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» Non-Abelian excitations at the degeneracy points of
Landau levels

» Layered Fermi gases in optical lattices
» Anisotropic Ginzburg-Landau & Lawrence-Doniach
models
» Effective DNLS dynamics close to T,



Outline

» Ultracold atoms as quantum simulators

» Non-abelian gauge potentials
» Quantum Hall physics with ultracold atoms
» Non-Abelian excitations at the degeneracy points of
Landau levels

» Layered Fermi gases in optical lattices
» Anisotropic Ginzburg-Landau & Lawrence-Doniach
models
» Effective DNLS dynamics close to T,



Ultracold atoms as quantum simulators of:

» Strongly interacting lattice systems (e.g., Fermi
and/or Bose Hubbard-like models )

» Quantum magnetism

» Disordered models

» Dirac and relativistic field theories
» Low-dimensional systems

» Quantum Hall physics

» (BCS) Superconductors with Cooper pairs
b e



Main available “ingredients”

» Bosons and/or fermions
» Geometry (1D / 2D)
» Long-range interactions

» Add disorder

»Time-dependence (and to a certain extent space-dependence)
of the parameters of the Hamiltonian

» Explicit tuning of the interactions via Feshbach resonances

» Simulate a magnetic field through a rotation or with optical
tools

» Optical lattices (i.e., periodic potentials and minima of the
potential located on a lattice)
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What is needed to simulate quantum
Hall physics with ultracold gases:

» 2D systems: obtained using the trapping potentials

» Strong - and possibly tunable - interactions between
atoms: obtained using Feshbach resonances

> A (fictitious) magnetic field ...
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What is needed to simulate quantum
Hall physics with ultracold gases:

» 2D systems: obtained using the trapping potentials

» Strong - and possibly tunable - interactions between
atoms: obtained using Feshbach resonances



What is needed to simulate quantum
Hall physics with ultracold gases:

> A (fictitious) magnetic field ...how to do it?




Simulating a magnetic field:

» Using rotating traps
[see the review Cooper, Adv. Phys. (2008)]

» With spatially dependent optical couplings between
Internal states of the atoms [Y.. Lin et al., Nature ( 2009)]




Landau levels for 2D gases
In rotation (I)

Single particle:
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Landau levels for 2D gases
In rotation (1)
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Landau levels for 2D gases
In rotation (1)

Energy wvs Angular Momentum

e
e M —— —— ——

.......................

For Q close to w (first Landau level):
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Laughlin ground-states for 2D gases
In rotation

Effect of a strong interaction:
H = ZHi & DQ)Z5(I’I. —r].)
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Abelian excitations

Excitations of the Laughlin ground-state:
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i< i<
For ultracold atomic systems, an hole in R, can be
created with a laser centered in R,; two excitations (say
iIn R, and R;) can be created

or

one excitation can be moved - I,e., R.=R.(time) -
~round anoth ™= 81L/2 phase is acquired
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Non - Abelian excitations

[Moore and Read (199:

In a non-abelian quantum Hall state quasi-particles obey non-
abelian statistics, meaning that (for example):

with 2N quasi-particles at fixed positions, the ground state is 2N-
degenerate

the interchange of quasi-particles shifts #etween ground states
(i.e., permutations between quasi-particles positions unitary
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The quest for non-Abelian anyons
with ultracold atoms

The Laughlin ground-state has abelian
excitations: the Berry phase is a number.

How we can make it a matrix?

First (poor man) guess: add a degree of
freedom,

l.e. consider a two-component Bose gas

Well, not so easy...



Outline

» Ultracold atoms as quantum simulators

» Non-abelian gauge potentials
» Quantum Hall physics with ultracold atoms
» Non-Abelian excitations at the degeneracy points of
Landau levels

» Layered Fermi gases in optical lattices
» Anisotropic Ginzburg-Landau & Lawrence-Doniach
models
» Effective DNLS dynamics close to T,



Rotation & artificial magnetic fields (1)

Rotation for Magnetic field for
neutral atoms charged particles

One can rotate also systems with two components (possibly giving
different rotations).

