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Motivations

Present and future probes of DE: BAO, Weak Lensing, Lyα, 21cm, ...

they all require improved computational techniques

Goal: predict the LSS power spectrum to % accuracy.

Ex.: BAO from WFMOS
(2M galaxies at 0.5<z<1.3)
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Figure 1. Baryon acoustic oscillations in 

(a) the CMB temperature fluctuation power 

spectrum (Bennett et al. 2003), (b) the 

SDSS Luminous Red Galaxy Survey 

(Eisenstein et al. 2005) and (c) in a 

simulated WFMOS survey of 600 deg
2
 at 

0.5<z<1.3 and 2 million galaxy redshifts. 

Figure 2. The power spectrum of dark  

matter and galaxies (points) compared to 

linear theory (solid line)  at z=1 from the 

Millennium simulation (Springel et al. 

2005) with galaxies inserted using the 

semi-analytic approach of Baugh et al 

2005. On large scales the linear peaks are  

preserved (see WFMOS feasibility report 

for more details + other similar tests). 

(a) (b) 

(c) 



Present Status: Pert. Theory

z=0

z=1

Scoccimarro, ‘04

Jeong Komatsu, ‘06

1-loop PT

Non-linearities becomes more and more 

relevant in the DE-sensitive range 0<z<1



Present Status: N-body simulations+fitting functions

Fig. 6. The real space power spectrum of the dark matter at z = 0 for one of our
simulations along with two ansätze commonly used in the literature (see text). The
lower panel shows the ratio of the fits and N-body points to the smooth spectrum
of (35).

as it implicitly assumes that there exists a 1 − 1 mapping between linear and
non-linear power. While not an issue for smoothly varying spectra, this causes
problems when the spectrum contains features such as the baryon oscillations.
In reality mode coupling erases features, whereas the mapping procedure en-
hances them. We could reduce some of the discrepancy by using a broad band
measure of the slope in the fitting function, but the underlying problem still
remains. The halo-model based methods perform better in this regard, as ex-
pected (54), since they model the non-linear power with an integral over the
linear theory power spectrum. None of the fitting formulae approach percent
level accuracy in the non-linear regime.

6.2 Galaxies

Now we turn to the mock galaxy catalogs. We show the results at z = 1 for one
of our HOD prescriptions, with n̄ = 10−3 h3Mpc−3 and b " 2, in Fig. 7 along
with the predictions of linear theory multiplied by b2. The power is biased

20

Huff et al, ‘06

~10% discrepancies between fitting functions and simulations

redshift-space distorsions quite hard



• Improve Pert. Theory towards lower z and higher k

• Study the effect of non-linearities on BAO

• Redshift-space distorsions

Goals



Dark Matter Hydrodynamics

The DM particle distribution function,                   , obeys the Vlasov equation:f(x,p, τ)

where and

Taking momentum moments, i.e., 

p = am
dx
dτ

and neglecting        and higher moments (single stream approximation), one gets...σij

∂f

∂τ
+

p
am

·∇f − am∇φ ·∇pf = 0

∇2φ =
3
2

ΩM H2 δ

∫
d3p f(x,p, τ) ≡ ρ(x, τ) ≡ ρ(τ)[1 + δ(x, τ)]

∫
d3p

pi

am
f(x,p, τ) ≡ ρ(x, τ)vi(x, τ)

∫
d3p

pi pj

a2m2
f(x,p, τ) ≡ ρ(x, τ)vi(x, τ)vj(x, τ) + σij(x, τ)

. . .



