Electronic transport in topological insulators

Reinhold Egger Institut für Theoretische Physik, Düsseldorf Alex Zazunov, Alfredo Levy Yeyati

Chainviel Mainer

HEINRICH HEINE UNIVERSITÄT DÜSSELDORF GGI Florence 11.5.2012

Overview

 Brief intro to Topological Insulators (TI) M.Z. Hasan & C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)
 Helical Luttinger liquid in TI nanowires RE, A. Zazunov & A. Levy Yeyati, PRL 105, 136403 (2010)
 Coulomb blockade of Majorana fermion induced transport

A. Zazunov, A. Levy Yeyati & RE, PRB 84, 165440 (2011)

Topological Insulator

- Recently discovered new state of matter
 - Bulk band gap like ordinary insulator, but band inversion due to strong spin orbit coupling
 - > Time reversal symmetry: topological protection of gapless modes at surface
- > 2D **"quantum spin Hall"** TI: helical edge states
 - Close cousin of integer quantum Hall state
 - Initially predicted for graphene Kane & Mele, PRL 2005
 - observed in HgTe quantum wells König et al., Science 2007
- > 3D "strong" topological insulator
 - Predicted independently by three groups Moore & Balents, PRB 2007; Fu, Kane & Mele, PRL 2007; Roy, PRB 2009
 - First observed via ARPES, present reference material is Bi₂Se₃ Hasan & Kane, RMP 2010

Helical edge state of 2D TI

... up and down spins propagate in different direction: a peculiar new spin-filtered 1D liquid

© Hasan & Kane, RMP 2010

2D massless Dirac fermions as surface states of 3D topological insulators

- Map from Brillouin zone to Hilbert space has nontrivial topology
- Mathematically characterized by Z₂ invariant
- Avoid fermion doubling theorem
- Spin momentum locking
- Observed by ARPES in Bi₂Se₃

© Hasan & Kane, RMP 2010

Bi₂Se₃ nanowires: fabrication

Rhombohedral phase, space group D_{3d}^5

Au catalysed VLS growth

Peng et al. (Stanford), Nature Materials 2010

Surface state in transport experiments

Clear evidence for the surface state: Aharonov-Bohm oscillations of conductance

 Upper bound for surface state width:
 6 nm

Peng et al., Nat. Mat. 2010

TI nanowires: theory

Egger, Zazunov & Levy Yeyati, PRL 2010

- Consider strong TI material (e.g. Bi₂Se₃): cylindrical nanowire of radius R
- Bandstructure from kp approach

Zhang et al., Nature Phys. 2009

- > anisotropy axis || z: conserved momentum k
- ▶ Rotational xy symmetry: total angular momentum conservation, $J_z = -i\partial_\phi + \sigma_z/2 \rightarrow \text{half-integer j}$
- > Wave function vanishes at boundary r=R: expand in orthonormal set of radial functions $u_{nj}(r) = \frac{\sqrt{2J_{j-1/2}} (\gamma_{n,j-1/2} r/R)}{RJ_{j+1/2} (\gamma_{n,j-1/2} r/R)}$

Bandstructure of TI nanowire

Properties of surface states

- Kramers degeneracy:
- Inversion symmetry:

$$E_{-j}(-k) = E_j(k)$$
$$E_{-j}(k) = E_j(k)$$

- Qualitatively same results from tight-binding calculations
- Spin-momentum locking: Local spin is always oriented tangential to surface and perpendicular to momentum $\vec{s} \perp k\hat{e}_z + \frac{j}{R}\hat{e}_\phi \perp \hat{e}_r$
 - Large |k|: R-mover counterclockwise spin-polarized L-mover clockwise spin-polarized

Analytical description

Surface states well described by 2D massless Dirac fermions on cylinder surface

Zhang & Vishwanath PRL 2010

- spin-momentum locking, spin direction tangential to surface
- Dirac Hamiltonian in curved space:

$$H = -i\hbar v_F \left[\alpha^1 D_1 + \alpha^2 D_2 \right] \qquad \alpha^{i=\phi,z} = \hat{e}_i \cdot \vec{\sigma}$$

- > Covariant derivative: $D_i = \partial_i + \Gamma_i$
- > Spin connection defined via relation involving Christoffel symbols $[\Gamma_i, \alpha^j] = \partial_i \alpha^j + \Gamma_{ik}^j \alpha^k$

Surface Dirac fermion theory

- Take into account anisotropy & dim.less flux ... yields surface Hamiltonian
 - $H_{surf} = e^{-i\sigma_z\phi/2} \left[\hbar v_{\parallel} k \sigma_y \frac{\hbar v_{\perp}}{R} \sigma_z \left(-i\partial_{\phi} + \Phi \right) \right] e^{i\sigma_z\phi/2}$
 - > Now perform unitary transformation $U = e^{-i\sigma_z \phi/2}$
 - Then: antiperiodic boundary conditions around circumference, i.e., half-integer j
 - Dispersion relation: waveguide modes

$$E_{\pm,j}(k) = \pm \sqrt{\left(\hbar v_{\parallel}k\right)^2 + \left(\frac{\hbar v_{\perp}(j+\Phi)}{R}\right)^2}$$