Another tool for simulate magnetic fields for a two-component
Bose gas is purely optical: Rabi pulses couples two states with two
dark states (tripod structure) [Ruseckas et al., PRL (2005)]

[see the review ]. Dalibard, F. Gerbier, G. Juzelunas, and P. Ohberg, RMP
(2011)]



Rotation & artificial magnetic fields (ll)

in = Qsin B cos pe"”'
Q, = QsinGsin @e™”
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Rotation & artificial magnetic fields (lil)

Other promising schemes:

-optical flux lattices [N. Cooper, PRL 2011]
-generating a geometric phase with specific
arrangements on lattices using two stable
states [K. Osterloh et al., PRL 2005; M. Aidelsburger et al., PRL

2011] ‘

For this purpose Yb atoms can be extremely
useful [F. Gerbier and J. Dalibard, New J. Phys. 2010]: twoO
electronically-excited metastable states - 7
Isotopic stable forms [5 bosons & 2 fermions]
with different scattering properties - selective
trapping of the two states



Single-particle Hamiltonians
H=(p +A) +(p,+Af

For a single component:A,=0; A =Bx (Landau gauge)
or

B B
A =- 5 y; A, =5 x (symmetric gauge)

ng two-component gases & rotations and/or tripod schen
5 possible to have A, A 2x2 matrices with

A ];to

Non- Abellan gauge potentials



2D atoms in a non-Abelian
magnetic field: An example

H=(p +A) +(p, +A

An example: A =qM_; A =BM x

\ /

2Xx2 matrices
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with T |
AN | Degeneracy of Landau levels
M, =0,; M, =0, N 1 s
{4 {is in general broken

041

1] 5 10 185 20 25 20
n

[A. Jacob et al., New J. Phys. (2008)]



2D atoms in a symmetric non-Abelian
magnetic field: single particle (I)

H=(p,+A) +|p,+4,)

Our choice:

Reasons:

3)degeneracy of Landau levels not broken

2) analytical single particle energy levels

3) realistically implementable
[M. Burrello and A. Trombettoni, PRL (2010); PRA (2011)]



2D atoms in a symmetric non-Abelian
magnetic field: single particle (ll)

H :(px +Ax)2 +(Py +Ay)2 EHabel.-I_Hnon—abel.
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Degeneracy of Landau Ievels IS preserved, althougt
each level splits in two due to non-abelian term g



2D atoms in a symmetric non-Abelian
magnetic field: single particle (ll)

H :(px +Ax)2 +(py +Ay)2 =Hy, tH

non—abel.

Landau levels split in two due to non-abelian term



2D atoms in non-Abelian
magnetic fields: Adding the interactions

g=0mmp usual (“Abelian”) case with lowest Landau
levels; (strong) interaction gives the Laughlin state

g finitemmp deformed Laughlin state
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Non-Abelian excitations at
the degeneracy points

At the degeneracy points, ground-states with non-
Abelian excitations are found: a deformed Moore-Read

1 2 laf
o SE_‘ G| 1 EPf Ez— 2=z, e *2
I i i j I<j

[M. Burrello and A. Trombettoni, PRL (2010)]
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N.B. Requiring that fg = (px +Ax) , +(py +Ay)2

3)energy spectrum presents a Landau level structure

(and the wavefunctions can be expressed as finite sum of
terms)

2) each Landau level is degenerate with respect to the anqgular
momentum

3) in the Abelian limit, the Landau levels become degenerate
with respect of the spin degrf of freedom

only two classes of Hamiltonians are found
H=(E+ho )d'd+M. o.—iqo.d+igo.d"
H=(E+ho)d'd+M. o -iqo,d* +igo.d™

[M. Burrello and A. Trombettoni, PRA (2011)]



Part I: Conclusions & Perspectives

Non-Abelian gauge potentials do not generally give non-
Abelian excitations: rather deformed Laughlin states are found

splitting of the Landau levels exactly determined in an
experimentally realizable non-Abelian magnetic field

however, at the degeneracy points of the Landau levels,
ground-states with non-Abelian excitations can be found

actual/future work:

computation of pseudopotentials and numerical study of the
(interacting) ground-states

using more components, one finds lines of degeneracy

study of the effect of an optical lattice

equivalent study of non-Abelian anyons in other experimental
proposals

determine braiding and fusion rules (challenging...)
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Main available “ingredients”

» Bosons and/or fermions <
» Geometry (1D / 2D)
» Long-range interactions

» Add disorder

»Time-dependence (and to a certain extent space-dependence)
of the parameters of the Hamiltonian

» Explicit tuning of the interactions via Feshbach resonances

» Simulate a magnetic field through a rotation or with optical
tools

» Optical lattices (i.e., periodic potentials and minima of the
potential located on a lattice) <
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Quantum simulation of
layered superconductors

What is needed:

- Interacting fermions

- a main optical lattice (say in the z direction)
- eventually two other lattices (in the x and y
directions)
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Motivations

» Several superconducting systems have a layered
structure:

» transition-metal dichalocgenides (Ta$S,) intercalated with organic

molecules [F.R. Gamble et al., Science (1970)]
> artificial layers of different metals [S.T. Ruggiero et al., PRL (1980)]
> cuprates [J.G. Bednorz and K.A. Muller, Z. Phys. B (1986)]

