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A quantum Newton’s cradle
Toshiya Kinoshita1, Trevor Wenger1 & David S. Weiss1

It is a fundamental assumption of statistical mechanics that a
closed system with many degrees of freedom ergodically samples
all equal energy points in phase space. To understand the limits of
this assumption, it is important to find and study systems that are
not ergodic, and thus do not reach thermal equilibrium. A few
complex systems have been proposed that are expected not to
thermalize because their dynamics are integrable1,2. Some nearly
integrable systems of many particles have been studied numeri-
cally, and shown not to ergodically sample phase space3. However,
there has been no experimental demonstration of such a system
with many degrees of freedom that does not approach thermal
equilibrium. Here we report the preparation of out-of-equili-
brium arrays of trapped one-dimensional (1D) Bose gases, each
containing from 40 to 250 87Rb atoms, which do not noticeably
equilibrate even after thousands of collisions. Our results are
probably explainable by the well-known fact that a homogeneous
1D Bose gas with point-like collisional interactions is integrable.
Until now, however, the time evolution of out-of-equilibrium 1D
Bose gases has been a theoretically unsettled issue4–6, as practical
factors such as harmonic trapping and imperfectly point-like
interactions may compromise integrability. The absence of damp-
ing in 1D Bose gases may lead to potential applications in force
sensing and atom interferometry.
To see qualitatively why 1D gases might not thermalize, consider

the elastic collision of two isolated, identical mass classical particles in
one dimension. Energy and momentum are conserved only if they
simply exchange momenta. Clearly, the momentum distribution of a
1D ensemble of particles will not be altered by such pairwise
collisions. The well-known behaviour of Newton’s cradle (see
Fig. 1a) is most easily understood in this way. Even when several
balls are simultaneously in contact, particles in an idealized Newton’s
cradle just exchange specific momentum values, though the expla-
nation is more subtle7. Generalization of the Newton’s cradle to
quantum mechanical particles lends it a ghostly air. Rather than just
reflecting off each other, colliding particles can also transmit through
each other. When the particles are identical, the final states after
transmission and reflection are indistinguishable.
In general, correlations and overlap among 1D Bose gas wavefunc-

tions complicate the picture of independent particles colliding as in a
Newton’s cradle. In fact, there are circumstances in which 1D
momentum distributions are known to change in time. For example,
when weakly coupled bosons are released from a trap, the conversion
of mean field energy to kinetic energy changes the momentum
distribution. In the Tonks–Girardeau limit of infinite strength
interactions8, although the 1D bosons interact locally like non-
interacting fermions, their momentum distribution is not fermio-
nic9,10. When a Tonks–Girardeau gas is released from a trap and
expands in one dimension, its momentum distribution evolves into
that of a trapped Fermi gas11–13. The quantum Newton’s cradle view
of particles colliding with each other and either reflecting or
transmitting can only be applied when the kinetic energy of the
collision greatly exceeds the energy per atom at zero temperature at

the prevailing density14. The collisions that we study satisfy this
criterion well. Our observations extend from the Tonks–Girardeau
regime, where only pairwise collisions can occur15, to the intermediate
coupling regime, where there can be three- (or more) body col-
lisions15–17. In both regimes, atoms that are set oscillating and colliding
in a trap do not appreciably thermalize during our experiment.
We start our experiments with a Bose–Einstein condensate (BEC)

loaded into the combination of a blue-detuned two-dimensional
(2D) optical lattice and a red-detuned crossed dipole trap (see
Methods). The combination of light trapsmakes a 2D array of distinct,
parallel Bose gases, with the 2D lattice providing tight transverse
confinement and the crossed dipole trap providing weak axial trap-
ping11. The dynamics within each tube of the 2D array are strictly 1D
because the lowest transverse excitation, "q r (where q r/2p ¼ 67 kHz
is the transverse oscillation frequency), far exceeds all other energies in

LETTERS

Figure 1 |Classical and quantumNewton’s cradles. a, Diagram of a classical
Newton’s cradle. b, Sketches at various times of two out of equilibrium
clouds of atoms in a 1D anharmonic trap,U(z). At time t ¼ 0, the atoms are
put into a momentum superposition with 2"k to the right and 2"k to the
left. The two parts of the wavefunction oscillate out of phase with each other
with a period t. Each atom collides with the opposite momentum group
twice every full cycle, for instance, at t ¼ 0 and t/2. Anharmonicity causes
each group to gradually expand, until ultimately the atoms have fully
dephased. Even after dephasing, each atom still collides with half the other
atoms twice each cycle.
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the problem, and there is negligible tunnelling among the tubes. We
can vary the weighted average number of atoms per tube, N tube, and
the axial oscillation period, t. For a given array, t is the same to within
6% for all 1,000–8,000 tubes. The 1D coupling strength is given by
g ¼ j2/a1Dn1Dj, where n1D is the 1D density, ja1Dj < a r

2/2a is the 1D
scattering length, a ¼ 5.3 nm is the three-dimensional (3D) scattering
length, a r ¼ ("/mq r)

1/2 ¼ 41.5 nm is the transverse oscillator width,
and m is the Rb mass18.
To study the 1D Bose gases, we turn off the crossed dipole trap and

allow the atoms to expand in one dimension for 27ms before taking
an absorption image from the transverse direction. When we inte-
grate the image transverse to the tubes, we get a 1D spatial distri-
bution that corresponds to the momentum distribution after
expansion, f(p ex). Although the individual 1D gases have Thomas–
Fermi or Tonks–Girardeau f(p ex) profiles, we measure gaussian
f(p ex) distributions, as expected when the f(p ex) for many 1D Bose
gases with different N tube are summed.
To create non-equilibrium momentum distributions, we pulse

on a 3.2 THz detuned 1D lattice along the tubes, which acts as a
phase grating for the atoms. Two pulses, with intensity 11Wcm22

and pulse widths of 23 ms separated in time by 33 ms, can deplete the

zero momentum state and transfer atoms to^2"k peaks19,20 where k
is the wavevector of the 1D lattice light. We wait after the grating
pulses for a variable time, t, beforemeasuring f(p ex). Figure 2 shows a
time series of absorption images spanning a full oscillation in the
crossed dipole trap, when the weighted average of the initial peak g in
each tube, go, is 1.0. The two momentum groups collide with each
other in the centre of the crossed dipole trap twice each full cycle, for
instance at t ¼ 0 and t/2, as illustrated in Fig. 1b. The total collision
energy is 8("k)2/2m ¼ 0.45"q r, less than one-quarter the energy
needed for transverse vibrational excitation21, so the colliding gases
remain 1D.
The first and last images in Fig. 2 differ because the oscillating

atoms dephase. Illustrated conceptually in Fig. 1b, there is dephasing
due to the gaussian crossed dipole trap anharmonicity, which gives an
,8% spread of t across the full-width at half-maximum of each of the
colliding clouds. The top curves in Fig. 3a–c show the time-averaged
f(pex) over the first cycle for different go. Differences in shape among
them reflect the initial energy per particle, which increases with n1D,
and hence go

21. Within 10t to 15t, f(p ex) stops changing noticeably
during an oscillation period. The central observations in this letter
are of the evolution of f(p ex) that are dephased, like the lower curves
of Fig. 3a–c. Comparing only dephased distributions avoids the
complication of how the momentum distribution in the trap evolves
into f(p ex) during expansion, which may slightly depend on the
initial spatial distributions. As atoms have clearly dephased within
each tube, dephasing among tubes is irrelevant.