Equations of motion for single-stream cosmology

∂ δ

∂ τ
+∇ · [(1 + δ)v] = 0 ,

∂ v
∂ τ

+Hv + (v ·∇)v = −∇φ

In Fourier space, ( defining                                      ),

∂ δ(k, τ)
∂ τ

+ θ(k, τ) +
∫

d3k1d3k2 δD(k− k1 − k2)α(k1,k2)θ(k1, τ)δ(k2, τ) = 0

∂ θ(k, τ)
∂ τ

+H θ(k, τ) +
3
2
ΩMH2δ(k, τ) +

∫
d3k1d3k2 δD(k− k1 − k2)β(k1,k2)θ(k1, τ)θ(k2, τ) = 0

θ(x, τ) ≡ ∇ · v(x, τ)

mode-mode coupling controlled by: α(k1,k2) ≡ (k1 + k2) · k1

k2
1

β(k1,k2) ≡ |k1 + k2|2(k1 · k2)
2k2

1k
2
2



Traditional Perturbation Theory

Assume EdS,                , then solutions have the form ΩM = 1 δ(k, τ) =
∞∑

n=1

an(τ)δn(k)

θ(k, τ) = −H(τ)
∞∑

n=1

an(τ)θn(k)

fastest growing mode only

fastest growing mode only

with

δn(k) =
∫

d3q1 . . . d3qn δD(k− q1...n)Fn(q1, . . . ,qn)δ0(q1) . . . δ0(qn)

θn(k) =
∫

d3q1 . . . d3qn δD(k− q1...n)Gn(q1, . . . ,qn)δ0(q1) . . . δ0(qn)

The Kernels         and          satisfy recursion relations, with                        , and                          : Fn Gn F1 = G1 = 1 δ1 = θ1 = δ0

where                                  , k1 = q1 + . . . + qm k2 = qm+1 + . . . + qn

Fn(q1, . . . ,qn) =
n−1∑

m=1

Gm(q1, . . . ,qm)
(2n + 3)(n− 1)

× [(2n + 1)α(k1,k2)Fn−m(qm+1, . . . ,qn) + 2β(k1,k2)Gn−m(qm+1, . . . ,qn)]

Gn(q1, . . . ,qn) = · · ·



Traditional Diagrammar Fry, ‘84
Goroff et al, ‘86
Wise, ‘88
Scoccimarro, Frieman, ‘96
....

An infinite number of basic vertices!
very redundant!!

Example: 1-loop correction to the density power spectrum:

a.k.a. “P22”
a.k.a. “P13”

bispectrum:



The hydrodynamical equations for density and velocity perturbations,

∂ δ

∂ τ
+∇ · [(1 + δ)v] = 0 ,

∂ v
∂ τ

+Hv + (v ·∇)v = −∇φ ,

can be written in a compact form (we assume an EdS model):

where

and the only non-zero components of the vertex are

(1)(δab∂η + Ωab) ϕb(η,k) = eηγabc(k, −k1, −k2) ϕb(η,k1) ϕc(η,k2)

Compact Perturbation Theory
Crocce, Scoccimarro ‘05

(
ϕ1(η,k)
ϕ2(η,k)

)
≡ e−η

(
δ(η ,k)

−θ(η ,k)/H

)
η = log

a

ain
Ω =

(
1 −1

−3/2 3/2

)

γ121(k1, k2, k3) = γ112(k1, k3, k2) = δD(k1 + k2 + k3)
(k2 + k3) · k2

2k2
2

γ222(k1, k2, k3) = δD(k1 + k2 + k3)
|k2 + k3|2 k2 · k3

2 k2
2 k2

3



An action principle
Eq. (1) can be derived by varying the action

where the auxiliary field               has been introduced and                    is the retarded propagator:    χa(η, k)

S =
∫

dη1dη2 χa g−1
ab ϕb −

∫
dη eη γabc χa ϕb ϕc

gab(η1, η2)

growing mode decaying mode

(δab∂η + Ωab) gbc(η, η′) = δac δD(η − η′)

so that ϕ0
a(η,k) = gab(η, η′)ϕ0

b(η
′,k) is the solution of the linear equation

Explicitly, one finds:

Initial conditions:

Matarrese, M.P., ‘06

g(η1, η2) =
{

B + A e−5/2(η1−η2) η1 > η2

0 η1 < η2

B =
1
5

(
3 2
3 2

)

A =
1
5

(
2 −2
−3 3

)

ϕ0
b(η

′,k) ∝ ub =
(

1
1

)
,

(
1

−3/2

)



A generating functional

The probability of the configuration           , given the initial condition           , isϕa(ηf ) ϕa(ηi)

P [ϕa(ηf );ϕa(ηi)] = δ [ϕa(ηf )− ϕa[ηf ;ϕa(ηi)]]

solution of the e.o.m.

