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Introduction

*Graphene is a single layer of carbon atoms
*Half-filled mt-orbitals give simple honeycomb
lattice tight-binding band structure



E(E) ~*V, k-K. (i=1,2)




Simple types of edges of ribbons:

armchair ) \T/\T/\T/ \T/\T/




For zigzag-bearded (ZB) case, with convenient
notation, there are exact zero energy states
existing only on A-sites with:

¢(m,n) < exp (ik.m)[-2cos (k_/2)]™"

*Localized near bearded edge (n=0) for |k, |<2m/3
and near zigzag edge (n=W) for |k, |>2m/3

*N.B. k,=+21/3 are the Dirac points

*For zigzag-zigzag (ZZ) case there are 2 bands
with [k |>2rt/3 and | E|~exp[-W], which are

+ combinations of upper & lower edge states



Including Interactions

weak Hubbard interactions have little effect,
with no boundaries even at half-filling, since
4-Fermi interactions are irrelevant in

(2+1) dimensional Dirac theory

*Dirac liquid phase stable up to U_t

*But they have a large effect on flat edge bands
which have effectively infinite interaction strength
*Mean field theory and numerical methods
indicate ferromagnetic ordering on each edge
*Antiferromagnetic order between edges

in ZZ case at half-filling ;



Lieb’s Theorem

1988: U>0 Hubbard model on bipartite connected
lattice at half-filling has unique ground state

total spin multiplet with S=(1/2) | N,-N;|

where N,, Ng are numbers of sites on A and B
sub-lattice

-ZB case: S=(1/2)L, ZZ S=0

-for U<<t we expect negligible perturbation of
unpolarized Dirac liquid ground state



*so in ZB case, spin must come from edge states
*there are L edge states so they must be

fully polarized

for W>>1 upper and lower edges very weakly
interact so ~L/3 electrons on (upper) zigzag
edge must have spin ~(1/2)L/3 and ~2L/3
electons on (lower) zigzag edge must have

spin ~(1/2)2L/3 (fully polarized!)

*Must be ferromagnetic coupling between
upper and lower edge (as shown below)

*For ZZ case, spin~ (1/2)L/3 on both edges but
must be antiferromagetic inter-edge coupling
(as shown below) 9



Projected 1D Hamiltonian

L Pk, ¥, g)el(k + g)es(k)e] (' - g)e, k)-— L P(ke, k', 0)e! (K)eq (R).
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Ik, k', q) =

l—lﬁcos%oos cos ",, cos'f—

*NB- both terms are O(U)

*Has unusual type of particle-hole symmetry:

e, > e, (same value of k )

Fully polarized state [M~(1/2)L/3] is clearly (at least)
a local minimum since energy to add a spin down
particle or remove a spin up particle >0
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Energy to add (W) or remove (AN) particle

n=0 n=005 n=0.10 7=0.109 n=0.115 n=0.125 n=0.175
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*What if we remove a spin up particle and add

a spin down particle- creating a AM=-1 exciton?
*This is just a 2-body problem but involves
complicated function I'(k,k’,q).

Using symmetry: I'(l,k+q,k-1)=I(k,-l,q), to find
2-body eigenstates of total momentum g we just
need to diagonalize LxL matrix

MY = % ~2(k,~Lq) + 8, Y, [T(k,k',0) + [k + g.k' 0]
-
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We can prove M s positive for all q #0, +2m/3:
This follows from M,, <0, k#l, if we can prove

M, > —2 M, Vi

J=i

vMyv. = YVM. +Yv.My. >-1/2)Y v +v> =2vy )M >0
] o J J ]

I,j I I#] i#]
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We can prove M s positive for all q #0, +2m/3:
This follows from M,, <0, k#l, if we can prove
M,>-YM,, Vi

J=i

Or equivalently: EF(I +q,k',0) + I(1,k',0) - 2I(L,k',q)] > 0
=

This can be proven using the form for I":

[(Lk.g) = ) 8,(k)g, (g, +q)g,(k -q)

g (k)= \/l —[2cos (k/2)]°[2cos (k/2)]"

Only zero energy states are S| F>, part of spin
multiplet
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*Fully polarized edge state is consistent with Lieb’s

Theorem
|t is a kind of spin-polarized semi-metal with a trivial
ground state despite strong interactions
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Since it is only a 2-body problem, it is feasible to
study AM=-1 exciton numerically despite
complicated interactions (L<602)

_ E/U
Bottom of 2 particle
continuum }0

Bound exciton

0.05¢

Near q=21/3 we see free
particle hole pair at band
edges

05 1.0 1.5 20 U
n=0 n=0.05 n=0.10 7n=0.109

-0.05*
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*Graphene has 2" neighbour hopping:t,/t ~.1?
*We might expect a potential acting near edge, V,
*For U, t,, V_<<t, modification to edge Hamiltonian

e

IS: A
O(H —¢,N) = ZE(ZCOS k+De, e, A=t,-V
ko

*Here we assume €. is held at energy of
Dirac points, €.=3t,
*This breaks particle-hole symmetry
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For A>0, energy to add a spin down
electron is decreased near k=rmt or for

A>0, energy to remove a spin up electron
|s decreased near k=1t
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*Increasing A causes the exciton to become
unbound (except close to g=0)

*For |A|>A_~.109 U the edge starts to become
doped at k near 1t (while g; is maintained at energy
of Dirac points)

*Since exciton is unbound it is plausible that we get
a non-interacting state with no spin down elecrons
For A<O or filled band of spin up electrons, A>0
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*We confirmed this by looking at AM=-2 states
near A=A_— no biexiton bound states

*State with no spin down electrons (or no

spin up holes) is non-interacting for our
projected on-site Hubbard model since
particle of same spin don’t interact with each
other
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*Gives simple magnetization curve

«2"d neighbour extended Hubbard

interactions (must couple A to A sites)

would turn this into

a (one or two component) Luttinger liquid state

0.10 0.15 A/U
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Effect of Edge-Bulk Interactions

*Decay of edge states into bulk states is forbidden
by energy-momentum conservation

*But integrating out bulk electrons induces
interactions between edge modes
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>’ {’ We may calculate induced
Interactions for small

- rq q 1/W, g and w using Dirac

propagators with correct
™ boundary conditions
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*Most important interactions involve spin operators
of edge states S, (q,w) on upper and lower

edges — like RKKY
*At energy scales <<v./W, inter-edge interactions is

simply L U’
= JinterSU. SL ’ Jinter = i'z th

*Ferromagnetic for zigzag-bearded ribbon or
antiferromagnetic for zigzag-zigzag case
*Consistent with S=(1/2)L or O for zigzag-bearded
or zigzag-zigzag ribbon, respectively

inter

24



*Intra-edge interaction induced by exchanging
bulk electrons is long range and retarded but
this effect is reduced for Dirac liquid compared
to Fermi liquid

*Example: exciton dispersion gets a correction:

E(g) = 36Uq”* +3(4 - m)(U? /1)’ In ¢*
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*To investigate effects of edge-bulk interactions
more systematically, we plan to use
Renormalization Group

*A type of boundary critical phenomenon in
(2+1) dimensions:

*Gapless (2+1) D Dirac fermions interacting with
spin polarized semi-metallic edge states
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Conclusions

*Small U/t limit is a tractible starting point for
studying graphene edge magnetism

*Both Lieb’s theorem and rigorous result on

1D edge Hamiltonian indicate full polarization

in simplest model

*t, and edge potential lead to doping but

ground state may remain free for Hubbard model
*Edge-bulk interactions stabilize inter-edge
magnetic ground state and introduce long range
retarded interactions
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