Figure 2 |Absorption images in the first oscillation cycle for initial average
peak coupling strength go 5 1. Atoms are always confined to one
dimension, in this case in 3,000 parallel tubes, with a weighted average of
110 atoms per tube. After grating pulses put each atom in a superposition of
^2"k momentum, they are allowed to evolve for a variable time t in the
anharmonic 1D trap (crossed dipole trap), before being released and
photographed 27ms later. The false colour in each image is rescaled to show
detail. These pictures are used to determine f(p ex). The first image shows
that some atoms remain near pex ¼ 0 at t ¼ 0. How many remain there
depends on n1D, implying that these remnant atoms do not result from an
imperfect pulse sequence, but rather from interactions during the grating
pulses or evolution of the momentum distribution during expansion. The
relative narrowness of the peaks in the last image compared to the first is
indicative of the reduction in spatial density that results from dephasing
(Fig. 1b). The transverse spatial width of each of the 14 image frames is
70 mm. Horizontal in the figure corresponds to vertical in the experiment, a
minor distinction because a magnetic field gradient cancels gravity for the
atoms.

Figure 3 | The expanded momentum distribution, f(pex), for three values
of go. The curves are obtained by transversely integrating absorption
images like those in Fig. 2. The spatial position, z, is approximately
proportional to the expanded momentum, p ex. The vertical scale is
arbitrary, but consistent among the curves. a, go ¼ 4; b, go ¼ 1; and
c, go ¼ 0.62. The highest (green) curve in each set is the average of f(p ex)
from the first cycle, that is, from the images like those in Fig. 2. The lower
curves in each set are f(p ex) taken at single times, t, after the atoms have
dephased: a, t ¼ 34ms, t ¼ 15t (blue) and 30t (red); b, t ¼ 13ms, t ¼ 15t
(blue) and 40t (red); and c, t ¼ 13ms, t ¼ 15t (blue) and 40t (red). The
changes in the distribution with time are attributable to known loss and
heating. (See Supplementary Information for a discussion of the fine spatial
structure in these curves.)
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of s-wave collisions prevents instabilities in the Bloch oscillations26,
allowing for longer observation times25. However, the larger fermion
momentum spreads reduce device sensitivity. The addition of 1D
confinement for bosons could allow for narrow momentum spreads
while avoiding damping-related instabilities.
Atom interferometers can be sensitive gyroscopes27, and work is in

progress to achieve greater sensitivity using atom waveguides20,28. To
date, these experiments have been performed outside the strictly 1D
regime. The absence of thermalizing collisions promises potentially
large sensitivity gains from reaching one dimension in the Thomas–
Fermi regime.
Integrable systems, rare though they are, are central to our under-

standing of nonlinear dynamics. The KAM theorem1, which
underlies much of nonlinear dynamics, describes the effect of weak
non-integrability on system dynamics. Any weak non-integrability in
our system is apparently insufficient for thermalization, which
confronts theory with a clear and rare many-body experimental
observation in this area. In the future, we can allow tunnelling among
the tubes by simply lowering the intensity of one or both of the 2D
lattice beams, and so continuously change the system from one with
1D to one with 2D or 3D collisional character. The many-body
system’s integrability can thus be compromised in a controlled way,
presenting a new type of experimental model for the onset of chaos.
The possibility of direct control of t th may have further applications
in the study of non-equilibrium quantum dynamics29.
In summary, we have watched the time evolution of non-equi-

librium trapped 1D Bose gases, which are almost integrable systems.
We find no evidence of redistribution of momentum, from the Tonks–
Girardeau gas limit to the intermediate coupling regime. That is, we
observe thousands of parallel 1D Bose gases, each with hundreds of
atoms colliding thousands of times without approaching equilibrium.

METHODS
Trapping details. We adiabatically load an 87Rb Bose–Einstein condensate
(BEC), produced by all-optical means30 and consisting of 2.5 £ 105 atoms,
into the 2D lattice/crossed dipole trap combination. A vertical magnetic field
gradient cancels the effect of gravity on the F ¼ 1,mF ¼ 1 atoms.We vary t from
13 to 34ms by changing the power and width of the crossed dipole trap. N tube

depends on the value of twhen the 2D lattice is turned on, and ranges from 40 to
250. We vary n1D in a range from 1.7 £ 106 to 1.2 £ 107 atomsm21 by varying
N tube and by varying t during the observations.
Determination of a lower limit on t th. To determine a lower limit on t th, we
calculate x2

ap, the reduced x2 obtained from comparing the actual f(p ex) to the
projected f(p ex), and x2

ag, the reduced x2 obtained from comparing the actual
f(p ex) to a gaussianwith the same r.m.s. width and number of atoms.We take x2

ag

as a measure of the extent to which the gas is not thermalized. If we then assume
that the entire x2

ap represents the small first step in an exponential approach of the
actual distribution to a gaussian, then t th ¼ tobs(x

2
ag þ x2

ap)/x
2
ap. Note that even if

the agreement between the projected and actual curves was statistically perfect,
so that x2

ap ¼ 1, we would still only be able to set a finite lower limit on t th.
We obtain the variance that normalizes x2

ap and x2
ag using the tails of the

measured f(p ex). Fluctuations in the absorption probe beam dominate the noise,
along with the fine spatial structures discussed in Supplementary Information.
The spatial frequencies of these noise sources are higher than the spatial
frequencies in the projected f(p ex), so they do not contribute to x2

ap. But they
do reduce x2

ag in a physically meaningless way. To get a more appropriate
measure of the relative sizes of these two x2, we apply a point spread filter
function to the actual f(p ex).We increase the number of points used until the x2

ap

for the filtered distribution is 10% larger than for the unfiltered function. This is
approximately when filtering starts to change the shape of the actual distribution
on a scale relevant to the projected distribution. The projected distributions are
unaffected by such point spread filtering, as the projection operation smooths
those curves. Comparisons of the projected distributions and the filtered actual
distributions (similar to Fig. 4) are shown in Supplementary Fig. 2.