∼
∫
D′′ϕaDχb exp

{
i

∫ ηf

ηi

dη χa [(δab∂η + Ωab)ϕb − eηγabcϕbϕc]
}

fixed extrema

The generating functional at fixed initial conditions is

only tree-level (saddle point)

Z[Ja,Λb;ϕc(ηi)] =
∫
Dϕa(ηf ) exp

{
i

∫ ηf

ηi

dη(Jaϕa + Λbχb)
}

P [ϕa(ηf );ϕa(ηi)]



Z[J, Λ] =
∫
DϕDχ exp

{∫
dη1dη2

[
−1

2
χg−1PLgT−1

χ + iχg−1 ϕ

]
− i

∫
dη [eηγ χϕϕ− Jϕ−Λχ]

}

where the initial conditions are encoded in the  linear power spectrum: 

Derivatives of Z w.r.t.  the sources J and Λ give all the N-point correlation functions (power 
spectrum, bispectrum, ...) and the full propagator (k-dependent growth factor)

We are interested in statistical correlations, not in single solutions:

Z[Ja,Λb;K ′s] =
∫
Dϕc(ηi)W [ϕc(ηi);K ′s]Z[Ja,Λb;ϕc(ηi)]

where all the initial correlations are contained in 

In the case of Gaussian initial conditions: 

W [ϕc(ηi);K ′s] = exp
{
−ϕa(ηi;k)Ka(k)− 1

2
ϕa(ηi;ka)Kab(ka,kb)ϕb(ηi;kb) + · · ·

}

(K(k))−1
ab = P0

ab(k) ≡ uaubP0(k)

Putting all together...

PL
ab(η, η′; k) ≡

(
g(η)P0(k)gT (η′)

)
ab



+ +  2

Compact Diagrammar

b

b

b

a

a

a

c

propagator (linear growth factor):

power spectrum:

interaction vertex:

−i gab(ηa, ηb)

PL
ab(ηa, ηb; k)

Example: 1-loop correction to the density power spectrum:

a.k.a. “P22” a.k.a. “P13”

1 1 1 1 1 1

All known results in cosmological perturbation theory are expressible in 
terms of diagrams in which only a trilinear fundamental interaction appears

−i eη γabc(ka, kb, kc)



1-loop PT: how good is it?

– 4 –

I wrote the Vlasov equation instead of cutting straight to the hydrodynamic equations in

part to note one fact, which is surely known to experts (e.g., Buchert & Dominguez (1998)), but

may not be universally recognized: dropping higher moments of the velocity distribution, also

known as the single-stream approximation, is not really an added approximation in the standard

Eulerian perturbation theory that I will be discussing. One can easily include these moments as

variables in the calculation, but the lowest order evolution equations for them contain only a Hubble

drag term, so any initial velocity dispersion will self-consistently disappear from the perturbation

theory. Furthermore, higher order equations contain no source terms, i.e., if the velocity dispersion

is initially zero it can never become non-zero. This is a vexing problem, which we will not solve

directly in this paper, because stream crossing is clearly ubiquitous in the real Universe.

