4/glGo(CE) vs ¢l 16/31 44 T, 00 02 04 I_l%glx 08 10 12

Relaxational dynamics: time scale diverging as 7 ~ 1% where z is the

dynamic exponent; confirmed by MC simulations with z = 2.170(6)



Finite-1T transitions in interacting Bose gases and BEC

The condensate wave function W(x) provides the U(1) symm complex

order parameter of the transition, thus expected to belong to
the XY universality class: Hxy = [d% (|0,¥]* + r|¥|* + u|¥[|*)
v =0.6717(1), n = 0.0387(1) in 3D, shared with the superfluid transition in

4He, superconductor transitions, transition in easy-plane magnets, etc...

No real BEC in 2D, but a finite-T" Kosterlitz-Thouless transition with an
exponential behavior of £, formally v — oo, to a quasi-long range order phase
with one-body correlation functions decaying algebraically

In a harmonic trap, the confining potential V (z) = v*z* = (z/1)? is

coupled to the particle density, giving rise to Py = [ d°z v*|z|*|¥(z)]>.

By scaling arguments: 0 = 1/yv — 2V/(1 -+ 2V), thus
0 = 0.57327(4) in 3D (v =0.6717(1)) and = 1 in 2D (v = o), for

comparison, # = 1/2 for a Gaussian theory (v = 1/2)



Experimental results for a trapped Bose
gas at BEC (Donner, etal, Science 2007)

showed an increasing correlation length,
leading to the estimate v = 0.67(13) by
fitting to & ~ t7" (to be compared with
vxy = 0.6717(1)).

0.1 103 102

® ";1;; [ ] s -
1 1 1 L1y 7
0.01 0.02 0.03 0.04 0.05 0.06 o0.07

Reduced temperature (T-T )/T,

Correlation length § (um)

o = N ®Ww A~ O O N ©
=

o

Trap effects are negligible when ¢ < cl?, but relevant when & ~ [°.

However, exp results are not sufficiently precise to show trap effects,

(analogously to the experimental evidences of the KT transition in 2D)

Experiments may probe TSS, by varying the trapping potential and
matching the trap-size dependence of the T'SS Ansatz, analogously to
experiments probing FSS behavior in *He at the superfluid transition.

One may exploit T'SS, using it to infer the critical exponents from the

data, analogously to F'SS techniques to determine the critical parameters.



T = 0 transitions driven by quantum fluctuations: quantum
critical behavior with a peculiar interplay between quantum and

thermal fluctuations at low 7.
Nonanaliticity of the ground-state energy, where the gap A vanishes

Continuous QPT — diverging length scale &, and scaling properties.

Example: the Ising chain in a transverse field
His = —JZO’ Oir1 —

p =0 — two degenerate ground states [ [, | —4) and [, | )
p — oo — GS=]], | T:), breaking Z

These phases extend to finite ¢, quantum transition at .. / J =1,

between quantum paramagnetic and ordered phases

2D Ising quantum critical behavior with A ~ 71 ~ |u — puc|



A QPT is generally characterized by a relevant parameter p, with
RG dimensions y,, = 1/v, and dynamic exponent z:

E~ ™ A~ plr ~ T = e
Scaling law of the free energy F'(u,T) = b_(d+z)F(,ELbl/V, TH?)

critial modes

A trapping potential significantly changes the
phenomenology of QPT: correlations are not ex-

pected to develop a diverging length scale.
trap

T'SS to describe how critical correlations develop in large traps.

Scaling Ansatz in the presence of the trap V(r) = vPrP = (r/1)P:

F(p, T,v,x) = b2 F(ab%  TH*, vb?, x/b)



F = Z_Q(CH_Z)F(IL_LZQ/V, Tlez, $Z_0) where V = 1/yﬂ and 0 = 1/yv
For example, T'SS of the gap and the length scale:
A =1"D(ul"), D(y) ~y~" for y — 0
¢=10x(m®", %),  X(y,0) ~y " for y =0
implying a critical length scale scaling as f ~ 19 at o= 0.

The trap exponent 0 depends on the universality class of the QPT, and the

way the potential is coupled to the system.
f can be computed using RG scaling arguments

The hard-wall limit p — oo is equivalent to confining a homogeneous

system in a box of size L = 2] with open boundary conditions, thus 6 — 1

TSS provides a general framework for quantum critical behaviors in

confined systems.



The quantum XY chain in a transverse field is a standard

theoretical laboratory for issues related to quantum transitions.

