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Why is the (bi-partite) entanglement entropy interesting?

It represents a particular way of extracting information
about the state of a quantum system.

This information does not depend on the correlation
functions of any fields (just on the state).

Near critical points it displays universal behaviour: it
allows us to say things about a QFT which do not depend
very much of the precise details of the model.
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This information does not depend on the correlation
functions of any fields (just on the state).

Near critical points it displays universal behaviour: it
allows us to say things about a QFT which do not depend
very much of the precise details of the model.

Controlling entanglement is quite crucial in quantum
computation. The entanglement entropy provides a
theoretical measurement of the amount of entanglement
that can be stored in a certain quantum state and this may
inform experimental developments somehow.
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More motivation

In the context of high energy physics much of the
motivation to study the entanglement entropy has come
from its behaviour at quantum critical points [Holzhey,
Larsen and Wilczek ’94; Calabrese and Cardy ’04]:

Sm ∼
c

3
logm ⇒ information about the CFT
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from its behaviour at quantum critical points [Holzhey,
Larsen and Wilczek ’94; Calabrese and Cardy ’04]:

Sm ∼
c

3
logm ⇒ information about the CFT

In this talk I will provide evidence that the entropy can
also reveal interesting information about states even when
there is no critical point.
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More motivation

In the context of high energy physics much of the
motivation to study the entanglement entropy has come
from its behaviour at quantum critical points [Holzhey,
Larsen and Wilczek ’94; Calabrese and Cardy ’04]:

Sm ∼
c

3
logm ⇒ information about the CFT

In this talk I will provide evidence that the entropy can
also reveal interesting information about states even when
there is no critical point.

Why bi-partite? It is unclear what would be a good
measure of multi-partite entropy... So for now we stick to
the following configuration and consider the entanglement
between a region A and its complement B = Ā
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Overview of the talk

Entanglement entropy

Cyclic permutation operators and twist fields

Infinitely degenerate ground states

The ferromagnetic spin 1
2 XXX chain

Large distance behaviour of the entropy

Generalizations: Permutation Symmetric States

This talk is mainly based on the following publications:

O.A. Castro-Alvaredo and B. Doyon,
Phys. Rev. Lett. 108 120401 (2012); arXiv:1103.3247
J. Stat. Mech. 1102 P02001 (2011); arXiv:1011.4706
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Bi-partite Entanglement Entropy

Let us consider a spin chain of length N , subdivided into
regions A and Ā of lengths L and N − L
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then we define

Von Neumann Entanglement Entropy

SA = −TrA(ρA log(ρA)) with ρA = TrĀ(|Ψ〉〈Ψ|)

and |Ψ〉 a ground state.
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then we define

Von Neumann Entanglement Entropy

SA = −TrA(ρA log(ρA)) with ρA = TrĀ(|Ψ〉〈Ψ|)

and |Ψ〉 a ground state.
Other entropies may also be defined such as Rényi’s

Other Entropies

S
(n)
A =

log(TrA(ρ
n
A))

1− n
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Replica Trick

SA = −TrA(ρA log(ρA)) = − lim
n→1

d

dn
TrA(ρ

n
A)

For general QFTs the “replica trick” naturally leads to the
notion of replica theories on multi-sheeted Riemann
surfaces ⇒ interpretation of TrA(ρ

n
A)
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Partition functions on multi-sheeted Riemann surfaces

For integer numbers n of replicas, in the scaling limit, this
is a partition function on a Riemann surface [Callan &
Wilczek ’94; Holzhey, Larsen & Wilczek ’94; Calabrese &
Cardy ’04] (TrA(ρA) is the partition function of the original
theory!):

A〈φ|ρA|ψ〉A ∼ r

ψ>
φ|< A

|

TrA(ρ
n
A) ∼ Zn =

∫

[dϕ]Mn
exp

[

−

∫

Mn

d2x L[ϕ](x)

]