Perturbation theory consists of writing the density and velocity fields as a series of terms of

at least formally increasing order of smallness, i.e., δ = δ1 + δ2 + δ3 + .... The evolution equations

are solved order-by-order, with lower order solutions appearing as sources in the higher order

equations so that δn is of order δn
1 (Bernardeau et al. 2002). The power spectrum for Gaussian

initial conditions is given by
〈

δ(k)δ(k′)
〉

=
〈

δ1(k)δ1(k
′)
〉

+
〈

δ1(k)δ3(k
′)
〉

+
〈

δ3(k)δ1(k
′)
〉

+
〈

δ2(k)δ2(k
′)
〉

+ ... (7)

where no terms 3rd order in δ appear because the expectation value of any term cubic in a Gaussian

field is zero.

At this point I assume an Einstein-de Sitter Universe for simplicity, and define

P (k, τ) = D2(τ)P11(k) + D4(τ) [P13(k) + P22(k)] + ... , (8)

where D(τ) = δ1(τ)/δinitial is the linear theory growth factor. The Einstein-de Sitter assumption

is needed to avoid more complicated time dependence of P13 and P22, but the real Universe is of

course not Einstein-de Sitter. Fortunately, this is not a significant problem because, to percent level

accuracy (Jeong & Komatsu 2006), the effect of changing the background model can be included

by simply using the correct linear growth factor in Equation (8). I will sometimes refer to P13 and

P22 as 2nd order, meaning in the initial power spectrum amplitude, not to be confused with the

fact that they are 4th order in δ1 and require calculating the evolution of δ to 3rd order, i.e., δ3.

Makino et al. (1992) derived the following useful form of the equations for P13(k) and P22(k):

P13(k) =
k3P11(k)

252 (2π)2

∫

∞

0

drP11(kr)

[

12

r2
− 158 + 100r2 − 42r4 +

3

r3

(

r2 − 1
)3

(7r2 + 2) ln

∣

∣

∣

∣

1 + r

1 − r

∣

∣

∣

∣

]

(9)

and

P22(k) =
k3

98 (2π)

∫

∞

0

drP11 (kr)

∫

1

−1

dxP11

[

k
(

1 + r2 − 2rx
)1/2

]

(

3r + 7x − 10rx2
)2

(1 + r2 − 2rx)2
. (10)

Note that, due to many cancellations, these terms are not as divergent as they might appear at first

glance, their sum being convergent at high k (UV) for power law P11(k) with n = d ln P/d ln k < −1

and at low k (IR) when n > −3 (Makino et al. 1992). Their sum is zero for n " −1.4 (Bernardeau

et al. 2002), a fact that will have interesting consequences for our RG calculation.
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Makino et al.,’92
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Linear growth factor: encodes different cosmologies at best than % level 

Ex:                                                                                      (Jeong Komatsu, ‘06)P22(ΛCDM)/P22(EdS) ∼ 1.006 (z = 0)

Notice: the 1-loop corrections at any time depend on the initial power spectrum (                       )!

This will change in the RG...  

P11(k) = P 0(k)
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Fig. 2.— (Top) Dimensionless power spectrum, ∆2(k). The
solid and dashed lines show perturbation theory calculations and
N-body simulations, respectively. The dotted lines show the pre-
dictions from halo approach (Smith et al. 2003). The dot-dashed
lines show the linear power spectrum. (Bottom) Residuals. The
errorbars show the N-body data divided by the perturbation the-
ory predictions minus one, while the solid curves show the halo
model calculations given in (Smith et al. 2003) divided by the per-
turbation theory predictions minus one. The perturbation theory
predictions agree with simulations to better than 1% accuracy for
∆2(k) ! 0.4.

the Zel’dovich approximation (Crocce et al. 2006). The
initial redshifts are zinitial = 27, 34, 42, and 50 for 512,
256, 128, and 64 h−1 Mpc simulations, respectively. In
Appendix A we show more on the convergence test (see
Fig. A1).

4. RESULTS

Figure 1 compares P (k, z) at z = 1, 2, 3, 4, 5 and 6
(from top to bottom) from simulations (dashed lines), PT
(solid lines), and linear theory (dot-dashed lines). The
PT predictions agree with simulations so well that it is
actually difficult to see the difference between PT and
simulations in Figure 1. The simulations are significantly
above the linear theory predictions at high k.