For gd ¼ 18, 3.2 and 1.4, respectively: the number of points in the filter
function is 11, 17 and 8; x2

ap is 1.29, 1.47 and 2.8; x
2
ag is 32, 111 and 19.5; and the

lower limit on t th is 390t, 1,910t and 200t. These are the results we use in setting
the lower limits. Performing the same analysis with the single component
heating projections, the number of points in the filter function is 17, 19 and 9;
x2
ap is 1.5, 1.8 and 2.7; x2

ag is 47, 125 and 21; and the lower limit on t th is 470t,

1,690t and 220t. The differences in the lower limits obtained using three
different data analyses (discussed in Supplementary Information) are in all
cases less than 25%. We consider this to be the approximate systematic
uncertainty in the lower limits.
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A quantum Newton’s cradle
Toshiya Kinoshita1, Trevor Wenger1 & David S. Weiss1

It is a fundamental assumption of statistical mechanics that a
closed system with many degrees of freedom ergodically samples
all equal energy points in phase space. To understand the limits of
this assumption, it is important to find and study systems that are
not ergodic, and thus do not reach thermal equilibrium. A few
complex systems have been proposed that are expected not to
thermalize because their dynamics are integrable1,2. Some nearly
integrable systems of many particles have been studied numeri-
cally, and shown not to ergodically sample phase space3. However,
there has been no experimental demonstration of such a system
with many degrees of freedom that does not approach thermal
equilibrium. Here we report the preparation of out-of-equili-
brium arrays of trapped one-dimensional (1D) Bose gases, each
containing from 40 to 250 87Rb atoms, which do not noticeably
equilibrate even after thousands of collisions. Our results are
probably explainable by the well-known fact that a homogeneous
1D Bose gas with point-like collisional interactions is integrable.
Until now, however, the time evolution of out-of-equilibrium 1D
Bose gases has been a theoretically unsettled issue4–6, as practical
factors such as harmonic trapping and imperfectly point-like
interactions may compromise integrability. The absence of damp-
ing in 1D Bose gases may lead to potential applications in force
sensing and atom interferometry.
To see qualitatively why 1D gases might not thermalize, consider

the elastic collision of two isolated, identical mass classical particles in
one dimension. Energy and momentum are conserved only if they
simply exchange momenta. Clearly, the momentum distribution of a
1D ensemble of particles will not be altered by such pairwise
collisions. The well-known behaviour of Newton’s cradle (see
Fig. 1a) is most easily understood in this way. Even when several
balls are simultaneously in contact, particles in an idealized Newton’s
cradle just exchange specific momentum values, though the expla-
nation is more subtle7. Generalization of the Newton’s cradle to
quantum mechanical particles lends it a ghostly air. Rather than just
reflecting off each other, colliding particles can also transmit through
each other. When the particles are identical, the final states after
transmission and reflection are indistinguishable.
In general, correlations and overlap among 1D Bose gas wavefunc-

tions complicate the picture of independent particles colliding as in a
Newton’s cradle. In fact, there are circumstances in which 1D
momentum distributions are known to change in time. For example,
when weakly coupled bosons are released from a trap, the conversion
of mean field energy to kinetic energy changes the momentum
distribution. In the Tonks–Girardeau limit of infinite strength
interactions8, although the 1D bosons interact locally like non-
interacting fermions, their momentum distribution is not fermio-
nic9,10. When a Tonks–Girardeau gas is released from a trap and
expands in one dimension, its momentum distribution evolves into
that of a trapped Fermi gas11–13. The quantum Newton’s cradle view
of particles colliding with each other and either reflecting or
transmitting can only be applied when the kinetic energy of the
collision greatly exceeds the energy per atom at zero temperature at

the prevailing density14. The collisions that we study satisfy this
criterion well. Our observations extend from the Tonks–Girardeau
regime, where only pairwise collisions can occur15, to the intermediate
coupling regime, where there can be three- (or more) body col-
lisions15–17. In both regimes, atoms that are set oscillating and colliding
in a trap do not appreciably thermalize during our experiment.
We start our experiments with a Bose–Einstein condensate (BEC)

loaded into the combination of a blue-detuned two-dimensional
(2D) optical lattice and a red-detuned crossed dipole trap (see
Methods). The combination of light trapsmakes a 2D array of distinct,
parallel Bose gases, with the 2D lattice providing tight transverse
confinement and the crossed dipole trap providing weak axial trap-
ping11. The dynamics within each tube of the 2D array are strictly 1D
because the lowest transverse excitation, "q r (where q r/2p ¼ 67 kHz
is the transverse oscillation frequency), far exceeds all other energies in

LETTERS

Figure 1 |Classical and quantumNewton’s cradles. a, Diagram of a classical
Newton’s cradle. b, Sketches at various times of two out of equilibrium
clouds of atoms in a 1D anharmonic trap,U(z). At time t ¼ 0, the atoms are
put into a momentum superposition with 2"k to the right and 2"k to the
left. The two parts of the wavefunction oscillate out of phase with each other
with a period t. Each atom collides with the opposite momentum group
twice every full cycle, for instance, at t ¼ 0 and t/2. Anharmonicity causes
each group to gradually expand, until ultimately the atoms have fully
dephased. Even after dephasing, each atom still collides with half the other
atoms twice each cycle.
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the problem, and there is negligible tunnelling among the tubes. We
can vary the weighted average number of atoms per tube, N tube, and
the axial oscillation period, t. For a given array, t is the same to within
6% for all 1,000–8,000 tubes. The 1D coupling strength is given by
g ¼ j2/a1Dn1Dj, where n1D is the 1D density, ja1Dj < a r

2/2a is the 1D
scattering length, a ¼ 5.3 nm is the three-dimensional (3D) scattering
length, a r ¼ ("/mq r)

