Dynamics of impurities in a one-dimensional Bose gas

Francesco Minardi

Istituto Nazionale di Ottica-CNR European Laboratory for Nonlinear Spectroscopy

New quantum states of matter in and out of equilibrium Galileo Galilei Institute – May 14, 2012

Acknowledgements

BEC³ group at LENS, Firenze

M. Gring (U. Vienna)

University of Geneva

A. Kantian, T. Giamarchi

Scuola Normale Superiore, Pisa

S. Peotta, D. Rossini, M. Polini R. Fazio

One-dimensional systems

- large quantum fluctuations + exactly solvable models (Lieb-Liniger, ...) + powerful numerics; time-dependent dynamics, out-of-equilibrium calculations
- ▷ real 1D systems do exist in our 3D world

carbon nanotubes

spin chains in cuprates

One-dimensional systems

▷ Quantum gases

- experiments on (quasi)1D BEC: MIT, Hamburg, NIST, Orsay/Palaiseau, Amsterdam, ETHZ, Vienna ...
- strongly interacting (Tonks-Girardeau) regime: T. Kinoshita et al., Science 305, 1125 (2004); B. Parades et al., Nature 429, 277 (2004); E. Haller, Science 325, 1124 (2009)
- relaxation dynamics: S. Trotzky et al., Nature Physics (2012)

transport of spin impurities through a Tonks gas

impurity subject to constant force (gravity) + drag force due to host atoms

S. Palzer et al., PRL 103, 150601 (2009)

 diffusion and oscillations of an initially localized impurity (K atoms) in a harmonically trapped 1D Bose gas (Rb atoms),

▷ control of interaction of impurities (K) with host atoms (Rb), through Feshbach resonance

Analogous to spin excitation in a ferro-magnetic chain

 diffusion and oscillations of an initially localized impurity (K atoms) in a harmonically trapped 1D Bose gas (Rb atoms), *horizontal*

▷ control of interaction of impurities (K) with host atoms (Rb), through Feshbach resonance

Analogous to spin excitation in a ferro-magnetic chain

Spin chain, Yang-Gaudin model

Lieb-Liniger model:

$$H = -\frac{\hbar^2}{2m} \sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2} + g \sum_{i < j} \delta(x_i - x_j), \quad \gamma = mg/(\hbar^2 n)$$

extended to (iso)spin = 1/2 ightarrow Yang-Gaudin model, SU(2) symmetric, only one coupling strength g

C. N. Yang, PRL 19, 1312 (1967); M. Gaudin, Phys. Lett. A 24, 55 (1967); J. N. Fuchs et al., PRL 95, 150402 (2005)

Starting from ferromagnetic ground state:

- density excitations (phonons)
$$\epsilon_p = v_s p$$

- spin excitations
$$\epsilon_p = p^2/(2m^*)$$
, $m/m^* = 1 - 2\sqrt{\gamma}/(3\pi)$ for weak coupling, $\gamma \ll 1$
 $m/m^* = 1/N + 2\pi^2/(3\gamma)$ for strong coupling, $\gamma \gg 1$

Effective mass, slow diffusion

Effective mass for spin excitations

J. N. Fuchs et al., PRL (2005)

For $\gamma \gg 1$ impurities move slowly, actually "subdiffuse" at short time, $x_{
m rms} \sim \log(t)$

M. B. Zvonarev et al., PRL 99, 240404 (2009)

Beyond Luttinger-liquid description

About impurity motion in 1D also:

G. E. Astrakharchik et al., PRA 70, 013608 (2004); M. D. Girardeau et al., PRA 79, 033610 (2009); D. M. Gangardt et al., PRL 102, 070402 (2009); A. Yu. Cherny et al., PRA 80, 043604 (2009); T. H. Johnson et al. PRA 84, 023617 (2011)

Scattering of two unequal particles in ID

Extension of Olshanii's analysis on Confinement Induced Resonances: V. Peano et al., NJP 7, 192 (2005)

No closed analytical expression for coupling strength of δ -potential:

$$g_{1D}=rac{1}{2\mu\pi a_{\mu}^{2}}\sum_{n}rac{|\langle 0|e_{n}
angle |^{2}}{\lambda_{n}+1/(4\pi a)} \quad a_{\mu}=\sqrt{rac{2\hbar}{\mu(\omega_{1}+\omega_{2})}}$$

where $\lambda_n, |e_n\rangle$ eigenvalues/vectors of regular part of the Green's function

Experiment

Sample preparation, harmonic trap

Evaporation, both species in lowest hf state $|f = 1, m_f = 1\rangle$ featuring Feshbach resonances

B field controls of *interspecies* (K-Rb) interactions, while *intraspecies* (K-K, Rb-Rb) fixed

$$\omega/2\pi = (39, 87, 81)$$
Hz for Rb (×1.47 for K)

At this point:

 $T\simeq 140$ nK $N_{Rb}\simeq 1.5 imes 10^5,\ N_K\simeq 5 imes 10^3$

Sample preparation, 2D lattice

2D lattice $V = 60(26) E_r$ for Rb(K)

