Relaxation in driven Integer quantum Hall edge states

Dima Kovrizhin

Max-Planck Institute for the Physics of Complex Systems Dresden, Germany

May 21, 2012

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

work with J.T. Chalker Phys. Rev. B 84, 085105 (2011) and arXiv:1111.3914

Motivation

Experiments on evolution of nonequilibrium electron distribution

Description of edge states

Model Electron fractionalization

Theoretical approaches to equilibration

Quantum quench as an idealization Exact solution via bosonization + refermionization

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Results

Relaxation in an integrable system Non-thermal steady states

Summary

Schematic view of experiment

Two edge-states coupled via quantum point contact

H. le Sueur, C. Altimiras, U. Gennser, A. Cavanna, D. Mailly, and F. Pierre Phys. Rev. Lett 105, 056803 (2010)

Previous experiments in quantum wires

H. Pothier, S. Gueron, Norman O. Birge, D. Esteve, M.H. Devoret Phys. Rev. Lett. 79, 3490 (1997)

・ロト ・ 雪 ト ・ ヨ ト

Actual experiment with QHE edge states

 $I_{QD}(E) \sim dn(E)/dE$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

H. le Sueur, C. Altimiras, U. Gennser, A. Cavanna, D. Mailly, and F. Pierre Phys. Rev. Lett 105, 056803 (2010)

At long distances from the QPC the system reaches a steady state

Theoretical description of edge states

As fermions

$$\begin{split} \hat{H} &= -i\hbar v_f \int \hat{\psi}^{\dagger}(x) \partial_x \hat{\psi}(x) dx + \frac{1}{2} \int U(x - x') \hat{\rho}(x) \hat{\rho}(x') dx dx' \\ \hat{\rho}(x) &= \hat{\psi}^{\dagger}(x) \hat{\psi}(x) \end{split}$$

Bosonic representation

$$\hat{H} = \frac{\hbar v_f}{2} \int (\partial_x \hat{\phi}(x))^2 \frac{dx}{2\pi} + \frac{1}{2} \int U(x - x') \partial_x \hat{\phi}(x) \partial_{x'} \hat{\phi}(x') \frac{dx}{2\pi} \frac{dx'}{2\pi}$$

In terms of collective modes (plasmons)

$$\hat{H} = \sum_{q} \hbar \omega_q \hat{b}_q^{\dagger} \hat{b}_q, \quad \omega_q = q[u + v(q)], \quad v(q) = \frac{1}{2\pi\hbar} \int dx e^{iqx} U(x)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fractionalization at $\nu = 2$

・ロト・雪ト・雪ト・雪・ 今日・

Edge states far from equilibrium

Difficulties

- Interactions treated most simply via bosonization
- Tunneling at QPC simplest in fermionic language

Previous work on theory for relaxation experiments

- Boltzmann equation: Lunde et. al. (2010)
- ▶ QPC as source of plasmon noise: Degiovanni et. al. (2010)
- Weak tunnelling at QPC: Levkivskyi and Sukhorukov (2012)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Approaches here

- Quantum quench as idealisation
- Exact treatment via bosonization + refermionisation

Theoretical Idealisation: Quantum quench

Evade treatment of point contact

Study the time evolution in translationally invariant edge

Energies of collective modes conserved \rightarrow consequences for equilibration ?

Physical picture of equilibration

Hamiltonian in terms of collective modes $\hat{H} = \sum_{qn} \hbar \omega_{qn} \hat{b}^{\dagger}_{qn} \hat{b}_{qn}$ Edge magnetoplasmon dispersion \rightarrow electron equilibration ? Initial distance between wave-packets $S = \hbar v_f / eV$ Wave-packet spread due to dispersion l(t)

Equilibration when $l(t) \gtrsim S$

Equilibration from two mode velocities

Two edge states coupled by short-range interactions (assume screening of Coulomb interactions)

Two plasmon modes with linear dispersion and different velocities $\omega_+(q)=v_+q$ and $\omega_-(q)=v_-q$

Initial wave-packets separation $S = \hbar v/eV$

Wave-packets size $l(t) = t \times (v_+ - v_-)$

Equilibration when wave-packets spread $l(t) \gtrsim S$

Equilibration time
$$t_{eq} = rac{\hbar}{eV} rac{v_+ + v_-}{v_+ - v_-}$$

What are the properties of equilibrium states

Characterize using single-particle (electron) correlation functions

Need to calculate $G(x,t) = \langle \hat{\psi}^{\dagger}(x,t)\hat{\psi}(0,0)\rangle$ In a thermal state: $G(x,t) = [-2i\beta\hbar v \sinh(\pi [x+i0]/\beta\hbar v)]^{-1}$