1/2 ¼ 41.5 nm is the transverse oscillator width,
and m is the Rb mass18.
To study the 1D Bose gases, we turn off the crossed dipole trap and

allow the atoms to expand in one dimension for 27ms before taking
an absorption image from the transverse direction. When we inte-
grate the image transverse to the tubes, we get a 1D spatial distri-
bution that corresponds to the momentum distribution after
expansion, f(p ex). Although the individual 1D gases have Thomas–
Fermi or Tonks–Girardeau f(p ex) profiles, we measure gaussian
f(p ex) distributions, as expected when the f(p ex) for many 1D Bose
gases with different N tube are summed.
To create non-equilibrium momentum distributions, we pulse

on a 3.2 THz detuned 1D lattice along the tubes, which acts as a
phase grating for the atoms. Two pulses, with intensity 11Wcm22

and pulse widths of 23 ms separated in time by 33 ms, can deplete the

zero momentum state and transfer atoms to^2"k peaks19,20 where k
is the wavevector of the 1D lattice light. We wait after the grating
pulses for a variable time, t, beforemeasuring f(p ex). Figure 2 shows a
time series of absorption images spanning a full oscillation in the
crossed dipole trap, when the weighted average of the initial peak g in
each tube, go, is 1.0. The two momentum groups collide with each
other in the centre of the crossed dipole trap twice each full cycle, for
instance at t ¼ 0 and t/2, as illustrated in Fig. 1b. The total collision
energy is 8("k)2/2m ¼ 0.45"q r, less than one-quarter the energy
needed for transverse vibrational excitation21, so the colliding gases
remain 1D.
The first and last images in Fig. 2 differ because the oscillating

atoms dephase. Illustrated conceptually in Fig. 1b, there is dephasing
due to the gaussian crossed dipole trap anharmonicity, which gives an
,8% spread of t across the full-width at half-maximum of each of the
colliding clouds. The top curves in Fig. 3a–c show the time-averaged
f(pex) over the first cycle for different go. Differences in shape among
them reflect the initial energy per particle, which increases with n1D,
and hence go

21. Within 10t to 15t, f(p ex) stops changing noticeably
during an oscillation period. The central observations in this letter
are of the evolution of f(p ex) that are dephased, like the lower curves
of Fig. 3a–c. Comparing only dephased distributions avoids the
complication of how the momentum distribution in the trap evolves
into f(p ex) during expansion, which may slightly depend on the
initial spatial distributions. As atoms have clearly dephased within
each tube, dephasing among tubes is irrelevant.

Figure 2 |Absorption images in the first oscillation cycle for initial average
peak coupling strength go 5 1. Atoms are always confined to one
dimension, in this case in 3,000 parallel tubes, with a weighted average of
110 atoms per tube. After grating pulses put each atom in a superposition of
^2"k momentum, they are allowed to evolve for a variable time t in the
anharmonic 1D trap (crossed dipole trap), before being released and
photographed 27ms later. The false colour in each image is rescaled to show
detail. These pictures are used to determine f(p ex). The first image shows
that some atoms remain near pex ¼ 0 at t ¼ 0. How many remain there
depends on n1D, implying that these remnant atoms do not result from an
imperfect pulse sequence, but rather from interactions during the grating
pulses or evolution of the momentum distribution during expansion. The
relative narrowness of the peaks in the last image compared to the first is
indicative of the reduction in spatial density that results from dephasing
(Fig. 1b). The transverse spatial width of each of the 14 image frames is
70 mm. Horizontal in the figure corresponds to vertical in the experiment, a
minor distinction because a magnetic field gradient cancels gravity for the
atoms.

Figure 3 | The expanded momentum distribution, f(pex), for three values
of go. The curves are obtained by transversely integrating absorption
images like those in Fig. 2. The spatial position, z, is approximately
proportional to the expanded momentum, p ex. The vertical scale is
arbitrary, but consistent among the curves. a, go ¼ 4; b, go ¼ 1; and
c, go ¼ 0.62. The highest (green) curve in each set is the average of f(p ex)
from the first cycle, that is, from the images like those in Fig. 2. The lower
curves in each set are f(p ex) taken at single times, t, after the atoms have
dephased: a, t ¼ 34ms, t ¼ 15t (blue) and 30t (red); b, t ¼ 13ms, t ¼ 15t
(blue) and 40t (red); and c, t ¼ 13ms, t ¼ 15t (blue) and 40t (red). The
changes in the distribution with time are attributable to known loss and
heating. (See Supplementary Information for a discussion of the fine spatial
structure in these curves.)
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of s-wave collisions prevents instabilities in the Bloch oscillations26,
allowing for longer observation times25. However, the larger fermion
momentum spreads reduce device sensitivity. The addition of 1D
confinement for bosons could allow for narrow momentum spreads
while avoiding damping-related instabilities.
Atom interferometers can be sensitive gyroscopes27, and work is in

progress to achieve greater sensitivity using atom waveguides20,28. To
date, these experiments have been performed outside the strictly 1D
regime. The absence of thermalizing collisions promises potentially
large sensitivity gains from reaching one dimension in the Thomas–
Fermi regime.
Integrable systems, rare though they are, are central to our under-

standing of nonlinear dynamics. The KAM theorem1, which
underlies much of nonlinear dynamics, describes the effect of weak
non-integrability on system dynamics. Any weak non-integrability in
our system is apparently insufficient for thermalization, which
confronts theory with a clear and rare many-body experimental
observation in this area. In the future, we can allow tunnelling among
the tubes by simply lowering the intensity of one or both of the 2D
lattice beams, and so continuously change the system from one with
1D to one with 2D or 3D collisional character. The many-body
system’s integrability can thus be compromised in a controlled way,
presenting a new type of experimental model for the onset of chaos.
The possibility of direct control of t th may have further applications
in the study of non-equilibrium quantum dynamics29.
In summary, we have watched the time evolution of non-equi-

librium trapped 1D Bose gases, which are almost integrable systems.
We find no evidence of redistribution of momentum, from the Tonks–
Girardeau gas limit to the intermediate coupling regime. That is, we
observe thousands of parallel 1D Bose gases, each with hundreds of
atoms colliding thousands of times without approaching equilibrium.

