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Ultracold atoms as quantum simulators of:

 Strongly interacting lattice systems (e.g., Fermi 
and/or Bose Hubbard-like models )

 Quantum magnetism

 Disordered models 

 Dirac and relativistic field theories

 Low-dimensional systems

 Quantum Hall physics

 (BCS) Superconductors with Cooper pairs

 …
 



Main available “ingredients”
 Bosons and/or fermions

 Geometry (1D / 2D)

 Long-range interactions

 Add disorder

Time-dependence (and to a certain extent space-dependence) 
of the parameters of the Hamiltonian

 Explicit tuning of the interactions via Feshbach resonances

 Simulate a magnetic field through a rotation or with optical 
tools

 Optical lattices (i.e., periodic potentials and minima of the 
potential located on a lattice) 

 …
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What is needed to simulate quantum 
Hall physics with ultracold gases:

 2D systems: obtained using the trapping potentials 

 Strong - and possibly tunable - interactions between 
atoms: obtained using Feshbach resonances

 A (fictitious) magnetic field …
 



Two-dimensional systems

Magnetic harmonic potential: ( )222222
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What is needed to simulate quantum 
Hall physics with ultracold gases:

 2D systems

 Strong - and possibly tunable - interactions between 
atoms

 A (fictitious) magnetic field …how to do it?
 



Simulating a magnetic field:

 Using rotating traps 
[see the review Cooper, Adv. Phys. (2008)]

 With spatially dependent optical couplings between 
internal states of the atoms [Y.-J. Lin et al., Nature (2009)]

 



Landau levels for 2D gases 
in rotation (I) 

Single particle:
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Landau levels for 2D gases 
in rotation (II)
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For many non-interacting particles:

Landau levels for 2D gases 
in rotation (III)



Laughlin ground-states for 2D gases 
in rotation 
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Abelian excitations
Excitations of the Laughlin ground-state:
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For ultracold atomic systems, an hole  in R0  can be 
created with a laser centered in R0; two excitations (say 
in R0 and R1) can be created 

or
one excitation can be moved - i.e., R0=R0(time) – 
around another       
 

a π /2 phase is acquired
 



In a non-abelian quantum Hall state quasi-particles obey non-

abelian statistics, meaning that (for example):

with 2N quasi-particles at fixed positions, the ground state is 2N-

degenerate

the interchange of quasi-particles shifts between ground states 

(i.e., permutations between quasi-particles positions      unitary 

transformations in the ground state subspace)

Non - Abelian excitations
[Moore and Read (1991)]

An example: Moore-Read 

states
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The quest for non-Abelian anyons 
with ultracold atoms

The Laughlin ground-state has abelian 
excitations: the Berry phase is a number.

How we can make it a matrix?

First (poor man) guess: add a degree of 
freedom, 
i.e. consider a two-component Bose gas

Well, not so easy…
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Rotation & artificial magnetic fields (I)

Magnetic field for 
charged particles

Rotation for 
neutral atoms ~

Another tool for simulate magnetic fields for a two-component 
Bose gas is purely optical: Rabi pulses couples two states with two 
dark states (tripod structure) [Ruseckas et al., PRL (2005)]

One can rotate also systems with two components (possibly giving 
different rotations).

[see the review J. Dalibard, F. Gerbier, G. Juzelunas, and P. Ohberg, RMP 
(2011)]



Rotation & artificial magnetic fields (II)
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Rotation & artificial magnetic fields (III)

Other promising schemes: 
-optical flux lattices [N. Cooper, PRL 2011] 

-generating a geometric phase with specific 
arrangements on lattices using two stable 
states [K. Osterloh et al., PRL 2005; M. Aidelsburger et al., PRL 
2011]

For this purpose Yb atoms can be extremely 
useful [F. Gerbier and J. Dalibard, New J. Phys. 2010]: two 
electronically-excited metastable states – 7 
isotopic stable forms [5 bosons & 2 fermions] 
with different scattering properties – selective 
trapping of the two states 



Single-particle Hamiltonians

( ) ( )22
yyxx ApApH +++=

 

For a single component: 

)(
2

;
2

)(;0

gaugesymmetricx
B

Ay
B

A

or

gaugeLandauBxAA

yx

yx

=−=

==

Using two-component gases & rotations and/or tripod schemes
it is possible to have            2x2 matrices withyx AA ,

[ ] 0, ≠yx AA

Non-Abelian gauge potentials



2D atoms in a non-Abelian 
magnetic field: An example
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[A. Jacob et al., New J. Phys. (2008)]

An example: 

2x2 matrices 

Degeneracy of Landau levels 
is in general broken 

with 

yxzy MM σσ == ;



2D atoms in a symmetric non-Abelian 
magnetic field: single particle (I)
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Our choice:

Reasons:

3)degeneracy of Landau levels not broken
 

2)  analytical single particle energy levels

3)  realistically implementable

[M. Burrello and A. Trombettoni, PRL (2010); PRA (2011)]



2D atoms in a symmetric non-Abelian 
magnetic field: single particle (II)
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2D atoms in a symmetric non-Abelian 
magnetic field: single particle (III)