Mn =
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Twist Fields

For general 1+1 dimensional QFT we have found [Cardy,
OCA & Doyon ’08] that the entropy may be expressed in
terms of a two-point function of twist fields

TrA(ρ
n
A) ∝ 〈T (r)T̃ (0)〉

where r is the size of region A in the continuous limit.
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Twist Fields

For general 1+1 dimensional QFT we have found [Cardy,
OCA & Doyon ’08] that the entropy may be expressed in
terms of a two-point function of twist fields

TrA(ρ
n
A) ∝ 〈T (r)T̃ (0)〉

where r is the size of region A in the continuous limit.

In QFT the twist field generates cyclic permutations of the
n-copies of a QFT in its replica version:

(a)

i

i+1φ T

(x)

(x)

φ
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Twist Fields

In the past years we have used this relationship and
integrable models techniques to study the entropy of 1+1
dimensional QFTs of various kinds: with boundaries [OCA
& Doyon ’09], with backscattering [OCA & Doyon ’08] etc.
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Twist Fields

In the past years we have used this relationship and
integrable models techniques to study the entropy of 1+1
dimensional QFTs of various kinds: with boundaries [OCA
& Doyon ’09], with backscattering [OCA & Doyon ’08] etc.

Today however I want to discuss the “discrete” version of
this approach. Is there an equivalent of this twist field for
quantum spin chains? Can the entanglement entropy also
be expressed in terms of its correlation functions?
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Twist Fields

In the past years we have used this relationship and
integrable models techniques to study the entropy of 1+1
dimensional QFTs of various kinds: with boundaries [OCA
& Doyon ’09], with backscattering [OCA & Doyon ’08] etc.

Today however I want to discuss the “discrete” version of
this approach. Is there an equivalent of this twist field for
quantum spin chains? Can the entanglement entropy also
be expressed in terms of its correlation functions?

YES!
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Local Cyclic Replica Permutation Operators

We may consider a replica spin chain theory, consisting of
n non-interacting copies of some known model.
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Local Cyclic Replica Permutation Operators

We may consider a replica spin chain theory, consisting of
n non-interacting copies of some known model.

We define Ti, the local cyclic replica permutation operator.
It acts on site i and permutes its spin with that of different
copies of the same site Ti|s1s2 . . . sn〉 = |s2 . . . sns1〉.
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n non-interacting copies of some known model.

We define Ti, the local cyclic replica permutation operator.
It acts on site i and permutes its spin with that of different
copies of the same site Ti|s1s2 . . . sn〉 = |s2 . . . sns1〉.

The simplest example is the case n = 2, N = 2 and s = 1
2

(two copies, two sites and spin 1
2 ):
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Local Cyclic Replica Permutation Operators

We may consider a replica spin chain theory, consisting of
n non-interacting copies of some known model.

We define Ti, the local cyclic replica permutation operator.
It acts on site i and permutes its spin with that of different
copies of the same site Ti|s1s2 . . . sn〉 = |s2 . . . sns1〉.

The simplest example is the case n = 2, N = 2 and s = 1
2

(two copies, two sites and spin 1
2 ):

In this simple case, the operator T1 is nothing but the
permutation operator. It may be written as

Cyclic Permutation Operator for n=N=2

Ti = E11
1,iE

11
2,i +E12

1,iE
21
2,i + E21

1,iE
12
2,i +E22

1,iE
22
2,i with i = 1, 2,

with (Eǫǫ′

α,i)jk = δǫ,jδǫ′,k α = 1, . . . , n and i = 1, . . . , N
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Local Cyclic Replica Permutation Operators

Similarly, by increasing the number of copies to n = 3 and
n = 4 we find more involved expressions:

Ti for n=3

E11
1,iE

11
2,iE

11
3,i + E12

1,iE
21
2,iE

22
3,i + E21

1,iE
12
2,iE

11
3,i +E22

1,iE
22
2,iE

22
3,i +

E11
1,iE

21
2,iE

12
3,i + E12

1 E
11
2,iE

21
3,i + E22

1,iE
12
2,iE

21
3,i + E21

1,iE
22
2,iE

12
3,i,
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Ti for n=4
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1,iE