METHODS
Trapping details. We adiabatically load an 87Rb Bose–Einstein condensate
(BEC), produced by all-optical means30 and consisting of 2.5 £ 105 atoms,
into the 2D lattice/crossed dipole trap combination. A vertical magnetic field
gradient cancels the effect of gravity on the F ¼ 1,mF ¼ 1 atoms.We vary t from
13 to 34ms by changing the power and width of the crossed dipole trap. N tube

depends on the value of twhen the 2D lattice is turned on, and ranges from 40 to
250. We vary n1D in a range from 1.7 £ 106 to 1.2 £ 107 atomsm21 by varying
N tube and by varying t during the observations.
Determination of a lower limit on t th. To determine a lower limit on t th, we
calculate x2

ap, the reduced x2 obtained from comparing the actual f(p ex) to the
projected f(p ex), and x2

ag, the reduced x2 obtained from comparing the actual
f(p ex) to a gaussianwith the same r.m.s. width and number of atoms.We take x2

ag

as a measure of the extent to which the gas is not thermalized. If we then assume
that the entire x2

ap represents the small first step in an exponential approach of the
actual distribution to a gaussian, then t th ¼ tobs(x

2
ag þ x2

ap)/x
2
ap. Note that even if

the agreement between the projected and actual curves was statistically perfect,
so that x2

ap ¼ 1, we would still only be able to set a finite lower limit on t th.
We obtain the variance that normalizes x2

ap and x2
ag using the tails of the

measured f(p ex). Fluctuations in the absorption probe beam dominate the noise,
along with the fine spatial structures discussed in Supplementary Information.
The spatial frequencies of these noise sources are higher than the spatial
frequencies in the projected f(p ex), so they do not contribute to x2

ap. But they
do reduce x2

ag in a physically meaningless way. To get a more appropriate
measure of the relative sizes of these two x2, we apply a point spread filter
function to the actual f(p ex).We increase the number of points used until the x2

ap

for the filtered distribution is 10% larger than for the unfiltered function. This is
approximately when filtering starts to change the shape of the actual distribution
on a scale relevant to the projected distribution. The projected distributions are
unaffected by such point spread filtering, as the projection operation smooths
those curves. Comparisons of the projected distributions and the filtered actual
distributions (similar to Fig. 4) are shown in Supplementary Fig. 2.

For gd ¼ 18, 3.2 and 1.4, respectively: the number of points in the filter
function is 11, 17 and 8; x2

ap is 1.29, 1.47 and 2.8; x
2
ag is 32, 111 and 19.5; and the

lower limit on t th is 390t, 1,910t and 200t. These are the results we use in setting
the lower limits. Performing the same analysis with the single component
heating projections, the number of points in the filter function is 17, 19 and 9;
x2
ap is 1.5, 1.8 and 2.7; x2

ag is 47, 125 and 21; and the lower limit on t th is 470t,

1,690t and 220t. The differences in the lower limits obtained using three
different data analyses (discussed in Supplementary Information) are in all
cases less than 25%. We consider this to be the approximate systematic
uncertainty in the lower limits.

Received 6 December 2005; accepted 28 February 2006.

1. Coleman, S. Quantum sine-Gordon equation as the massive Thirring model.
Phys. Rev. D 11, 2088–-2097 (1975).

2. Tabor, M. Chaos and Integrability in Nonlinear Dynamics (Wiley, New York, 1989).
3. Berman, G. P. & Izrailev, F. M. The Fermi-Pasta-Ulam problem: fifty years of

progress. Chaos 15, 015104 (2005).
4. Berman, G. P., Borgonovi, F., Izrailev, F. M. & Smerzi, A. Irregular dynamics in a

one-dimensional Bose system. Phys. Rev. Lett. 92, 030404 (2004).
5. Minguzzi, A. & Gangardt, D. M. Exact coherent states of a harmonically

confined Tonks-Girardeau gas. Phys. Rev. Lett. 94, 240404 (2005).
6. Proukakis, N. P., Schmiedmayer, J. & Stoof, H. T. C. Quasi-condensate growth

on an atom chip. Preprint at khttp://arxiv.org/cond-mat/0509154l (2005).
7. Herrmann, F. & Schmalzle, P. Simple explanation of a well-known collision

experiment. Am. J. Phys. 49, 761–-764 (1981).
8. Girardeau, M. Relationship between systems of impenetrable bosons and

fermions in one dimension. J. Math. Phys. 1, 516–-523 (1960).
9. Girardeau, M. D. & Wright, E. M. Measurement of one-particle correlations

and momentum distributions for trapped 1D gases. Phys. Rev. Lett. 87, 050403
(2001).

10. Paredes, B. et al. Tonks-Girardeau gas of ultracold atoms in an optical lattice.
Nature 429, 277–-281 (2004).

11. Kinoshita, T., Wenger, T. & Weiss, D. S. Observation of a one-dimensional
Tonks-Girardeau gas. Science 305, 1125–-1128 (2004).

12. Rigol, M. & Muramatsu, A. Fermionization in an expanding 1D gas of hard-core
bosons. Phys. Rev. Lett. 94, 240403 (2005).
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• is relaxation due to deviations from the integrability 
indeed negligible compared with other mechanisms 
of losses?

• if inelastic relaxation is strong, why it was not 
observed??



BEC transition at a finite temperature

�k

k�ms

�s =
ms2

2

�k = k2/2msk

Elementary excitations:  Bogolubov’s quasiparticles

Rate of relaxation by 2-body collisions

independent of either k or T for k � ms

(thus insensitive to BEC)Beliaev (1958)
Andreev and Khalatnikov (1963)
Hohenberg and Martin (1965)

3D

�k / max

�
"5k, "kT

4
 
for k ⌧ ms



Relaxation is due to 3-body collisions 

�k

k�ms

�s =
ms2

2

�k = k2/2msk

Elementary excitations: 
Bogolubov’s quasiparticles

No BEC, except for free bosons at zero temperature

�k at k � ms depends strongly on T and k
S. Tan, M.P., and L. Glazman, PRL 105, 090404 (2010)

1D

Quasicondensate, 
with a finite spread in a momentum space
(for a repulsive interaction) V. Popov (1972)

exact eigenstates:  Lieb and Liniger (1963)



Energy scales

m (mass)

s (sound velocity)

n (concentration)

interaction energy 
per particle

quantum degeneracy 
temperature

For a weak repulsive interaction 

�s � Ts � T0

�s = ms2/2

T0 = 2n2/m

(kB = � = 1)

interaction temperature: Ts =
p
!sT0 = ns

(at T . Ts interaction is important)



Energy scales and momentum distribution in 1D

T0/T � 1

�k � mT/n

fk
µ0(T ) = �µ = T 2/T0

fk =
�
⇥†
k⇥k

⇥
=

1

e(�k�µ)/T � 1
⇥ T

�k + µ0

Applicable to interacting system as long as
µ0 � �s = ms2/2 � T � Ts

�k

k

�k = k2/2m

sk

ms

�s

At T � Ts,
the majority of the occupied states have k � ms

noninteracting bosons, �k � T � T0 = 2n2/m



Momentum distribution in 1D

H =
n

2m

⇤
dx

�
��2(⌅x⇤)

2+ (⌅x⇥)
2
⇥

Tool: hydrodynamic description of long-wavelength excitations

Popov (1972)
Haldane (1981)

interacting bosons, T � Ts, k � ms
�k

k

�k = k2/2m

sk

ms

�s

density fluctuations are 
suppressed by the interactions

� =
⇥T0

2Ts
=

⇥n

ms
� 1

Effective Hamiltonian

[⇤(x),⇥(y)] = i(�/2) sgn(x� y)