A space-dependent transverse field gives rise to an inhomogeneity

analogous to a trapping potential in particle systems

1 T T z z
Hxy = - Sl +7)oioig + (1 =)ojof,,] — poy = V(zi)oy,

where 0 < v < 1, V(x) = vP|z|? = (|z| /)P
Map into spinless fermions by a Jordan-Wigner transformation:
of =11;;(1— QC;cj)(c;r +¢;), 0] = illj (1 — 26;[63')(0,]; —c;), 07 =1— 20;!07;
1
H =Y [l Aije; + 5(0337;3'0; +he)l, Ay =205 = dir1; — di g1+ 2Q(wi)di;,
Bij = =y (0it+1,j = 0ij+1), Qx)=p+V(z), p=p—1

1 plays the role of chemical potential for the c-particles, and V(x) acts as a trap

There are experimental realizations of Ising chains, such as the insulators
CsCoBr3, CoNb2Og, etc.., in a magnetic field.



In the absence of the trap, quantum transitionat g =y — 1 =0
in the 2D Ising universality class, separating a quantum paramagnetic

phase for © > 0 from a quantum ferromagnetic phase for i < 0.

E~pl ™, v=1/y, =1; A~E? z=1

In the presence of the confining potential
V(x) = vPxP (I = 1/v is the trap size), the critical

behavior can be observed around the center of

critial modes

the trap in the large-/ limit. trap
Analyzing the RG dim of the corresponding perturbation

Py = /dda: dtV(z)p(z)? — O=1/y,=p/(p+1)

Using the relations yv = pyo, — p, Yp2 =d+ 2 — Ypu, yv + Y2 = d + 2,
PYy — P = Yu, and the value z =1 and y, =1



TSS can be proved in the XY chain model:

The Hamiltonian can be solved by exact numerical diagonalization, even in
the presence of the trapping potential:

e New fermi variables n, = g;ﬂ-c}; + hiici so that H =) wkn};nk, (wi, > 0)
e Introduce ¢r; = gr; + hxi and Vg; = gr; — hi; satisfying the equations
(A+ B)or = wrr and (A — B)Yy = wi ¢k

e Solution by solving (A — B)(A -+ B)¢k - wiqbk,

e The continuum limit, by rewriting the discrete differences in terms of
derivatives, has a nontrivial T'SS limit: by rescaling

1/(1+p)lp/(1+p)X — p/(1+p)l—p/(1+p)

= p/(1+p)l—p/(1+p)Qk7

T =" Pry, Wi =27y

e Keeping only the leading terms in the large-/ limit, Schrodinger-like eq
(tr + X7 = 0x) (pr + XP 4 9x) ¢1(X) = Qi (X)

Thus, = p / (p + 1) in agreement with RG. Next-to-leading terms

in the large-trap limit give rise to O(I~?) scaling corrections.



TSS can be analytically derived in the XY chain model, arriving at a
continuum Schrodinger-like equation for the lowest states. The asymptotic

trap-size dependence confirms the RG scaling arguments

e any low-energy scale behaves as A = fyel_eD(,ur) where u, =~ %1%
e particle-density correlator: G (z) = (non.)e ~ v*%/?7172°G,(X)

e two-point function: G, (z) = (0i02) = asl "G, (X)

e its second moment correlation length: & = acy?/?P1°[1 + O(1%)]
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e Bipartite entanglement entropy: limz .o Syn(L/2; L) ~ (¢/6)Inl’,
instead of Syn(L/2; L) ~ (¢/6)InL for homogeneous systems



(@)
Ultracold atomic gases in optical lattices

(arrays of microscopic potentials induced by ac

Stark effects of interfering laser beams, which

constrain the atoms at the sites of a lattice)
. . . (b
Experiments are set up with a harmonic

trap, inducing an effective external poten-
tial V(1) = v*r?

Boson systems described by the Bose-Hubbard model ([b;, bj.] = 8ij,
n; = blb;) (D. Jaksch etal, 1998)

The experimental capability of varying the confining potential allows
to vary the spatial geometry, achieving also quasi-1D geometries.



The BH model presents Mott 2
insulators (9(n;)/0un = 0) and superfluid phases.
At the transitions driven by p (ex. along the full
arrow), nonrelativistic bosonic field theory (Fisher
etal, 1989)

superfluid

1
1/T
Z = /[ng] exp(—/O dtd®z L.), | M=t )T

8 1
Lo= " oup+ 5 IVOP +rlof +alolt, 0T
m MI n=0

where 7 ~ 1 — L. ]
The upper critical dimension is d. = 2 — mean field for d > 2.
For d = 2 the FT is free (apart from logs), thus 2 = 2, Yu = 2.

The 1D critical theory is equivalent to a free field theory of nonrelativistic

spinless fermions, thus 2 = 2, Yu = 2.

The special transitions at fixed integer density (along the dashed arrow) &
the d + 1 XY universality class (relativistic FT), thus z =1, y, = 1/vxvy.
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for several physically interesting observables, such as particle density and

its correlators, one-particle density matrix, entanglement, etc...

The trap exponent 0 can be determined by an analysis of the
corresponding RG perturbation, PV = f dx dt V($) ’gb($) ’2,
obtaining 0 = D / (p —+ yu) By replacing the corresponding value of y,,, this
relation yields the value of 6 for each specific transition. 0 = P / (p -+ 2) at

the p-driven transitions.



