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Schematic view of experiment

Two edge-states coupled via quantum point contact
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Previous experiments in quantum wires
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Actual experiment with QHE edge states

Evolution of the distribution
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Vp ~40uV, T ~ 40mK

Iop(E) ~ dn(E)/dE

H. le Sueur, C. Altimiras, U. Gennser, A. Cavanna, D. Mailly, and F. Pierre
Phys. Rev. Lett 105, 056803 (2010)

At long distances from the QPC the system reaches a steady state



Theoretical description of edge states

As fermions
H= —z’hvf/w(a;)aﬂ/}(x)dx + ;/U(m — 2 p(z) p(z")dadx'

p(z) =l () (x)
Bosonic representation
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In terms of collective modes (plasmons)

H=> hwblby, wy=qlu+v(g), 27rh/d:rezqu
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Fractionalization at v = 2

Landau levels

E Modes mixed by interactions
v =0vEg

Injected electron fractionalizes

(T (2, 1)9(0,0))[* =

v_t Vit X
Electron wave-packet spits into two, propagating with different velocities



Edge states far from equilibrium

Difficulties
> Interactions treated most simply via bosonization

» Tunneling at QPC simplest in fermionic language

Previous work on theory for relaxation experiments
» Boltzmann equation: Lunde et. al. (2010)

» QPC as source of plasmon noise: Degiovanni et. al. (2010)

» Weak tunnelling at QPC: Levkivskyi and Sukhorukov (2012)

Approaches here
» Quantum quench as idealisation

» Exact treatment via bosonization + refermionisation



Theoretical Idealisation: Quantum quench

Evade treatment of point contact
Study the time evolution in translationally invariant edge

Initial state |4)) n(E)

Time evolution

[(2)) = e[

E
) Initial distribution
Properties of |¢(t)) 7

Energies of collective modes conserved — consequences for
equilibration ?



Physical picture of equilibration
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Hamiltonian in terms of collective modes H = an "wgnbgnben
Edge magnetoplasmon dispersion — electron equilibration 7

Initial distance between wave-packets S = hvy/eV
Wave-packet spread due to dispersion [(t)
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Equilibration from two mode velocities

Two edge states coupled by short-range interactions (assume
screening of Coulomb interactions)

Two plasmon modes with linear dispersion and different velocities
wi(q) = viq and w_(g) = v_g

Initial wave-packets separation S = hv/eV
Wave-packets size [(t) =t x (v4 —v_)
Equilibration when wave-packets spread [(t) 2 S

h vy +v_

Equilibration time toq = v
eV vy —ov_



What are the properties of equilibrium states

Characterize using single-particle (electron) correlation functions

Need to calculate G(x,t) = (1T (x, £)1(0,0))
In a thermal state: G(z,t) = [—2iBhv sinh(r[x + 0] /Bhv)] !

Approach to calculations:
Alternate between bosonic and fermionic description

Initial state is simple in fermions ¢ () ~ e~ ()
Time evolution is described using bosonic operators

B t) ~ X, (B2 byt 4 )

Back to fermions to calculate observables E,TI [2”]1/2 D€ ck+q



What are the properties of equilibrium states

Characterize using single-particle (electron) correlation functions
Need to calculate G(z,t) = (¢f(x, £)2(0,0))

We obtain G(z,t) ~ (expli [ K (x,t;y)p(y)dy])
At long times K (z,t;2/2 — vt + &) ~ F(xz/1(t),&/1(t))
where [(t) is the size of the wave-packet

For v =1 in the long-time limit

G(,t) ~ exp[— [ Clx,1)(p(0)p(y))dy]
with C(z,y) = 72[|z — y| + |z + y| — 2|y|], independent of U(x)

Generalization of Dzyaloshinskii-Larkin theorem



Comparison with a thermal state

Short distance correlations are the same as in the thermal state

Long distance correlations G(z,t) ~ exp (—a|x|) where « is not
fixed by the energy density

QY piox

G (z) ~

T or T +1ia
n(k,t) = 1 — LeaUH18) D () Im[(—ik/Q + ma /2)~%], o = 2p(1 — p).
2 ™
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Initial state Difference with a thermal state



Model of the experiment 1]
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Tunneling between down channels

Assume short-range interactions )

Hyun = tqpet] ) (0)h(0) + hec.