⇤(x) �
⇥
n ei�(x) , ⇥(x) = n+ ��1⇧x⌅

quasicodensate



Momentum distribution in 1D

fk =
2T

4�k + µ0
(T0/T )

�1/2�,

fk � |ms/k|1�1/2�,

sk � min{T,�s}

T � sk � �s

interacting bosons, T � Ts, k � ms
�k

k

�k = k2/2m

sk

ms

�s

quasicodensate

�s � T � TS : fk is a Lorentzian, cf. free bosons•  
At k � ms and T � Ts we have f � Ts/⇤s = 2�/⇥

(both for hydrodynamics and free bosons)
•  

There is no room for power-low dependence at T � �s•  



Far tail of the momentum distribution

interacting bosons, �k � max{⇥s, T}
�k

k

�k = k2/2m

sk

ms

�s

fk = dE2/d�k � (nc/�k)
2 � (⇥s/�k)

2 ⇥ 1

second-order correction to the ground state energy



Momentum distribution in 1D

fk at T � �s

k
�
mT

�k � mT/n

fk

fk � (⇥s/�k)
2 ⇥ 1

�k

kms

�s
treat these as free bosons

use hydrodynamics
(‘bosonization’)



“Real” 1D bosons
transverse confinement

a?

⇠ 1

ma2?

High-momentum cutoff:

|k| < k0 ⇠ 1/a?

2-particle interaction:

V1D(x� x

0) =

Z
d

2
r? d

2
r

0
?�

2(r?)V3D(r � r0)�2(r0
?) ⇠ (as/ma

2
?)�(x� x

0)

V3D(r) = 4⇡(as/m)�(r), as ⌧ a?

H0 =

⇤
dx⇥†(x)

�
� 1

2m

d 2

dx2

⇥
⇥(x) +

c

2

⇤
dx :�2(x) :

k0 ! 1: Lieb-Liniger model

� = mc/n ⇠ as/na
2
? ⌧ 1 (weak interaction)



LL model is integrable:

•  no redistribution of momenta in scattering

McGuire (1964)
x

t

singularities in dynamic correlation functions•  
S(q,!)

!"q

M. Khodas et al., PRL 99, 110405 (2007)
A. Shashi et al., PRB 85, 155136 (2012)

Bogolubov’s (Lieb’s particle-like) mode



Integrability-breaking perturbation

Finite cuto↵ k0 ⇠ 1/a? ()
finite interaction range ⇠ a?

•  keep k0 infinite, add a perturbation instead

V =
↵

m

Z
dx :⇢3(x) :

↵ - dimensionless coe�cient,

2nd order in the interaction strength

↵ ⇠ (mc/k0)
2 ⇠ (as/a?)

2 ⌧ 1

A. Muryshev et al., PRL 89, 110401 (2002)
I. Masets et al., PRL 100, 210403 (2008)
S. Tan et al., PRL 105, 090404 (2010) quasicodensate

max{ms,mT/n}

extra particle 



�q

�q�p

⇥ = �q � �q�p ⇥ qp/m

energy transfer:

momentum transfer:

p � m�/q ⇥ 0 for q ⇥ ⇤

w/out interactions:

�q �
�2

mq
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dki fk1fk2(fk3+ 1)(fk4+ 1)
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Relaxation rate
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T0/T � 1

�k � mT/n

fk Main contribution comes from

|ki| � mT/n

(initial and final states are within the quasicondensate)

� �2T0

�
T0

⇥q

⇥1/2 T0

T

diverges at T � 0

Relaxation by small energy transfer

corresponds to a small energy transfer ⇥ � (�k)2/m � µ0

�q �
�2

mq
(T0/T )

4 (⇥k)3



Relaxation by small energy transfer

�q � �2T0

�
T0

⇥q

⇥1/2 T0

T

unphysical order of limits: � � 0 first, T � 0 after

interacting bosons:

At �s � T � Ts bosonization yields

�q � �2T0
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T0

⇥q

⇥1/2 T0

Ts

�
T

Ts

⇥2

max
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�q

⇥
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Subleading contribution: final states well outside the quasicondensate
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mq
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I. Mazets, T. Schumm, and J. Schmiedmayer, PRL 100, 210403 (2008)

Relaxation by large energy transfer

• corresponds to a large energy transfer µ0 � ⇥ � �q

• (almost) independent of the interaction strength

• independent of q (hence the notation ��)



Relaxation rate

�q(T )
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Cold atoms in a cylindrical trap

we have � = 0.2, Ts = 120 nK.

For ⇥r/2� = 15 kHz and n = 7µm�1 we have � = 0.2, Ts = 120 nK.

With �q/Ts = ⇥r/�q = 2.4, this gives �max/�R � 100

(these are realistic numbers)

Interaction in 3D: V3D(r) = 4⇡(as/m)�(r)

Projection onto the lowest subband 
of transverse quantization yields

� = 2as/na
2
?, ↵ = 18 ln(4/3)(as/a?)

2

a? = (m!?)
�1/2 � as

Main mechanism of losses: 
3-body recombination processes �R = �n2/a4?

�1/�R ⇡ 10⇥ a4s/(m�)| {z }
=2.1 for

87
Rb

⇡ 20
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A quantum Newton’s cradle
Toshiya Kinoshita1, Trevor Wenger1 & David S. Weiss1

It is a fundamental assumption of statistical mechanics that a
closed system with many degrees of freedom ergodically samples
all equal energy points in phase space. To understand the limits of
this assumption, it is important to find and study systems that are
not ergodic, and thus do not reach thermal equilibrium. A few
complex systems have been proposed that are expected not to
thermalize because their dynamics are integrable1,2. Some nearly
integrable systems of many particles have been studied numeri-
cally, and shown not to ergodically sample phase space3. However,
there has been no experimental demonstration of such a system
with many degrees of freedom that does not approach thermal
equilibrium. Here we report the preparation of out-of-equili-
brium arrays of trapped one-dimensional (1D) Bose gases, each
containing from 40 to 250 87Rb atoms, which do not noticeably
equilibrate even after thousands of collisions. Our results are
probably explainable by the well-known fact that a homogeneous
1D Bose gas with point-like collisional interactions is integrable.
Until now, however, the time evolution of out-of-equilibrium 1D
Bose gases has been a theoretically unsettled issue4–6, as practical
factors such as harmonic trapping and imperfectly point-like
interactions may compromise integrability. The absence of damp-
ing in 1D Bose gases may lead to potential applications in force
sensing and atom interferometry.
To see qualitatively why 1D gases might not thermalize, consider