Surface state properties

- Spin-momentum locking changes dispersion compared to nanotubes!
- > Scattering of Kramers pair $[j+\Phi,k] \Leftrightarrow [-(j+\Phi),-k]$ forbidden (zero overlap of eigenstates!)
- > Gap vanishes for half-integer flux and special band $j = -\Phi$
 - spin-conserving single-particle back-scattering forbidden, protected against weak disorder
 - chemical potential near zero: precisely one gapless helical mode, effectively time reversal invariant ... from now on we focus on this case!

Including interactions: Bosonization

> Chiral fermions with opposite spin

$$\Psi_{surf}(z,\phi) = \frac{1}{\sqrt{4\pi}} \left[e^{ik_F z} R(z) \begin{pmatrix} 1\\ ie^{i\phi} \end{pmatrix} + e^{-ik_F z} L(z) \begin{pmatrix} -1\\ ie^{i\phi} \end{pmatrix} \right]$$

> Bosonize: $(R/L)(z) \approx \frac{1}{\sqrt{2\pi\xi}} e^{i\sqrt{\pi}(\phi \pm \theta)}$
surface layer width

Spin momentum locking:

$$s_{\phi} = J = \frac{1}{\sqrt{\pi}} \partial_{z} \varphi(z)$$

$$\Rightarrow \text{ dual boson fields}$$

$$\Rightarrow \text{ Particle density: } \rho = \Psi^{+} \Psi = \frac{1}{\sqrt{\pi}} \partial_{z} \theta$$

Interacting helical Luttinger liquid

Include Coulomb interaction

- > Helical liquid protected against weak disorder
- Long-ranged Coulomb tail dominates
- Hard-core interaction subdominant (marginal)
- Single-mode helical Luttinger liquid

$$H = \frac{\hbar u}{2} \int dz \, \left[K (\partial_z \varphi)^2 + K^{-1} (\partial_z \theta)^2 \right] \qquad u = \frac{v_{\parallel}}{K}$$

> Interaction parameter K smaller than in HgTe:

$$K \approx \left(1 + \frac{2e^2}{\pi \varepsilon v_{\parallel}} \left[0.51 + \ln \frac{L}{2\pi R}\right]\right)^{1/2} \approx 0.4...0.5$$

Physical properties of helical LL

- Anisotropic spin correlations / RKKY interaction: Slow z^{-2K} power law decay with 2k_F oscillations in z direction
 - Formally: anisotropic SDW phase
- Linear conductance G(T) very sensitive to presence of magnetic impurities

Maciejko et al., PRL 2009, Tanaka et al., PRL 2011

 Proximity induced superconductivity:
 Majorana fermion states are induced at ends of TI nanowire
 Cook & Franz, PRB 2012 Majorana fermions: end states of 1D topological superconductors

© Hasan & Kane, RMP 2010

- > BdG Hamiltonian has particle-hole symmetry
- Quasiparticle operator for zero mode (E=0) state bound to the end of the TSC must be Majorana fermion: Quasiparticle is its own antiparticle
- Recently observed for InSb nanowires

Kouwenhoven group, Science Express 2012

Coulomb blockade of Majorana fermion induced transport PRB 84, 165440 (2011)

Low-energy transport through topological superconductor wire with decoupled Majorana end states & source/drain metallic contacts

- > Assume all energy scales small against proximityinduced gap, i.e., no quasiparticles on grain
- > Zero mode Majorana fermions: $\gamma_{L/R} = \gamma_{L/R}^+ \{\gamma_i, \gamma_i\} = \delta_{ii}$
- Build auxiliary complex d fermion

$$d = \frac{1}{\sqrt{2}} \left(\gamma_L + i \gamma_R \right)$$

Assume "floating" island (not grounded): current must be conserved

Schematic setup

With Cooper pair number operator N & conjugate phase ϕ :

instantaneous dot state can be described by

(N,n_d) with auxiliary fermion occupation $n_d = d^+ d = 0,1$

Model

- > Wire has electrostatic charging energy $H_{c} = E_{C} [2N + n_{d} - n_{gate}]^{2}$
 - > Offset gate charge is continuous
- > Full Hamiltonian: $H = H_c + H_t + H_{leads}$
 - > Tunnel Hamiltonian: source contact couples to γ_L & drain only to γ_R

$$H_{t} = \sum_{k} \left(\lambda_{L} c_{Lk}^{+} \left[d + e^{-i\phi} d^{+} \right] - i \lambda_{R} c_{Rk}^{+} \left[d - e^{-i\phi} d^{+} \right] \right) + h.c.$$

- Fermi liquid leads: Wide band approximation & Fermi functions with chemical potential µ_{L/R}
- > Hybridizations $\Gamma_{L/R} \sim \rho_0 |\lambda_{L/R}|^2$