Need to calculate the current throught the QD

2
Iop(E) = ew /G (d,7)e " ET/" dr

with the Green function at distance d from the QPC

Go(d,7) = (HT/Mjl (@) HT/ My (d))



Bosonization

Introduce bosonic fields gZA)ns(x) and Klein-factors 13’775

@;778(33) = (27ra)*1/2]3‘77861'27"%564&,5(:;:)

Rotate the bosonized Hamiltonian using a matrix

1 1 1 1
11 -1 1 -1
U_§ 1 1 -1 -1
1 -1 -1 1

so that (Ys, ¥a_ Xa, Xs. )T = Ulpiy b1) ¢ay dop)"
n hvg ~ odxr  hv_ R odx
=" (0, o [ (OeX- (@)=
5 [ OaX+(2))"5 -+ = [ (GaX=(2))"

Two Fermi velocities v+ = v & g for the corresponding modes



Refermionization of the bosonic Hamiltonian

The tunneling Hamiltonian in bosonized form
ﬁtun = tQPCFfiﬁg\Lei[éll(0)_‘2’%(0)] +h.c.

and ¢1,(0) — $2,(0) = X4, (0) — xa_(0)
Need to introduce new Klein-factors

i EL = BlRy, Fs Bl =B By,
U 2 S Y 7 qtopt ot pt
ng_ 12_;,_ - FlTF2J,7 FS+FA_ - Fl.i—TFQ\L

The refermionized Hamiltonian has a free electron form

H=—ih» v, / 010, 0,dr — [tqpc \TILF(O)\TIAf(O) +h.c]

also FlTTFL = F21+F;+ and ngﬁ% = FA+F§+, bias voltage



Results
Exact expression for the correlator
Gs(d, ) = Go(r) (e War @DENa-(@D]y
where we introduce electron counting operator

~

d+vyT N N
AT /d () B () dy

and Go(71) = L L L

i i I
2Bh(v4v_)2 sinh2 [/357:)+ (—vg7+ia)] sinh2 [ 77— (—v_7+ia)]

Long-distance behavior of the GF

<e_m[NA+(d7T)iNA_(d’T)]>norm = X—(Fm, 7)x+ (=7, 7)

with Xi((s, T) = <€i6'/\7i(d’7)>norm

For asympt. at long times, see Mirlin et.al.



Numerical evaluation of the correlators
Approach by Mirlin et.al.: only for equilibrium states

write x as a determinant
(eONET)y = det{[1 — P(e~® — 1)iy(c)P]}

can be represented as (ei‘sNi(T)> = det[f(t; — t;)]
F(e) = [1 = nsfe)(e™ — 1)]e 55
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Intermediate distances from QPC

Levitov's FCS formula. Use scattering states.

<[Sv1(OO)]Te—iW[NAJr(d,T):I:NA,(d,T)]SJ(OO»O

= det[1 — n(e)[[S(00)]fe~TENA- (@) +Nar (d] G (50) — 1]

The scattering matrices can be calculated from a noninteracting
Hamiltonian with two Fermi-velocities

[ (00)] "W 44 ()5 (00) =
cos QW 4, (z) —isinf [v,/v+]1/2 \iJLL (v_x/vy)
[5" ()" 4— ()57 (00) =

cosO Wy (z) —ising [vy /v ]2 TN (viz/v)



Normalized Green functions
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As a function of voltage at T' = 0 for different distances from QPC, with

initial GF corresponding to a double-step

At large distances from QPC the GFs in the inner and outer channels
converge to the same function (in the strong coupling limit)



Comparison with the experimental data
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Single fitting parameter, interaction strength
vy = (UJQc +¢%) /29 = 6.5 x 10*m/s

D. L. Kovrizhin and J. T. Chalker, arXiv:1111.3914



Summary

Quantum quench approach on isolated edge is useful toy
model of experiment with two edges coupled at QPC

> Interactions bring system into non-thermal steady state
» At v = 1 steady state is independent of interactions
Full problem with QPC is solvable at v = 2

» Asymptotic steady state is same as for quench, and is
non-thermal

» Calculated evolution of tunneling density of state with distance
matches experiment well

Exact approach can be used to describe electronic
Mach-Zehnder interferometers at v = 2
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