11
2,iE
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3,iE
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2,iE
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3,iE
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4,i + E11
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1,iE
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12
3,iE
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4,i +

E12
1,iE

21
2,iE

22
3,iE

22
4,i + E22

1,iE
12
2,iE

21
3,iE

22
4,i + E12

1,iE
11
2,iE

21
3,iE

22
4,i + E22

1,iE
22
2,iE

22
3,iE

22
4,i.
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Similarly, by increasing the number of copies to n = 3 and
n = 4 we find more involved expressions:

Ti for n=3
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1,iE
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1,iE
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2,iE
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We can then find a general expression:

General Cyclic Permutation Operator

Ti = Traux

(

n
∏

α=1

Tα,i;aux

)

with Tα,i;aux =

(

E11
α,i E21

α,i

E12
α,i E22

α,i

)

aux
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Multiple action of cyclic permutation operators

It is now easy to imagine how several operators Ti will act
for general values of n and N . Graphically let us think of
the following product of states:
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Multiple action of cyclic permutation operators

It is now easy to imagine how several operators Ti will act
for general values of n and N . Graphically let us think of
the following product of states:

Acting with the operator

TjTj+1 · · · Tj+L−1Tj+L
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General Formula for the Entanglement Entropy

The Rényi entropy of such a “block” of spins would be
given by:

S
(n)
j,...,j+L =

1

1− n
log

(

〈Ψ|TjTj+1 · · · Tj+L−1Tj+L|Ψ〉

〈Ψ|Ψ〉

)
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General Formula for the Entanglement Entropy

The Rényi entropy of such a “block” of spins would be
given by:

S
(n)
j,...,j+L =

1

1− n
log

(

〈Ψ|TjTj+1 · · · Tj+L−1Tj+L|Ψ〉

〈Ψ|Ψ〉

)

And employing the replica trick we also know the von
Neumann entropy to be:

Sj,...,j+L = − lim
n→1

d

dn

[

〈Ψ|TjTj+1 · · · Tj+L−1Tj+L|Ψ〉

〈Ψ|Ψ〉

]
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General Formula for the Entanglement Entropy

The Rényi entropy of such a “block” of spins would be
given by:

S
(n)
j,...,j+L =

1

1− n
log

(

〈Ψ|TjTj+1 · · · Tj+L−1Tj+L|Ψ〉

〈Ψ|Ψ〉

)

And employing the replica trick we also know the von
Neumann entropy to be:

Sj,...,j+L = − lim
n→1

d

dn

[

〈Ψ|TjTj+1 · · · Tj+L−1Tj+L|Ψ〉

〈Ψ|Ψ〉

]

In the scaling limit, when both N,L → ∞, expectation
values of products of cyclic permutation operators play the
role of the two point function of twist fields in QFT.
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Examples: the spin-12 XXZ chain

We may now employ this formalism for the spin-12 XXZ
chain in the ground state to find:
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We may now employ this formalism for the spin-12 XXZ
chain in the ground state to find:

Entanglement Entropy of One Spin

Si = log(2)
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Examples: the spin-12 XXZ chain

We may now employ this formalism for the spin-12 XXZ
chain in the ground state to find:

Entanglement Entropy of One Spin

Si = log(2)

Entanglement Entropy of Two Spins

S{1,m+1} = −
(1− z(m) + 4s(m))

4
log

[

(1− z(m) + 4s(m))

4

]

−
(1− z(m)− 4s(m))

4
log

[

(1− z(m)− 4s(m))

4

]

−
(1 + z(m))

2
log

[

1 + z(m)

4

]

.

with 〈σz1σ
z
m+1〉 = z(m) and 〈σ+1 σ

−
m+1〉 = s(m).
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The spin-12 XXX ferromagnetic chain I

Computations become very involved whenever more than
two spins are considered (e.g. very complex combinatorial
problem).
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The spin-12 XXX ferromagnetic chain I

Computations become very involved whenever more than
two spins are considered (e.g. very complex combinatorial
problem).