Noninteracting solution: resonant Andreev reflection

> Solution for
$$E_c=0$$
: $I_{j=L/R}^{(0)} = \Gamma_j \int \frac{d\varepsilon}{2\pi} F(\varepsilon - \mu_j) A_j(\varepsilon)$

- > Fermi functions: lead distribution $F(\varepsilon) = \tanh\left(\frac{\varepsilon}{2T}\right)$
- Majorana spectral function

$$A_{j}(\varepsilon) = -\operatorname{Im} G_{j}^{ret}(\varepsilon) = \frac{\Gamma_{j}}{\varepsilon^{2} + \Gamma_{j}^{2}}$$

> Linear conductance @ T=0: resonant Andreev reflection $G_{j=L/R} = \frac{e\partial I_j^{(0)}}{\partial \mu_j} = \frac{2e^2}{h}$

> Bolech & Demler, PRL 2007 Law, Lee & Ng, PRL 2009

Strong Coulomb blockade: Electron teleportation Fu, PRL 2010

- Resonant case: half-integer n_{gate}
- > Charging energy allows only two configurations
 - For n_{gate}=1/2,5/2,...: fixed Cooper pair number N, states n_d=0,1 degenerate
 - For n_{gate}=3/2,7/2,...: (N-1,1) and (N,0) degenerate
- In both cases, model can be mapped to spinless resonant tunneling Hamiltonian
- > Linear conductance (T=0): $G_{L/R} = e^2 / h$
- Fu's interpretation: Electron teleportation

Crossover from resonant Andreev reflection to electron teleportation

- Arbitrary charging energy: Keldysh approach with (Majorana-generalized) AES action
 - > General expression: Zazunov, Levy Yeyati & Egger, PRB 2011
- Here study weak Coulomb blockade regime: interaction corrections to noninteracting result
- Full crossover from resonant Andreev reflection (E_c=0) to teleportation (large E_c) can be captured as well (work in progress)

Weak Coulomb blockade regime

- Phase fluctuations are small & allow for semiclassical expansion
- Keldysh-AES functional is then equivalent to Langevin equation for "classical" phase

$$\ddot{\phi}_{c} + \Omega \dot{\phi}_{c} = \xi(t)$$

- > Inverse RC time of effective circuit: $\Omega = \eta E_C$
- Dimensionless damping strength

 $\eta = \frac{2}{\pi} \sum_{j} \frac{\Gamma_{j}^{2}}{\mu_{j}^{2} + \Gamma_{j}^{2}}$

(higher energy scales: damping retardation!)

Gaussian random force

 $\langle \xi(t)\xi(t')\rangle = 4E_C^2K(t-t')$

How to obtain the current...

K has lengthy expression...

- > in equilibrium satisfies fluctuation dissipation theorem $K_{eq}(\omega) = \frac{\omega}{2} \coth\left(\frac{\omega}{2T}\right) \eta_{eq}(\omega)$
- Current:

$$I_{j} = \Gamma_{j} \int d\tau \ G_{j}^{ret}(\tau) \sin(\mu_{j}\tau) F(\tau) e^{-J(\tau)}$$

$$J(t-t') = \frac{1}{2} \left\langle \left[\overline{\phi}_c(t) - \overline{\phi}_c(t') \right]^2 \right\rangle_{\xi} \ge 0$$

solution $\overline{\phi}_{c}(t)$ for given noise realization

- > Some algebra: $J(\tau) = \frac{1}{\pi \eta^2} \int_0^\infty d\omega \ K(\omega) \frac{1 - \cos \omega \tau}{\omega^2 \left(1 + \omega^2 / \Omega^2\right)}$
- Interactions always decrease current!

Nonlinear conductance

> Symmetric system & T=0

$$\mu_L = -\mu_R = eV/2$$
$$\Gamma_L = \Gamma_R = \Gamma/2$$

- > Observable: $g(V) = \frac{I(V)}{e^2 V / h}$
 - Noninteracting case (resonant Andreev reflection):

$$g^{(0)}(V) = \frac{\Gamma}{eV} \tan^{-1} \frac{eV}{\Gamma} \le 1$$

> Analytical result for $\Gamma < E_C$: universal power law suppression of linear conductance with increasing charging energy $g(0) \approx 0.96 \left(\frac{E_C}{\Gamma}\right)^{-1/8}$

Linear conductance: numerics

interaction induced suppression

Nonlinear conductance

Conclusions

- Topological insulators provide interesting playground for transport through interacting nanostructures
- > TI nanowire as realization of single-mode helical Luttinger liquid with strong correlations

Egger, Zazunov & Levy Yeyati, PRL **105**, 136403 (2010)

 Coulomb blockade in Majorana fermion induced transport: from resonant Andreev reflection to electron teleportation

Zazunov, Levy Yeyati & Egger, PRB 84, 165440 (2011)