1st excited band gap = 29 kHz i.e. 1.4 $\mu\mathrm{K}$

tunneling time $\hbar/J = 57(0.27)$ s

Non-homogenous 1D tubes, $\omega_x/2\pi = 57(80)$ Hz

Sample preparation, 2D lattice

Max filling = 180 (2) atoms/tube for Rb(K)

Rb $n_{1D} = 7$ atoms/ μ m Lieb-Liniger parameter $\gamma_{Rb} = g_{1D,Rb} m/(\hbar^2 n_{1D}) \simeq .5$

 $T{=}(350\pm50)$ nK (from Rb time-of-flight images)

Rb degeneracy temperature $T_d = \hbar \omega_x N = 520$ nK \rightarrow weakly interacting Rb condensates in central tubes

Sample preparation, 2D lattice + "light-blade"

"Light-blade" $\lambda=$ 770nm, elliptic 75 imes 15 μ m

Species selective: $V \simeq 0$ on Rb, $\simeq 6\mu K$ on K linear ramp in 50 ms

Sample preparation, 2D lattice + "light-blade"

"Light-blade" $\lambda =$ 770nm, elliptic 75 imes 15 μ m

Species selective: $V\simeq 0 \text{ on } Rb, \simeq 6\mu K \text{ on } K$ linear ramp in 50 ms

Initial configuration, t = 0 after light-blade off abruptly

initial K size < imaging resolution (8 μ m)

Longitudinal confinement along tubes \rightarrow oscillations of K impurity rms size $\sigma(t)$

J. Catani et al., PRA 85, 023623 (2012)

Longitudinal confinement along tubes \rightarrow oscillations of K impurity rms size $\sigma(t)$

J. Catani et al., PRA 85, 023623 (2012)

Longitudinal confinement along tubes \rightarrow oscillations of K impurity rms size $\sigma(t)$

J. Catani et al., PRA 85, 023623 (2012)

Longitudinal confinement along tubes \rightarrow oscillations of K impurity rms size $\sigma(t)$

J. Catani et al., PRA 85, 023623 (2012)

Longitudinal confinement along tubes \rightarrow oscillations of K impurity rms size $\sigma(t)$

Interspecies interaction parameter: $\eta \equiv g_{1D}(KRb)/g_{1D}(Rb)$ $g_{1D}(Rb) = 2.36 \cdot 10^{-37}$ Jm

J. Catani et al., PRA 85, 023623 (2012)

 \triangleright larger interactions \rightarrow smaller oscillation amplitude of $\sigma(t)$

Longitudinal confinement along tubes \rightarrow oscillations of K impurity rms size $\sigma(t)$

Interspecies interaction parameter: $\eta \equiv g_{1D}(KRb)/g_{1D}(Rb)$ $g_{1D}(Rb) = 2.36 \cdot 10^{-37}$ Jm

J. Catani et al., PRA 85, 023623 (2012)

 \triangleright larger interactions \rightarrow smaller oscillation amplitude of $\sigma(t)$

▷ tilted oscillations

Oscillation frequency, damping and slope

Fitting function:

$$\sigma(t) = \sigma_1 + \beta t - A e^{-\gamma \omega t} \cos(\sqrt{1 - \gamma^2} \omega (t - t_0))$$

Fit results:

Oscillation frequency constant within errorbars

Amplitude of first oscillation

Focus on the peak value of 1st oscillation: $\sigma_p \equiv \sigma(t=3ms)$ vs g_{1D} (exp. B field)

- σ_p sensitive to coupling with Rb bath
- σ_p least affected by Rb inhomogeneous density

Amplitude of first oscillation

Focus on the peak value of 1st oscillation: $\sigma_p \equiv \sigma(t=3ms)$ vs g_{1D} (exp. B field)

- σ_p sensitive to coupling with Rb bath
- σ_p least affected by Rb inhomogeneous density

- NOT trivial mean-field pressure of bath
- \triangleright saturation for $\eta > 5$

Francesco Minardi (INO-CNR and LENS)

Preparation of the sample, thermalization

Compression of the "light-blade" expected to heat impurities

Does initial kinetic energy, thus σ_p , depend on η ? What is the time-scale for "thermalization"?

Selective heating of impurities in 1D by modulation of the axial confinement (parametric heating)

Francesco Minardi (INO-CNR and LENS)

Preparation of the sample, thermalization

Compression of the "light-blade" expected to heat impurities

Does initial kinetic energy, thus σ_p , depend on η ? What is the time-scale for "thermalization"?