We therefore decided to look at a theory where correlation
functions are so simple, that one may hope to find a
general formula for the entropy.
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The spin-12 XXX ferromagnetic chain I

Computations become very involved whenever more than
two spins are considered (e.g. very complex combinatorial
problem).

We therefore decided to look at a theory where correlation
functions are so simple, that one may hope to find a
general formula for the entropy.

We obtained those correlation functions simply by taking
the ∆ → −1+ limit of the correlation functions of the XXZ
chain. This leads to

The Correlation Functions

lim
∆→−1+

〈E
ǫ1ǫ

′

1

j1
E

ǫ2ǫ
′

2

j2
· · ·E

ǫmǫ′m
jm

〉 =
1

2m

∏

j∈B

(−1)j

where B is the subset of sites at which either an operator
E12 or an operator E21 sit.
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The spin-12 XXX ferromagnetic chain I

Employing these building blocks the von Neumann and
Rényi entropies can be computed in complete generality:

Olalla A. Castro-Alvaredo, City University London Entanglement Entropy of Degenerate Ground States



The spin-12 XXX ferromagnetic chain I

Employing these building blocks the von Neumann and
Rényi entropies can be computed in complete generality:

Von Neumann Entropy

Sm = m log 2−
1

2m

m
∑

k=0

(

m

k

)

log

(

m

k

)
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The spin-12 XXX ferromagnetic chain I

Employing these building blocks the von Neumann and
Rényi entropies can be computed in complete generality:

Von Neumann Entropy

Sm = m log 2−
1

2m

m
∑

k=0

(

m

k

)

log

(

m

k

)

Rényi Entropy

S(n)
m = −

nm log 2

1− n
+

1

1− n
log

(

m
∑

k=0

(

m

k

)n
)

where m is the number of spins whose entropy is being
computed (not necessarily consecutive!).
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The spin-12 XXX ferromagnetic chain II

We have also studied the asymptotic behaviour of these
entropies, and this is what we found:
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The spin-12 XXX ferromagnetic chain II

We have also studied the asymptotic behaviour of these
entropies, and this is what we found:

Asymptotics

Sm =
1

2
log
(πm

2

)

+
1

2
+O

(

m−1
)

S(n)
m =

1

2
log
(πm

2

)

+
log(n)

2(n − 1)
+O

(

m−1
)

Both entropies scale logarithmically, which reminds us of
the scaling behaviour of the entropy at critical points.
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The spin-12 XXX ferromagnetic chain II

We have also studied the asymptotic behaviour of these
entropies, and this is what we found:

Asymptotics

Sm =
1

2
log
(πm

2

)

+
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(
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+
log(n)
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+O

(
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)

Both entropies scale logarithmically, which reminds us of
the scaling behaviour of the entropy at critical points.

However the coefficient of the log-terms is not what is
expected for critical points.
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The spin-12 XXX ferromagnetic chain II

We have also studied the asymptotic behaviour of these
entropies, and this is what we found:

Asymptotics

Sm =
1

2
log
(πm

2

)

+
1

2
+O

(

m−1
)

S(n)
m =

1

2
log
(πm

2

)

+
log(n)

2(n − 1)
+O

(

m−1
)

Both entropies scale logarithmically, which reminds us of
the scaling behaviour of the entropy at critical points.

However the coefficient of the log-terms is not what is
expected for critical points.