To facilitate the comparison better, we show ∆2(k, z)
[Eq. (2)] in Figure 2. We find that the PT predictions
(thin solid lines) agree with simulations (thick solid lines)
to better than 1% accuracy for ∆2(k, z) ! 0.4. On the
other hand, the latest predictions from halo approach

Fig. 3.— Non-linearity in baryonic acoustic oscillations. All
of the power spectra have been divided by a smooth power
spectrum without baryonic oscillations from equation (29) of
(Eisenstein & Hu 1998). The errorbars show N-body simulations,
while the solid lines show perturbation theory calculations. The
dot-dashed lines show the linear theory predictions. Perturbation
theory describes non-linear distortion on baryonic oscillations very
accurately at z > 1. Note that different redshift bins are not inde-
pendent, as they have grown from the same initial conditions. The
N-body data at k < 0.24 and k > 0.24 h Mpc−1 are from 512 and
256 h−1 Mpc box simulations, respectively.

(Smith et al. 2003) (dotted lines) perform significantly
worse then PT. This result suggests that one must use PT
to model non-linearity in the weakly non-linear regime.

The baryonic features in the matter power spectrum
provide a powerful tool to constrain the equation of state
of dark energy. This method uses the fact that the CMB
angular power spectrum sets the physical acoustic scale,
and thus the features in the matter power spectrum seen
on the sky and in redshift space may be used as the stan-
dard ruler, giving us the angular diameter distance out to
the galaxy distribution at a given survey redshift as well
as H(z) (Matsubara & Szalay 2003; Hu & Haiman 2003;
Seo & Eisenstein 2003; Blake & Glazebrook 2003). In
order for this method to be viable, however, it is cru-
cial to understand distortion on the baryonic acoustic
oscillations caused by non-linearity. This has been inves-
tigated so far mostly using direct numerical simulations
(Meiksin et al. 1999; Springel et al. 2005; White 2005;
Seo & Eisenstein 2005). (Meiksin et al. 1999) also com-
pared the PT prediction with their N -body simulations
at z = 0, finding that PT was a poor fit. This is be-
cause non-linearity at z = 0 is too strong to model by
PT. Figure 3 shows that PT provides an accurate an-
alytical account of non-linear distortion at z > 1: even
at z = 1, the third peak at k ! 0.18 h Mpc−1 is mod-
eled at a few percent level. At z > 2, all the oscilla-
tory features are modeled to better than 1% accuracy.
A slight deficit in power from N -body simulations at
k ∼ 0.2 h Mpc−1 relative to the perturbation theory
predictions at z = 2 may be due to artificial transient
modes from the Zel’dovich approximation used to gen-
erate initial conditions. One may eliminate such an ef-
fect by either using a smaller box-size or a better initial
condition from the second-order Lagrangian perturba-
tion theory (Crocce et al. 2006). As the power spectrum
at k > 0.24 h Mpc−1 from 256 h−1 Mpc simulations at
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(Smith et al. 2003) (dotted lines) perform significantly
worse then PT. This result suggests that one must use PT
to model non-linearity in the weakly non-linear regime.