» We therefore would like to have a system having
tunable parameters and displaying the same
phenomenology

> |ldeal to study the crossover 2D/3D

> Realize Josephson physics (and Josephson arrays)

with ultracold fermions [for ultracold bosons: F.S. Cataliotti et al.,
Crinnce (DNONT)1



What is “reasonably” known on cuprate
superconductivity*

Superconductivity is due to the formation of Cooper pairs

Anisotropic Ginzburg-Landau well describes the electrodynamical
operties

The locus of the superconductivity is the copper oxide planes
The order parameter is a spin singlet
). The orbital symmetry of the order parameter isz’xz_y2

2. Formation of the Cooper pairs takes places indipendently within different
wltilayers

The electron-phonon interaction is not the principal mechanism of the
rmation of Coopr pairs

The size of the Cooper pairs is 10-30 Angstroms

see Nature Physics, vol. 2, March 2006 - also A.J. Leggett, Quantum Liquids, Chap. 7



Phenomenological description of
layered superconductors/superfluids

Anisotropic Ginzburq-LandaU'

oF|W]=[d r EZm (\a W +lo, W]+

(anisotropy parametefﬁ\/; )
Lawrence-Doniach model:

2

EO (axLIJn2 LIan-I_Jl no n+12%

EZmH / =

Both very successful for layered superconductors!
y=T forYBCO and y=150 for BSCCO

In the following we are going to obtain from the

microscopics the (parameters of the) two effective

models [M. lazzi, S. Fantoni, and A. Trombettoni, arXiv:1112.6429]

\a W +a(T) W[ +B|W

‘4

LF T g IR

2m

kinetic term = Zj'd




Effective models for ultracold bosons
layered by an optical lattice at T=0

oW(r,r) 0O [° ¥ =

A B, et
pir.a) =% w,lr) glr)

9
i( L =K., v+ )+U @ Py,

Discrete non-linear
uffa, - Schroedinger equation
e [t (DNLS)

[A. Trombettoni and A. Smerzi, PRL (2001)]
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Hubbard model for layered fermions

H==% S, 4,0, +hc)-US @.q 0.9

<i,j>0=1,1
l‘l.j =15,
n filling

(t5,t, and U can be estimated from Wannier wavefunctions)



Saddle point + gaussian fluctuations: results

(1)

1 tanh(BE; /2)
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Two equations for the critical
temperature and the chemical potenti



Saddle point + gaussian fluctuations: results

(11)

Once the critical temperature and the chemical potential have
been determined we can compute the coefficients of the
anisotropic Ginzburg-Landau:

2
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Critical temperature

B i Bom e

006

-}:-"-.'l’.
s ./\ |ir1 1
..':.."' b £y .'f.‘;"l- Ik
| \ .1
N

,_
_rl
=
=E=T-F-T-T—L i

M [

oo - Aj T T T
._,r T ———
] 1.6 &

kT D
=iz
EE
et
ey
a b

D =M, + Yt total bandwidth



Anisotropy parameter

(n=0.5)

reduced at the unitary limit



Josephson couplings in the Lawrence-Doniach
model (1)
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Josephson couplings in the Lawrence-Doniach
model (ll)

At the unitary limit, J, and J, are enough: e.g.

n=0.5 1 /t,=0.6
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Experimental numbers...

i .

wrs -
Lt
s -
s T
—

0 - L -

7 VW Ed

FI1G. 1. Ratio of ¢, ft; vs. the ratio of the laser beam powers

ViV for V) = 5EgR (dashed line) and V) = 7.5Eg (solid
line).
T T

&l |

e U

=TT ';j &

M- -

S S ]

=
=
-
-
P
=

F1G. 2. Values in nanckelvins of the parameters ¢ (solid
line), t; (dashed) and [7 (dot-dashed) as a function of 3, =
V. /Eg; the total bandwidth [0 = 8, + 4¢; (dotted) is re-
ported as well. Estimates are for ® Li atoms (the parameter
L7 is computed for |a| = 3000q). The parameter V) is fixed to
be V)| = 0Eg.



Part Il: Conclusions & Perspectives

Anisotropic Ginzburg-Landau and Lawrence-Doniach models
for layered ultracold fermions: parameters found from the
microscopic Hamiltonian

Response to (syntethic) magnetic field can be then studied as
the electrodynamics of layered superconductors

actual/future work:

" time-dependent Ginzburg-Landau

= study the crossover 2D/3D

*= study the Josephson at the unitary limit

* extend the description at lower temperature (challenging)
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