Ytterbium quantum gases in Florence

Leonardo Fallani

University of Florence & LENS

Credits

Marco Mancini

Giacomo Cappellini

Guido Pagano

Florian Schäfer

Jacopo Catani

Leonardo Fallani

Massimo Inguscio

and Jonathan T. Green Pablo Cancio Pastor

Funding from EU FP7 Projects AQUTE, NAMEQUAM and IIT Istituto Italiano di Tecnologia

Introduction

Bose-Einstein condensation of Ytterbium

Current and future work

Introduction

Bose-Einstein condensation of Ytterbium

Current and future work

Alkā (j/lēGatəble

Alkaline atoms

Electronic configuration [...]1s
Single-electron structure
Non-zero nuclear spin I
Hyperfine interaction I ⋅ J ≠ 0

Alkalin Adkedinth atoms

Alkaline-earth atoms

Optical clocks

Optical clocks based on ${}^{1}S_{0} - {}^{3}P_{0}$ transition in alkaline-earth atoms (and ions)

The Ytterbium family

http://periodictable.com

Natural Ytterbium comes in seven stable isotopes:

¹⁶⁸ Yb	0.13%	I=0	boson
¹⁷⁰ Yb	3.04%	I=0	boson
¹⁷¹ Yb	14.28%	l=1/2	fermion
¹⁷² Yb	21.83%	I=0	boson
¹⁷³ Yb	16.13%	I=5/2	fermion
¹⁷⁴ Yb	31.83%	I=0	boson
¹⁷⁶ Yb	12.76%	I=0	boson

Ytterbium levels

transfer and

Ytterbium interactions

At ultralow temperatures short-range interactions between neutral atoms are completely described by s-wave scattering

s-wave scattering lengths (in a₀ units)

	¹⁶⁸ Yb	¹⁷⁰ Yb	¹⁷¹ Yb	¹⁷² Yb	¹⁷³ Yb	¹⁷⁴ Yb	¹⁷⁶ Yb
¹⁶⁸ Yb	252	117	89	65	39	2	-359
¹⁷⁰ Yb		64	36	-2	-81	-518	209
¹⁷¹ Yb			-3	-84	-578	429	142
¹⁷² Yb				-600	418	200	106
¹⁷³ Yb					200	139	80
¹⁷⁴ Yb						105	54
¹⁷⁶ Yb							-24

Kitagawa et al., PRA 77, 012719 (2008)

Isotope tuning of the interactions

Introduction

Bose-Einstein condensation of Ytterbium

Current and future work

The experimental setup

Photo by Marco De Pas

The experimental setup

The experimental setup

- Ytterbium loaded: 7 g
- Temperature: 800 K
- Atom velocity: ≈ 330 m/s
- Beam diameter: 5 mm

Slowing the atomic beam

- Strong ${}^{1}S_{0} \rightarrow {}^{1}P_{1}$ transition (399 nm)
- Final atom velocity: ≈ 10 m/s

The green MOT

- Narrow ${}^{1}S_{0} \rightarrow {}^{3}P_{1}$ transition (556 nm)
 - Temperature: ≈ 30 µK
 - Number of atoms: $\approx 2 \cdot 10^9$

The green MOT

• Number of atoms: $\approx 2 \cdot 10^9$

Optical trapping

Diamagnetic ground state: no magnetic trapping

Optical trap: spatially-dependent ac-Stark shift induced by off-resonant light

The optical dipole trap

e optical dipole trap

6

ð

Evaporative cooling

The optical dipole trap

First ¹⁷⁴Yb BEC in Florence

Time-of-flight images: momentum distribution lower temperature T ≈ 400 nK T ≈ 230 nK

First ¹⁷⁴Yb BEC in Florence

First ¹⁷⁴Yb BEC in Florence

Time-of-flight measurement of anisotropic BEC expansion

Fermionic ¹⁷³Yb under cooling

Laser cooling and trapping of fermionic ¹⁷³Yb demonstrated. Evaporative cooling in progress.

Fermi Yb MOT

Introduction

Bose-Einstein condensation of Ytterbium

Current and future work

Why Ytterbium?

Three examples:

Quantum information

Synthethic gauge potentials

• SU(N) physics

Quantum information with long-lived qubits

Two-electron atoms offer possibilities of encoding quantum information with long coherence times

Review paper: A. Daley, arXiv:1106.5712

electronic qubits

nuclear qubits

ultra-narrow clock transition long coherence times

- no hyperfine interaction
- low coupling to magnetic fields

Quantum information with long-lived qubits

Quantum computing with alkaline-earth-metal atoms A. Daley, M. M. Boyd, J. Ye, P. Zoller, PRL **101**, 170504 (2008)

Optical lattices

Optical lattices

strong repulsive interactions between bosons

MOTT INSULATOR

spin polarized fermions

BAND INSULATOR

¹⁷⁴Yb BEC in optical lattice

1D optical lattice

Imaging of momentum distribution after 30 ms of free expansion

.