the elastic collision of two isolated, identical mass classical particles in
one dimension. Energy and momentum are conserved only if they
simply exchange momenta. Clearly, the momentum distribution of a
1D ensemble of particles will not be altered by such pairwise
collisions. The well-known behaviour of Newton’s cradle (see
Fig. 1a) is most easily understood in this way. Even when several
balls are simultaneously in contact, particles in an idealized Newton’s
cradle just exchange specific momentum values, though the expla-
nation is more subtle7. Generalization of the Newton’s cradle to
quantum mechanical particles lends it a ghostly air. Rather than just
reflecting off each other, colliding particles can also transmit through
each other. When the particles are identical, the final states after
transmission and reflection are indistinguishable.
In general, correlations and overlap among 1D Bose gas wavefunc-

tions complicate the picture of independent particles colliding as in a
Newton’s cradle. In fact, there are circumstances in which 1D
momentum distributions are known to change in time. For example,
when weakly coupled bosons are released from a trap, the conversion
of mean field energy to kinetic energy changes the momentum
distribution. In the Tonks–Girardeau limit of infinite strength
interactions8, although the 1D bosons interact locally like non-
interacting fermions, their momentum distribution is not fermio-
nic9,10. When a Tonks–Girardeau gas is released from a trap and
expands in one dimension, its momentum distribution evolves into
that of a trapped Fermi gas11–13. The quantum Newton’s cradle view
of particles colliding with each other and either reflecting or
transmitting can only be applied when the kinetic energy of the
collision greatly exceeds the energy per atom at zero temperature at

the prevailing density14. The collisions that we study satisfy this
criterion well. Our observations extend from the Tonks–Girardeau
regime, where only pairwise collisions can occur15, to the intermediate
coupling regime, where there can be three- (or more) body col-
lisions15–17. In both regimes, atoms that are set oscillating and colliding
in a trap do not appreciably thermalize during our experiment.
We start our experiments with a Bose–Einstein condensate (BEC)

loaded into the combination of a blue-detuned two-dimensional
(2D) optical lattice and a red-detuned crossed dipole trap (see
Methods). The combination of light trapsmakes a 2D array of distinct,
parallel Bose gases, with the 2D lattice providing tight transverse
confinement and the crossed dipole trap providing weak axial trap-
ping11. The dynamics within each tube of the 2D array are strictly 1D
because the lowest transverse excitation, "q r (where q r/2p ¼ 67 kHz
is the transverse oscillation frequency), far exceeds all other energies in

LETTERS

Figure 1 |Classical and quantumNewton’s cradles. a, Diagram of a classical
Newton’s cradle. b, Sketches at various times of two out of equilibrium
clouds of atoms in a 1D anharmonic trap,U(z). At time t ¼ 0, the atoms are
put into a momentum superposition with 2"k to the right and 2"k to the
left. The two parts of the wavefunction oscillate out of phase with each other
with a period t. Each atom collides with the opposite momentum group
twice every full cycle, for instance, at t ¼ 0 and t/2. Anharmonicity causes
each group to gradually expand, until ultimately the atoms have fully
dephased. Even after dephasing, each atom still collides with half the other
atoms twice each cycle.

1Department of Physics, The Pennsylvania State University, 104 Davey Laboratory, University Park, Pennsylvania 16802, USA.
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It is a fundamental assumption of statistical mechanics that a
closed system with many degrees of freedom ergodically samples
all equal energy points in phase space. To understand the limits of
this assumption, it is important to find and study systems that are
not ergodic, and thus do not reach thermal equilibrium. A few
complex systems have been proposed that are expected not to
thermalize because their dynamics are integrable1,2. Some nearly
integrable systems of many particles have been studied numeri-
cally, and shown not to ergodically sample phase space3. However,
there has been no experimental demonstration of such a system
with many degrees of freedom that does not approach thermal
equilibrium. Here we report the preparation of out-of-equili-
brium arrays of trapped one-dimensional (1D) Bose gases, each
containing from 40 to 250 87Rb atoms, which do not noticeably
equilibrate even after thousands of collisions. Our results are
probably explainable by the well-known fact that a homogeneous
1D Bose gas with point-like collisional interactions is integrable.
Until now, however, the time evolution of out-of-equilibrium 1D
Bose gases has been a theoretically unsettled issue4–6, as practical
factors such as harmonic trapping and imperfectly point-like
interactions may compromise integrability. The absence of damp-
ing in 1D Bose gases may lead to potential applications in force
sensing and atom interferometry.
To see qualitatively why 1D gases might not thermalize, consider

the elastic collision of two isolated, identical mass classical particles in
one dimension. Energy and momentum are conserved only if they
simply exchange momenta. Clearly, the momentum distribution of a
1D ensemble of particles will not be altered by such pairwise
collisions. The well-known behaviour of Newton’s cradle (see
Fig. 1a) is most easily understood in this way. Even when several
balls are simultaneously in contact, particles in an idealized Newton’s
cradle just exchange specific momentum values, though the expla-
nation is more subtle7. Generalization of the Newton’s cradle to
quantum mechanical particles lends it a ghostly air. Rather than just
reflecting off each other, colliding particles can also transmit through
each other. When the particles are identical, the final states after
transmission and reflection are indistinguishable.
In general, correlations and overlap among 1D Bose gas wavefunc-

tions complicate the picture of independent particles colliding as in a
Newton’s cradle. In fact, there are circumstances in which 1D
momentum distributions are known to change in time. For example,
when weakly coupled bosons are released from a trap, the conversion
of mean field energy to kinetic energy changes the momentum
distribution. In the Tonks–Girardeau limit of infinite strength
interactions8, although the 1D bosons interact locally like non-
interacting fermions, their momentum distribution is not fermio-
nic9,10. When a Tonks–Girardeau gas is released from a trap and
expands in one dimension, its momentum distribution evolves into
that of a trapped Fermi gas11–13. The quantum Newton’s cradle view
of particles colliding with each other and either reflecting or
transmitting can only be applied when the kinetic energy of the
collision greatly exceeds the energy per atom at zero temperature at

the prevailing density14. The collisions that we study satisfy this
criterion well. Our observations extend from the Tonks–Girardeau
regime, where only pairwise collisions can occur15, to the intermediate
coupling regime, where there can be three- (or more) body col-
lisions15–17. In both regimes, atoms that are set oscillating and colliding
in a trap do not appreciably thermalize during our experiment.
We start our experiments with a Bose–Einstein condensate (BEC)

loaded into the combination of a blue-detuned two-dimensional
(2D) optical lattice and a red-detuned crossed dipole trap (see
Methods). The combination of light trapsmakes a 2D array of distinct,
parallel Bose gases, with the 2D lattice providing tight transverse
confinement and the crossed dipole trap providing weak axial trap-
ping11. The dynamics within each tube of the 2D array are strictly 1D
because the lowest transverse excitation, "q r (where q r/2p ¼ 67 kHz
is the transverse oscillation frequency), far exceeds all other energies in