What does this asymptotic behaviour actually mean?
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The spin-12 XXX ferromagnetic chain III

The simplicity of this example comes from the fact that the
state whose entropy we are computing has a density matrix
whose full spectrum can be deduced purely from
combinatorial arguments (hence the binomial coefficients).
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The spin-12 XXX ferromagnetic chain III

The simplicity of this example comes from the fact that the
state whose entropy we are computing has a density matrix
whose full spectrum can be deduced purely from
combinatorial arguments (hence the binomial coefficients).

This fact was already noted in [Popkov & Salerno ’04] and
led them to reproduce the same leading behaviour of the
von Neumann entropy which we have found.
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The spin-12 XXX ferromagnetic chain III

The simplicity of this example comes from the fact that the
state whose entropy we are computing has a density matrix
whose full spectrum can be deduced purely from
combinatorial arguments (hence the binomial coefficients).

This fact was already noted in [Popkov & Salerno ’04] and
led them to reproduce the same leading behaviour of the
von Neumann entropy which we have found.

They went on to generalize this to higher spin models by
considering special states where the density matrix
spectrum is also fixed combinatorially [Popkov, Salerno &
Shütz ’04].
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The spin-12 XXX ferromagnetic chain III

The simplicity of this example comes from the fact that the
state whose entropy we are computing has a density matrix
whose full spectrum can be deduced purely from
combinatorial arguments (hence the binomial coefficients).

This fact was already noted in [Popkov & Salerno ’04] and
led them to reproduce the same leading behaviour of the
von Neumann entropy which we have found.

They went on to generalize this to higher spin models by
considering special states where the density matrix
spectrum is also fixed combinatorially [Popkov, Salerno &
Shütz ’04].

All the states that they (and we) considered are
permutation symmetric (more later!).
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The spin-12 XXX ferromagnetic chain III

The simplicity of this example comes from the fact that the
state whose entropy we are computing has a density matrix
whose full spectrum can be deduced purely from
combinatorial arguments (hence the binomial coefficients).

This fact was already noted in [Popkov & Salerno ’04] and
led them to reproduce the same leading behaviour of the
von Neumann entropy which we have found.

They went on to generalize this to higher spin models by
considering special states where the density matrix
spectrum is also fixed combinatorially [Popkov, Salerno &
Shütz ’04].

All the states that they (and we) considered are
permutation symmetric (more later!).

These results are however just special cases of a more
general behaviour which we have (for the first time)
interpreted geometrically.
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Infinitely degenerate ground states

The particular ground state that we are considering is one
of many possible choices, with the following special
features:
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Infinitely degenerate ground states

The particular ground state that we are considering is one
of many possible choices, with the following special
features:

1 it is a particular linear combination of infinitely many
states, each of which is factorizable (would have zero
entropy) and permutation symmetric (the spin at each site
is the same)
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Infinitely degenerate ground states

The particular ground state that we are considering is one
of many possible choices, with the following special
features:

1 it is a particular linear combination of infinitely many
states, each of which is factorizable (would have zero
entropy) and permutation symmetric (the spin at each site
is the same)

2 we may associate a “dimension” to each particular choice of
ground state. The coefficient of the log-term is given in
general by d

2
, where d is this “dimension”
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Infinitely degenerate ground states

The particular ground state that we are considering is one
of many possible choices, with the following special
features:

1 it is a particular linear combination of infinitely many
states, each of which is factorizable (would have zero
entropy) and permutation symmetric (the spin at each site
is the same)

2 we may associate a “dimension” to each particular choice of
ground state. The coefficient of the log-term is given in
general by d

2
, where d is this “dimension”

The meaning of this “dimension” is relatively simple to
explain for the spin-12 XXX chain.
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Infinitely degenerate ground states

The particular ground state that we are considering is one
of many possible choices, with the following special
features:

1 it is a particular linear combination of infinitely many
states, each of which is factorizable (would have zero
entropy) and permutation symmetric (the spin at each site
is the same)

2 we may associate a “dimension” to each particular choice of
ground state. The coefficient of the log-term is given in
general by d

2
, where d is this “dimension”

The meaning of this “dimension” is relatively simple to
explain for the spin-12 XXX chain.