Future plans

Single-site high-resolution imaging

W. S. Bakr et al., Science 329, 547 (2010). J. F. Sherson et al., Nature 467, 68 (2010).

Future plans

Glass cell with large optical access for high-resolution imaging

Glass cell with large optical access for high-resolution imaging

VEO

plans

Excitation of the ³P₀ state

Quantum dot laser 190 mW @ 1156 nm SHG in bowtie cavity with a PPMgO:CLN crystal (≈ 50 mW)

Narrowing & stabilization by locking to ULE cavity in progress

Abelian gauge potentials

Artificial magnetic field
 QHE (integer and fractional)

$$\hat{H} = \frac{1}{2m} \left(\mathbf{p} - q\mathbf{A} \right)^2$$

Aharonov-Bohm geometric phase for the closed loop of an electron in a magnetic field

$$\psi \to e^{i\phi}\psi$$
 , $\phi = 2\pi \frac{\Phi}{\Phi_0}$, $\Phi_0 = \frac{h}{e}$

Non-Abelian gauge potentials

 $|\psi
angle
ightarrow \hat{U}|\psi
angle$

Non-Abelian anyons Fractional statistics Topological insulators

U unitary transformation of a multi-component wavefunction

Different ways to produce artificial (Abelian) gauge potentials J. Dalibard et al., Rev. Mod. Phys. **83**, 1523 (2011)

Rotating traps

• Optical dressing in multilevel atoms Y.-J. Lin et al., Nature **462**, 628 (2009).

Laser-assisted tunnelling in state-dependent lattices M. Aidelsburger at al., Phys. Rev. Lett. **107**, 255301 (2011).

State-dependent optical trapping

Spatially-dependent ac-Stark shift induced by off-resonant light

 $1P_{1} \xrightarrow{6s6p} 3P_{2}$ $\xrightarrow{6s6p} 3P_{1}$ $\xrightarrow{6s6p} 3P_{0}$ $\xrightarrow{6s6p} 3P_{0}$ $1S_{0} \xrightarrow{6s^{2}}$

Magic wavelength 760nm

Antimagic wavelength 1120nm

Laser-assisted tunnelling in state-dependent potentials

D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003)

F. Gerbier and J. Dalibard, New J. Phys. 12, 033007 (2010)

Ordinary tunnelling: J

Laser-assisted tunnelling: J exp(ikx)

Optical flux lattices

N. Cooper, PRL 106, 175301 (2011)

SU(N) physics

Absence of hyperfine interaction

Interaction strength between different nuclear spin states are the same!

SU(2I+1) symmetry

SU(2) for 171 YbI=1/2SU(6) for 173 YbI=5/2

SU(N) magnetism

Example: interacting fermions (repulsive) on a square lattice

Fermi-Hubbard model

2t

$$\begin{split} \hat{H} &= t \sum_{\langle ij \rangle, \alpha = 1, \dots, N} \left(\hat{f}_{i,\alpha}^{\dagger} \hat{f}_{j,\alpha} + h.c. \right) + U \sum_{i,\alpha,\beta} \hat{f}_{i,\alpha}^{\dagger} \hat{f}_{i,\alpha} \hat{f}_{i,\beta} \hat{f}_{i,\beta} \\ & \downarrow \ \mathsf{U} >> \mathsf{t} \end{split}$$

SU(N) symmetric Heisenberg model

superexchange interaction

Independent of spin projection α !

 $S_{\alpha\beta}(\mathbf{r}) = f_{\mathbf{r}\alpha}^{\dagger} f_{\mathbf{r}\beta}$ SU(N) spin

SU(N) magnetism

Increased symmetry \longrightarrow Exotic ground states, Topological excitations Possible ground states (phase diagram largely unknown):

Neel state

Figures from V. Gurarie KITP "Beyond Standard Optical Lattices" (2010) online talk

Valence Bond Solids

Chiral Spin Liquids

Non-Abelian excitations Fractional statistics

Some references to SU(N):

M. A Cazalilla et al., New J. Phys. **11**, 103033 (2009).
M. Hermele et a., Phys. Rev. Lett. **103**, 135301 (2009).
A. V. Gorshko et al., Nature Physics **6**, 289 (2010).

Conclusions

Key properties of ytterbium:

Experiment at Lens:

What can be studied:

Many isotopes Metastable states Ultra-narrow transitions Purely nuclear spin State-selective optical potentials

¹⁷⁴Yb Bose-Einstein condensation ¹⁷³Yb Fermi gas under cooling

Long coherence times for Q.I. Synthetic gauge potentials SU(N) physics