LETTERS

Figure 1 |Classical and quantumNewton’s cradles. a, Diagram of a classical
Newton’s cradle. b, Sketches at various times of two out of equilibrium
clouds of atoms in a 1D anharmonic trap,U(z). At time t ¼ 0, the atoms are
put into a momentum superposition with 2"k to the right and 2"k to the
left. The two parts of the wavefunction oscillate out of phase with each other
with a period t. Each atom collides with the opposite momentum group
twice every full cycle, for instance, at t ¼ 0 and t/2. Anharmonicity causes
each group to gradually expand, until ultimately the atoms have fully
dephased. Even after dephasing, each atom still collides with half the other
atoms twice each cycle.
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A quantum Newton’s cradle
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the problem, and there is negligible tunnelling among the tubes. We
can vary the weighted average number of atoms per tube, N tube, and
the axial oscillation period, t. For a given array, t is the same to within
6% for all 1,000–8,000 tubes. The 1D coupling strength is given by
g ¼ j2/a1Dn1Dj, where n1D is the 1D density, ja1Dj < a r

2/2a is the 1D
scattering length, a ¼ 5.3 nm is the three-dimensional (3D) scattering
length, a r ¼ ("/mq r)

1/2 ¼ 41.5 nm is the transverse oscillator width,
and m is the Rb mass18.
To study the 1D Bose gases, we turn off the crossed dipole trap and

allow the atoms to expand in one dimension for 27ms before taking
an absorption image from the transverse direction. When we inte-
grate the image transverse to the tubes, we get a 1D spatial distri-
bution that corresponds to the momentum distribution after
expansion, f(p ex). Although the individual 1D gases have Thomas–
Fermi or Tonks–Girardeau f(p ex) profiles, we measure gaussian
f(p ex) distributions, as expected when the f(p ex) for many 1D Bose
gases with different N tube are summed.
To create non-equilibrium momentum distributions, we pulse

on a 3.2 THz detuned 1D lattice along the tubes, which acts as a
phase grating for the atoms. Two pulses, with intensity 11Wcm22

and pulse widths of 23 ms separated in time by 33 ms, can deplete the

zero momentum state and transfer atoms to^2"k peaks19,20 where k
is the wavevector of the 1D lattice light. We wait after the grating
pulses for a variable time, t, beforemeasuring f(p ex). Figure 2 shows a
time series of absorption images spanning a full oscillation in the
crossed dipole trap, when the weighted average of the initial peak g in
each tube, go, is 1.0. The two momentum groups collide with each
other in the centre of the crossed dipole trap twice each full cycle, for
instance at t ¼ 0 and t/2, as illustrated in Fig. 1b. The total collision
energy is 8("k)2/2m ¼ 0.45"q r, less than one-quarter the energy
needed for transverse vibrational excitation21, so the colliding gases
remain 1D.
The first and last images in Fig. 2 differ because the oscillating

atoms dephase. Illustrated conceptually in Fig. 1b, there is dephasing
due to the gaussian crossed dipole trap anharmonicity, which gives an
,8% spread of t across the full-width at half-maximum of each of the
colliding clouds. The top curves in Fig. 3a–c show the time-averaged
f(pex) over the first cycle for different go. Differences in shape among
them reflect the initial energy per particle, which increases with n1D,
and hence go

21. Within 10t to 15t, f(p ex) stops changing noticeably
during an oscillation period. The central observations in this letter
are of the evolution of f(p ex) that are dephased, like the lower curves
of Fig. 3a–c. Comparing only dephased distributions avoids the
complication of how the momentum distribution in the trap evolves
into f(p ex) during expansion, which may slightly depend on the
initial spatial distributions. As atoms have clearly dephased within
each tube, dephasing among tubes is irrelevant.

Figure 2 |Absorption images in the first oscillation cycle for initial average
peak coupling strength go 5 1. Atoms are always confined to one
dimension, in this case in 3,000 parallel tubes, with a weighted average of
110 atoms per tube. After grating pulses put each atom in a superposition of
^2"k momentum, they are allowed to evolve for a variable time t in the
anharmonic 1D trap (crossed dipole trap), before being released and
photographed 27ms later. The false colour in each image is rescaled to show
detail. These pictures are used to determine f(p ex). The first image shows
that some atoms remain near pex ¼ 0 at t ¼ 0. How many remain there
depends on n1D, implying that these remnant atoms do not result from an
imperfect pulse sequence, but rather from interactions during the grating
pulses or evolution of the momentum distribution during expansion. The
relative narrowness of the peaks in the last image compared to the first is
indicative of the reduction in spatial density that results from dephasing
(Fig. 1b). The transverse spatial width of each of the 14 image frames is
70 mm. Horizontal in the figure corresponds to vertical in the experiment, a
minor distinction because a magnetic field gradient cancels gravity for the
atoms.

Figure 3 | The expanded momentum distribution, f(pex), for three values
of go. The curves are obtained by transversely integrating absorption
images like those in Fig. 2. The spatial position, z, is approximately
proportional to the expanded momentum, p ex. The vertical scale is
arbitrary, but consistent among the curves. a, go ¼ 4; b, go ¼ 1; and
c, go ¼ 0.62. The highest (green) curve in each set is the average of f(p ex)
from the first cycle, that is, from the images like those in Fig. 2. The lower
curves in each set are f(p ex) taken at single times, t, after the atoms have
dephased: a, t ¼ 34ms, t ¼ 15t (blue) and 30t (red); b, t ¼ 13ms, t ¼ 15t
(blue) and 40t (red); and c, t ¼ 13ms, t ¼ 15t (blue) and 40t (red). The
changes in the distribution with time are attributable to known loss and
heating. (See Supplementary Information for a discussion of the fine spatial
structure in these curves.)
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Recombination takes place all the time, 
while scattering between the clouds 
- only during about 1/10 of the period

�1/�R ⇠ 1



Summary
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Strong nonmonotonic T� dependence
(unlike in 3D), with a max at T ⇥ Ts = ns

S. Tan, M.P., and L. Glazman, PRL 105, 090404 (2010) 

�q � �R ⇥
inelastic collisions due to deviations from the integrability
should be observable in ultracold atomic gases