An infinite subset of these ground states are factorizable
(zero-entropy states) corresponding to choosing all spins to
point in a particular direction ~v.
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Ground states of the spin-12 XXX spin chain

Every factorizable ground state |Ψ〉~v may be labeled by a
unit vector ~v, which takes any possible direction inside the
two-dimensional sphere S2 and such that ~σ · ~v|Ψ〉~v = |Ψ〉~v.
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Ground states of the spin-12 XXX spin chain

Every factorizable ground state |Ψ〉~v may be labeled by a
unit vector ~v, which takes any possible direction inside the
two-dimensional sphere S2 and such that ~σ · ~v|Ψ〉~v = |Ψ〉~v.

Any ground state of the chain is either a finite or an
infinite linear combination of such basic states.
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Ground states of the spin-12 XXX spin chain

Every factorizable ground state |Ψ〉~v may be labeled by a
unit vector ~v, which takes any possible direction inside the
two-dimensional sphere S2 and such that ~σ · ~v|Ψ〉~v = |Ψ〉~v.

Any ground state of the chain is either a finite or an
infinite linear combination of such basic states.

|Ψ〉 =
∑

α

cα|Ψ〉~vα
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Ground states of the spin-12 XXX spin chain

Every factorizable ground state |Ψ〉~v may be labeled by a
unit vector ~v, which takes any possible direction inside the
two-dimensional sphere S2 and such that ~σ · ~v|Ψ〉~v = |Ψ〉~v.

Any ground state of the chain is either a finite or an
infinite linear combination of such basic states.

|Ψ〉 =
∑

α

cα|Ψ〉~vα

The particular ground state whose entropies we have
computed corresponds to an infinite linear combination
where all coefficients cα are equal to each other and where
the vectors ~vα are such as to generate a great circle on the
unit sphere. Graphically...
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Different geometries
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Different geometries

The asymptotic behaviour of the entropy ≈ d
2 log(m) for m

large has d = 1, the geometric dimension of the circle.
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Different geometries

The asymptotic behaviour of the entropy ≈ d
2 log(m) for m

large has d = 1, the geometric dimension of the circle.
More complex linear combinations of basic states give
ground states with entropy asymptotics characterized by
0 < d < 2 and d ∈ R.
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Different geometries

The asymptotic behaviour of the entropy ≈ d
2 log(m) for m

large has d = 1, the geometric dimension of the circle.
More complex linear combinations of basic states give
ground states with entropy asymptotics characterized by
0 < d < 2 and d ∈ R.
The maximum value of d in this case is 2 (the geometric
dimension of the sphere and four times the spin).
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Different geometries

The asymptotic behaviour of the entropy ≈ d
2 log(m) for m

large has d = 1, the geometric dimension of the circle.
More complex linear combinations of basic states give
ground states with entropy asymptotics characterized by
0 < d < 2 and d ∈ R.
The maximum value of d in this case is 2 (the geometric
dimension of the sphere and four times the spin).
This is consistent with [Ercolessi et al. ’10].
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Higher spins

As mentioned earlier [Popkov, Salerno & Shütz ’04] have
considered the case of permutation symmetric states in
higher spin systems. For a particular choice of the initial
(pure) state they found that the entropy scaled as s logm.
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Higher spins

As mentioned earlier [Popkov, Salerno & Shütz ’04] have
considered the case of permutation symmetric states in
higher spin systems. For a particular choice of the initial
(pure) state they found that the entropy scaled as s logm.

Our geometric interpretation tells us that, as before, the
entropy scales as d

2 logm where 0 < d < 4s for spin s. The
maximum value of 4s is related to the dimension of the
states’ support (e.g. the sphere for s = 1

2).
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Higher spins

As mentioned earlier [Popkov, Salerno & Shütz ’04] have
considered the case of permutation symmetric states in
higher spin systems. For a particular choice of the initial
(pure) state they found that the entropy scaled as s logm.