(i7) @ i i

o Thermodynamic limit at fixed u: N, 1 — oo keeping N/1¢ fixed

(ng) of the 1D hard-core BH model ap- 0'8 N H=711 A p=-1s
proaches its LDA in the large-l limit, i.e., 06’
tn, (1

the value of the particle density of the ho-

mogeneous system at peg(x) = pu+ (x/1)P

0.2}

ool oo Ny N
0.0 0.5 1.0 15

X/

Corrections are suppressed by powers of [, and present a nontrivial scaling:
(ng) = praa(z/1) +179D(x/1?,T1). This feature is likely shared by other particle
systems, finite U or Hubbard models

e Another interesting T'SS regime is that at fixed particle number
N = Y".(n;), corresponding to the low-density regime N/I* — 0.



Results for 1D BH models using various approaches:

o

e Analytical results: TSS in the dilute limit Al

(universal within trapped boson gases with

short-range interactions) o

L 1 L 1 L =
0.0 . 10 15

e Numerical results by exact diagonalization in the superfluid phase and at
the n = 1 Mott transition at T' = 0, showing a modulated TSS at T' = 0,

essentially due to level crossings of the lowest states at finite trap size,

A =1 AN(G)[L+002)], (no) =1 — 17" Do(¢)[L + O(**)]
e Numerical results by DMRG to check universality when adding

interaction terms in the Hamiltonian.

e Numerical results by quantum-MC at finite temperature, showing T'SS,

while the T' = 0 modulation phenomenon gets averaged out.



At the Mott transitions:

(na) = praa (/1) + 17D /19, T1) and (nany)e = 129G ()1, y/1°, TI*)
G. Ceccarelli, C. Torrero, EV, PRA 2012)
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Entanglement in 1D trapped particle systems
Let us divide the system into two parts Aand B: —— A— —— — B — —

Entanglement quantified by: Syn = —InTr[pa In pa] where pa = Trppas is
the reduced density matrix of the subsystem A.

Quantum critical behaviors described by 2D conformal field theories show

logarithmically divergent entanglement entropies.

Dividing the chain in two parts of length {4 and L — 4, CFT predicts
Sun(la; L) = (¢/6) [In L + Insin(wla/L) 4 b], where c is the central charge
(Calabrese, Cardy, 2004)

The trap destroys conformal invariance. What is the scaling behavior of

the entanglement entropies in the T'SS limit?

In the presence of the trap of size [, the dependence on L disappears when
L — oo, and the half-space entanglement behaves as

Sen(L/2; L) = (¢/6) (In&. + b), with &, = a.l” an entanglement length.
Results for the XY and XX chains (CV, JSTAT P08020, 2010)



CONCLUSIONS: T'SS provides a theoretical framework to describe

thermal and quantum critical behaviors in confined particle systems.

® Finite-T transitions: F = l_ed}"(utl‘gyt,uhlgyh,a:l_g)  with € ~ 17 at T,

6 by scaling arguments: it depends on the universality class, the power law

V(x) = (x/1)?, the way it is coupled to the critical modes.
e Static and dynamics e Lattice gas models e QLRO of 2D systems
e finite-1" transitions of interacting Bose gases with BEC

® At quantum transitions, F(u, T, 1, z) = 170942 F(@®/v T17% 217°)
e the quantum XY chain in a space-dependent transverse field

e the Bose-Hubbard model which describes cold atomic gases confined in

optical lattices.



Further studies ...

e T'SS of the unitary off-equilibrium quantum dynamics, e.g., in the
presence of a time-dependent confining potential (Campostrini, V, PRA 82
063636 2010; Collura, Karevski, PRL 104, 200601, 2010)

e T'SS of critical dynamics (Costagliola, EV, JSTAT 2011 L08001)

e Finite-size scaling effects in T'SS (de Queiroz, dos Santos, Stinchcombe, PRE
81,051122,2010)

e T'SS of bipartite entanglement entropies in 1D XY and BH chains
(Campostrini, V, JSTAT P08020, 2010)

e T'SS in 2D BH models by QMC (Ceccarelli, Torrero, arXiv:1203.2030)



Further related works:

e (Quantum correlations and entanglement in Fermi gases trapped

within limited space regions, of any dimensions:

e Systematic framework to compute them based on the N x N
overlap matrix Ay, = [, d2 % (2)m(z) where ¢, () (Calabrese,
Mintchev, EV, PRL 107, 020601, 2011).

e Relations between particle fluctuations and entanglement entropy
of an extended region A in noninteracting Fermi gases,

vN entropy /particle variance &~ 7 /3 for any subsystem A in
any dimension, (Calabrese, Mintchev, EV, EPL 98, 20003, 2011), even in the
presence of a space-dependent confining potential (V, arXiv:1204.2155).

e Quantum dynamics and entanglement of Fermi gases released from
a trap (V, arXiv:1204.3371).