( ) ( ) ..
22

abelnonabelyyxx HHApApH −+=+++=

x
B

qAy
B

qA yyxx 2
;

2
+=−= σσ

Landau levels split in two due to non-abelian term q



2D atoms in non-Abelian 
magnetic fields: Adding the interactions

q=0   usual (“Abelian”) case with lowest Landau 
levels; (strong) interaction gives the Laughlin state

q finite        deformed Laughlin state
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At the degeneracy points, ground-states with non-
Abelian excitations are found: a deformed Moore-Read
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Non-Abelian excitations at 
the degeneracy points

[M. Burrello and A. Trombettoni, PRL (2010)]



N.B. Requiring that for

3)energy spectrum presents a Landau level structure 
(and the wavefunctions can be expressed as finite sum of 
terms)
 
2) each Landau level is degenerate with respect to the angular  
 momentum 

3) in the Abelian limit, the Landau levels become degenerate 
with respect of the spin degree of freedom

[M. Burrello and A. Trombettoni, PRA (2011)]
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Part I: Conclusions & Perspectives
 Non-Abelian gauge potentials do not generally give non-

Abelian excitations: rather deformed Laughlin states are found

 splitting of the Landau levels exactly determined in an 
experimentally realizable non-Abelian magnetic field

 however, at the degeneracy points of the Landau levels, 
ground-states with non-Abelian excitations can be found

 actual/future work:
 computation of pseudopotentials and numerical study of the 

(interacting) ground-states
 using more components, one finds lines of degeneracy
 study of the effect of an optical lattice
 equivalent study of non-Abelian anyons in other experimental 

proposals    
 determine braiding and fusion rules (challenging…)
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Quantum simulation of 
layered superconductors

What is needed: 
- interacting fermions
- a main optical lattice (say in the z direction)
- eventually two other lattices (in the x and y 
directions)

0=⊥t



Quantum simulation of 
layered superconductors

What is needed: 
- interacting fermions
- a main optical lattice (say in the z direction)
- eventually two other lattices (in the x and y 
directions)
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Motivations
 Several superconducting systems have a layered 
structure:

 transition-metal dichalocgenides (TaS2) intercalated with organic 
molecules [F.R. Gamble et al., Science (1970)]
 artificial layers of different metals [S.T. Ruggiero et al., PRL (1980)]
 cuprates [J.G. Bednorz and K.A. Muller, Z. Phys. B (1986)]

 We therefore would like to have a system having 
tunable parameters and displaying the same 
phenomenology

 Ideal to study the crossover 2D/3D

 Realize Josephson physics (and Josephson arrays) 
with ultracold fermions [for ultracold bosons: F.S. Cataliotti et al., 
Science (2001)]



What is “reasonably” known on cuprate
superconductivity*

• Superconductivity is due to the formation of Cooper pairs 

• Anisotropic Ginzburg-Landau well describes the electrodynamical 
properties

6. The locus of the superconductivity is the copper oxide planes

8. The order parameter is a spin singlet

10. The orbital symmetry of the order parameter is

12. Formation of the Cooper pairs takes places indipendently within different
multilayers 

7.    The electron-phonon interaction is not the principal mechanism of the 
formation of Coopr pairs 

8.   The size of the Cooper pairs is 10-30 Angstroms

* see Nature Physics, vol. 2, March 2006 – also A.J. Leggett, Quantum Liquids, Chap. 7  
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Phenomenological description of 
layered superconductors/superfluids

Anisotropic Ginzburg-Landau:
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Lawrence-Doniach model:

Both very successful for layered superconductors!
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In the following we are going to obtain from the 
microscopics the (parameters of the) two effective 
models [M. Iazzi, S. Fantoni, and A. Trombettoni, arXiv:1112.6429]
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Effective models for ultracold bosons  
layered by an optical lattice at T=0
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Hubbard model for layered fermions
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Saddle point + gaussian fluctuations: results 
(I)
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Saddle point + gaussian fluctuations: results 
(II)
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Once the critical temperature and the chemical potential have 
been determined we can compute the coefficients of the 
anisotropic Ginzburg-Landau:



Critical temperature

bandwidthtotalttD ⊥+= 48 ||



Anisotropy parameter

reduced at the unitary limit

(n=0.5)



Josephson couplings in the Lawrence-Doniach 
model (I)
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Josephson couplings in the Lawrence-Doniach 
model (II)

At the unitary limit, J1 and J2 are enough: e.g.
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Crossover 3D/2D

Green (Blue): Temperature at which coeherence length
becomes smaller than lattice spacing in the z (x,y) directions



Experimental numbers…



Part II: Conclusions & Perspectives

 Anisotropic Ginzburg-Landau and Lawrence-Doniach models 
for layered ultracold fermions: parameters found from the 
microscopic Hamiltonian

 Response to (syntethic) magnetic field can be then studied as 
the electrodynamics of layered superconductors

 actual/future work:
 time-dependent Ginzburg-Landau
 study the crossover 2D/3D
 study the Josephson at the unitary limit
 extend the description at lower temperature (challenging) 



Thank you!
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