Our geometric interpretation tells us that, as before, the
entropy scales as d

2 logm where 0 < d < 4s for spin s. The
maximum value of 4s is related to the dimension of the
states’ support (e.g. the sphere for s = 1

2).

The maximum value of 4s can also be seen as the number
of free parameters which characterize the state. For
permutation symmetric states, the spin projection is the
same at each site. For spin s at each site we have a
(2s + 1)-dimensional vector with complex entries and norm
1. This gives a total of 4s+ 1 parameters minus a phase,
that is, at most 4s degrees of freedom.
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Conclusions

We have developed a new approach for the systematic
computations of the bi-partite entanglement entropy of
quantum spin chains.
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Conclusions

We have developed a new approach for the systematic
computations of the bi-partite entanglement entropy of
quantum spin chains.

The approach is based on the use of replica cyclic
permutation operators and their correlation functions.
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Conclusions

We have developed a new approach for the systematic
computations of the bi-partite entanglement entropy of
quantum spin chains.

The approach is based on the use of replica cyclic
permutation operators and their correlation functions.

Employing this approach we have identify a particular type
of universal behaviour of the entanglement entropy which
may be found in theories with infinitely degenerate ground
states spanned by a basis of zero-entropy permutation
symmetric states.
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Conclusions

We have developed a new approach for the systematic
computations of the bi-partite entanglement entropy of
quantum spin chains.

The approach is based on the use of replica cyclic
permutation operators and their correlation functions.

Employing this approach we have identify a particular type
of universal behaviour of the entanglement entropy which
may be found in theories with infinitely degenerate ground
states spanned by a basis of zero-entropy permutation
symmetric states.

This universal behaviour is characterized by the geometric
structure of the support of these states, which may be a
fractal one.
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Outlook I

For the higher spin case we are now working on providing
more analytical support for the conclusions above.
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Outlook I

For the higher spin case we are now working on providing
more analytical support for the conclusions above.

More generally, the role of permutation symmetric states in
the context of quantum information is quite prominent.
Their symmetry makes then easy to treat analytically and
they have even been realized in the lab (see e.g. Prevedel
et al. ’09).
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Outlook I

For the higher spin case we are now working on providing
more analytical support for the conclusions above.

More generally, the role of permutation symmetric states in
the context of quantum information is quite prominent.
Their symmetry makes then easy to treat analytically and
they have even been realized in the lab (see e.g. Prevedel
et al. ’09).

It seems that this kind of states is regarded as one which
maximizes entanglement. Our work and that Popkov et al.
show that there is a limit to the amount of entanglement
that can be stored in such states.

Olalla A. Castro-Alvaredo, City University London Entanglement Entropy of Degenerate Ground States



Outlook II

Another interesting result which may be related to our
work is the entanglement entropy of random quantum
systems (see e.g. the recent review by Rafael & Moore ’09).
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Outlook II

Another interesting result which may be related to our
work is the entanglement entropy of random quantum
systems (see e.g. the recent review by Rafael & Moore ’09).

The simplest example of this is the Random bond Ising
model with H =

∑

Ji~σi~σi+1 where Ji are couplings which
are chose randomly. Once the choice is made it is known
what the ground state is characterized by pairs of spins
forming singlet states:
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Outlook II

Another interesting result which may be related to our
work is the entanglement entropy of random quantum
systems (see e.g. the recent review by Rafael & Moore ’09).

The simplest example of this is the Random bond Ising
model with H =

∑

Ji~σi~σi+1 where Ji are couplings which
are chose randomly. Once the choice is made it is known
what the ground state is characterized by pairs of spins
forming singlet states:

The entropy of such a state scales as ln 2
3 logm which is

quite similar to the kind of behaviour we have found for
systems with degenerate ground states. It would be
interesting to see if the coefficient of the log-term does
admit also a geometric interpretation in this case.
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