Selective heating of impurities in 1D by modulation of the axial confinement (parametric heating)

Even at largest interaction strength, time scale for equilibration >> preparation time (\sim 50ms)

Francesco Minardi (INO-CNR and LENS)

Theoretical analysis (A. Kantian and T. Giamarchi, U. Geneve)

Semi-empirical model: quantum Langevin equation, damped harmonic oscillator in contact with a thermal bath

$$\dot{\hat{x}}(t) = \hat{
ho}(t)/m_{K}^{\kappa}$$

 $\dot{\hat{
ho}}(t) = -m_{K}^{\kappa}\omega^{2}\hat{x}(t) - \tilde{\gamma}\hat{
ho} + \hat{\xi}(t)$

- ▷ Rb density assumed to be uniform (weak dependence on exact value)
- $\triangleright\,$ mass is increased by polaronic coupling to the finite T bath, according to Feynmann R. P. Feyman, Phys. Rev. 97, 660 (1955)
- ▷ frequency is fixed, according to observation For 3D fermions, effective mass $m^*/m > 1$ measured from slowing frequency S. Nascimbene *et al.*, PRL 103, 170402 (2009)
- \triangleright mass renormalization at fixed frequency \rightarrow trapping potential renormalization (work in progress)

Experiment/theory comparison

Good agreement, if interspecies g_{1D} (i.e. η) increased by a factor ~ 3

J. Catani et al., PRA 85, 023623 (2012)

t-dependent DMRG calculations (preliminary)

Scuola Normale Superiore, Pisa: S. Peotta, D. Rossini, M. Polini and R. Fazio

Numerical simulations:

- \triangleright homogeneous bath
- \triangleright impurity and bath in gnd state before "quench" (T=0)
- $\triangleright\,$ quench $\omega/(2\pi)=38\rightarrow12\,$ kHz (vs exp: $1\rightarrow0.08\,$ kHz)

t-dependent DMRG calculations (preliminary)

Scuola Normale Superiore, Pisa: S. Peotta, D. Rossini, M. Polini and R. Fazio

Notable results:

- ▷ asymmetric frequency shift
- ▷ strong and asymmetric damping

Summary

- \triangleright diffusion/oscillations of impurities (rms size) in 1D Bose gas, as a function of their interaction with host medium
- $\triangleright\,$ frequency independent of interaction strength, amplitude decreases with interaction strength
- ▷ theoretical analysis in terms of Quantum Langevin eqn (A. Kantian, T. Giamarchi)
- $\triangleright\,$ polaronic mass shift calculated with Feynmann variational approach \rightarrow amplitude reduction as observed in experiment
- ▷ tDMRG simulations (S. Peotta et al.): understanding in progress ...

The end

Thank you

http://quantumgases.lens.unifi.it

Francesco Minardi (INO-CNR and LENS)

Dynamics of impurities in a 1D Bose gas

GGI, 14/05/2012 23 / 30

Scattering of two unequal particles in ID

Two-body scattering modified by confinement

Extension of Olshanii's CIR analysis: no analytic expression of the one-dimensional coupling strength g1D

V. Peano et al., NJP 7, 192 (2005)

▷ $g_{1D} \simeq 0$, 2D lattice $s \rightarrow 60$

- ▷ light blade on slowly in 50ms, g_{1D} to final value
- light blade off abruptly in 0.5ms, impurity expansion (then freeze+*in situ* imaging)

- ▷ $g_{1D} \simeq 0$, 2D lattice $s \rightarrow 60$
- ▷ light blade on slowly in 50ms, g_{1D} to final value
- light blade off abruptly in 0.5ms, impurity expansion (then freeze+*in situ* imaging)

- ▷ $g_{1D} \simeq 0$, 2D lattice $s \rightarrow 60$
- ▷ light blade on slowly in 50ms, g_{1D} to final value
- light blade off abruptly in 0.5ms, impurity expansion (then freeze+*in situ* imaging)

Impurity displaced

- Impurity displaced and released
- accelerated by harmonic potential

Impurity displaced

- Impurity displaced and released
- accelerated by harmonic potential

⊲ at small coupling strength, impurity transmitted

Impurity displaced

- Impurity displaced and released
- accelerated by harmonic potential

 $\triangleleft\,$ at high coupling strength, partial reflection

⊲ at small coupling strength, impurity transmitted Quantum reflection, also at $g_{1D} < 0$

Sample preparation, vertical lattice

Vertical lattice $V = 15(6.5)E_r$ [Rb(K)]

Tunneling time $\hbar/J = 80(4)$ ms

Lighter K atoms fall under gravity, disrupted Bloch oscillations

similar to degenerate fermions colliding with bosons

H. Ott et al., PRL 92, 160601 (2004)

Collective oscillations for two colliding 1D normal, ideal gases

Transition from collisionless to hydrodynamic regime

D. Guery-Odelin et al., PRA 60, 4851 (1999); M. Anderlini et al., PRA 73, 032706 (2006)

Linear differential eqns for momenta of phase-space distribution: $\langle x_i^2 \rangle, \langle x_i v_i \rangle, \langle v_i^2 \rangle$

Simple argument for impenetrable bosons ($\gamma
ightarrow \infty$)

Impurity moves by dx, hence forcing all particles to move

At ∞ compressibility, rigid body N particles all subject to same force -kx, total force = -Nkx