The baryonic features in the matter power spectrum
provide a powerful tool to constrain the equation of state
of dark energy. This method uses the fact that the CMB
angular power spectrum sets the physical acoustic scale,
and thus the features in the matter power spectrum seen
on the sky and in redshift space may be used as the stan-
dard ruler, giving us the angular diameter distance out to
the galaxy distribution at a given survey redshift as well
as H(z) (Matsubara & Szalay 2003; Hu & Haiman 2003;
Seo & Eisenstein 2003; Blake & Glazebrook 2003). In
order for this method to be viable, however, it is cru-
cial to understand distortion on the baryonic acoustic
oscillations caused by non-linearity. This has been inves-
tigated so far mostly using direct numerical simulations
(Meiksin et al. 1999; Springel et al. 2005; White 2005;
Seo & Eisenstein 2005). (Meiksin et al. 1999) also com-
pared the PT prediction with their N -body simulations
at z = 0, finding that PT was a poor fit. This is be-
cause non-linearity at z = 0 is too strong to model by
PT. Figure 3 shows that PT provides an accurate an-
alytical account of non-linear distortion at z > 1: even
at z = 1, the third peak at k ! 0.18 h Mpc−1 is mod-
eled at a few percent level. At z > 2, all the oscilla-
tory features are modeled to better than 1% accuracy.
A slight deficit in power from N -body simulations at
k ∼ 0.2 h Mpc−1 relative to the perturbation theory
predictions at z = 2 may be due to artificial transient
modes from the Zel’dovich approximation used to gen-
erate initial conditions. One may eliminate such an ef-
fect by either using a smaller box-size or a better initial
condition from the second-order Lagrangian perturba-
tion theory (Crocce et al. 2006). As the power spectrum
at k > 0.24 h Mpc−1 from 256 h−1 Mpc simulations at
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1-loop PT performs quite well for z >1
(better than halo approach)

Baryonic peaks modeled at few %

Things get much worse at z<1... 



Beyond perturbation theory: the renormalization group
Inspired by applications of  Wilsonian RG to field theory, 

here the RG parameter is the log of redshift : η = log
a

ain

Recipe: define a cut-off propagator as gη̄(η, η′) = g(η, η′) Θ(η̄ − η)

then, plug it into the generating functional: Z[J, Λ] −→ Zη̄[J, Λ]

this object generates all the N-point functions for the Universe in which
 the growth of perturbation has been frozen at     η̄

The evolution from            to              can be described non-perturbatively by RG equations:η̄ = 0 η̄ = η0

∂
∂η̄ Zη̄ =

∫
dη dη′

[
1
2

∂
∂η̄

(
g−1

η̄ PL
η̄ g−1

η̄
T
)

ab

δ2Zη̄

δΛbδΛa
− i ∂

∂η̄ g−1
ab, η̄

δ2Zη̄

δJbδΛa

]

the RG eq. for the power spectrum is obtained by deriving twice wrt. the source J, the 
bispectrum by deriving three times, and so on...

(step function)

Zη̄[J, Λ] =
∫
DϕDχ exp

{∫
dη1dη2

[
−1

2
χg−1

η̄ PL
η̄ gT

η̄
−1

χ + iχg−1
η̄ ϕ

]
− i

∫
dη [eηγ χϕϕ− Jϕ−Λχ]

}



In pictures...

∂
∂η̄ =  2 + + + ...

∂
∂η̄ =  2 + + + ...

 ...   = .......

Thick lines and bold circles represent full (i.e. non-perturbative) propagators, 
power-spectrums, and vertices. Crosses represent the RG kernel. 

Notice that an infinite number of vertices (3-linear, 4-linear,...) are generated.
The infinite hierarchy of equations has to be truncated. 

The equations can also be solved perturbatively. PT is fully reproduced.



Application: the power spectrum

The full propagator has the structure:

and the full power spectrum: Pη̄, ab(η, η′, k) = (Gη̄g−1
η̄ PL

η̄ gT
η̄
−1

GT
η̄ )ab + (Gη̄Φη̄GT

η̄ )ab

Gη̄ ,ab(η, η′, k) = (g−1
η̄ − Ση̄)−1

ab (η, η′, k)

Simple truncation scheme:  take Ση̄, ab = 0 , Φη̄, ab(η, η′; k) = Φη̄(k) uaub δ(η) δ(η′)

(      is proportional to the initial conditions. 
for the growing mode                    )

ua
u1 = u2

then Pη̄, ab(η, η′, k) = gη̄, ac(η, 0) uc(P 0 + Φη̄)(k)ud gη̄, bd(η′, 0)

renormalized power spectrum

Φη̄(k) evolves according to the following RG equation:

∂

∂η̄
Φη̄(k) = e2η̄ k3

(2π)2

∫ ∞

0
dr(P 0 + Φη̄)(kr)

{∫ 1

−1
dx(P 0 + Φη̄)(k(1 + r2 − 2rx)1/2)

x2(1− rx)2

(1 + r2 − 2rx)2

+
1
84

(P 0 + Φη̄)(k)
[
18
r2
− 142 + 30r2 − 18r4 +

9(r2 − 1)3

r2
(1 + r2) log

∣∣∣∣
1 + r

1− r

∣∣∣∣

]}

with the initial condition: Φη̄(k) = 0 for η̄ = 0



At this level of approximation, the exact RG equation reduces (almost) exactly to that 
considered by McDonald [2], which already shows a remarkable improvement on 1-loop 

perturbation theory:
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FIG. 1: Thick lines show P (k)/PL(k) at z = 0 for the Peacock and Dodds (PD96) fitting formula [59] (black, solid), [3]’s
HALOFIT formula (blue, long-dashed), the RG-improved PT of this paper (red, short-dashed), and standard PT (green,
dotted). Thin lines show the other cases divided by the prediction of PD96. (a) and (b) are similar except for the axis scales.
Note that standard PT was used to calibrate HALOFIT at k < 0.1 h Mpc−1.

Moving on to z = 3, relevant to the Lyα forest [61, 62, 63], and again potentially future galaxy redshift surveys [22],
we see clear deviation between the PT predictions and the fitting formulas, even in the weakly non-linear regime. This
is especially puzzling considering that the RG and standard version of PT actually give very similar predictions in the
weakly non-linear regime. This agreement means that the higher order terms that are being effectively re-summed
by the RG calculation are not important, which one would think meant that other missing higher order terms should
also be unimportant. Considering the substantial disagreement between the two fitting formulas at very low k, I am
not ready to conclude that PT is wrong. It may be that the fitting formulas were not well-calibrated in this regime.

RG
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FIG. 2: As Fig. 1 except at z ∼ 1. We label this and subsequent z > 0 figures by the redshift at which the amplitude of the
linear theory power in a flat ΛCDM model with Ωm = 0.281 matches the amplitude in the calculation. The actual redshift in
the EdS model used for the calculation is somewhat lower (e.g., for equal z = 0 linear power, z = 1 in the realistic ΛCDM
model corresponds to z = 0.61 in the EdS model).

IV. DISCUSSION AND SPECULATION

The central result of this paper is Eq. (14), the RG equation for the renormalized power spectrum, demonstrated
in Fig. 1(a) to give very accurate results for the power spectrum in the quasi-linear regime at low redshift, where
standard PT performs poorly. It is clear from Figs. 1-4 that the RG improvement to standard PT is generally
helpful, in both the weakly and strongly non-linear regimes. Except in the most challenging case of z = 0 and high
k, the simulation-calibrated fitting formula predictions of Peacock and Dodds [59] and HALOFIT [3] are sufficiently

Pert. Th.

N-body (fitting formula)

from McDonald, astro-ph/0606028



Conclusions

0) It is very important to quantify departures from linear theory in order to compare cosmological 
models with future galaxy surveys. The 0<z<1 range is the most delicate for DE studies;

1) The compact perturbation theory formulated by Crocce and Scoccimarro is a very convenient 
starting point for applying RG techniques to cosmology;

2) Exact RG equations can be derived for any kind of correlation function and for the scale-dependent 
growth factor;

3) Systematic approximation schemes, based on truncations of the full hierarchy of equations, can be 
applied, borrowing the experience from field theory;

4) A simple approximation scheme already improves on 1-loop perturbation theory at z=0;

5) Immediate lines of development include: computation of the bispectrum and of the scale-dependent 
growth factor, improved truncations for the power spectrum, redshift-space distorsions, non-gaussian 
initial conditions.