Approach to calculations: Alternate between bosonic and fermionic description

Initial state is simple in fermions $\hat{\psi}(x) \sim e^{-i\hat{\phi}(x)}$

Time evolution is described using bosonic operators $\hat{\phi}(x,t) \sim \sum_{a} [\frac{2\pi}{aL}]^{1/2} [\hat{b}_{a} e^{iqx - i\omega_{q}t} + h.c]$

Back to fermions to calculate observables $\hat{b}_q^\dagger \sim [rac{2\pi}{qL}]^{1/2} \sum_k \hat{c}_{k+q}^\dagger \hat{c}_k$

What are the properties of equilibrium states

Characterize using single-particle (electron) correlation functions Need to calculate $G(x,t) = \langle \hat{\psi}^{\dagger}(x,t)\hat{\psi}(0,0) \rangle$

We obtain $G(x,t) \sim \langle \exp[i \int K(x,t;y) \hat{\rho}(y) dy] \rangle$

At long times $K(x,t;x/2-vt+\xi) \sim F(x/l(t),\xi/l(t))$

where l(t) is the size of the wave-packet

For $\nu = 1$ in the long-time limit

 $G(x,t) \sim \exp[-\int C(x,t) \langle \hat{\rho}(0) \hat{\rho}(y) \rangle dy]$

with $C(x,y) = \pi^2[|x-y| + |x+y| - 2|y|]$, independent of U(x)

Generalization of Dzyaloshinskii-Larkin theorem

Comparison with a thermal state

Short distance correlations are the same as in the thermal state

Long distance correlations $G(x,t) \sim \exp(-\alpha |x|)$ where α is not fixed by the energy density

Initial state

Difference with a thermal state

Model of the experiment

Assume short-range interactions

・ロト ・ 雪 ト ・ ヨ ト

э

$$\hat{H}_0 = -i\hbar v \sum_{\eta,s} \int \hat{\psi}_{\eta s}^{\dagger}(x) \partial_x \hat{\psi}_{\eta s}(x) \, \mathrm{d}x + 2\pi\hbar g \sum_{\eta} \int \hat{\rho}_{\eta\uparrow}(x) \hat{\rho}_{\eta\downarrow}(x) \, \mathrm{d}x$$

Tunneling between down channels

$$\hat{H}_{\text{tun}} = t_{\text{QPC}} \hat{\psi}_{1\downarrow}^{\dagger}(0) \hat{\psi}_{2\downarrow}(0) + \text{h.c.}$$

Need to calculate the current throught the QD

$$I_{QD}(E) = \frac{e|t_{\rm D}|^2}{\hbar^2} \int G_s(d,\tau) e^{-iE\tau/\hbar} d\tau$$

with the Green function at distance \boldsymbol{d} from the QPC

$$G_s(d,\tau) = \langle e^{i\hat{H}\tau/\hbar}\hat{\psi}_{2s}^{\dagger}(d)e^{-i\hat{H}\tau/\hbar}\hat{\psi}_{2s}(d)\rangle$$

Bosonization

Introduce bosonic fields $\hat{\phi}_{\eta s}(x)$ and Klein-factors $\hat{F}_{\eta s}$

$$\hat{\psi}_{\eta s}(x) = (2\pi a)^{-1/2} \hat{F}_{\eta s} e^{i\frac{2\pi}{L}\hat{N}_{\eta s}} e^{-i\hat{\phi}_{\eta s}(x)}$$

Rotate the bosonized Hamiltonian using a matrix

so that $(\hat{\chi}_{S_+} \ \hat{\chi}_{A_-} \ \hat{\chi}_{A_+} \ \hat{\chi}_{S_-})^T = U(\hat{\phi}_{1\uparrow} \ \hat{\phi}_{1\downarrow} \ \hat{\phi}_{2\downarrow} \ \hat{\phi}_{2\uparrow})^T$

$$\hat{H} = \frac{\hbar v_{+}}{2} \int (\partial_x \hat{\chi_{+}}(x))^2 \frac{dx}{2\pi} + \frac{\hbar v_{-}}{2} \int (\partial_x \hat{\chi_{-}}(x))^2 \frac{dx}{2\pi}$$

Two Fermi velocities $v_\pm = v \pm g$ for the corresponding modes

Refermionization of the bosonic Hamiltonian

The tunneling Hamiltonian in bosonized form

$$\hat{H}_{\text{tun}} = t_{\text{QPC}} \hat{F}^{\dagger}_{1\downarrow} \hat{F}_{2\downarrow} e^{i[\hat{\phi}_{1\downarrow}(0) - \hat{\phi}_{2\downarrow}(0)]} + \text{h.c.}$$

and $\hat{\phi}_{1\downarrow}(0) - \hat{\phi}_{2\downarrow}(0) = \hat{\chi}_{A_+}(0) - \hat{\chi}_{A_-}(0)$

Need to introduce new Klein-factors

$$\hat{F}_{S_{-}}^{\dagger}\hat{F}_{A_{-}}^{\dagger} = \hat{F}_{1\uparrow}^{\dagger}\hat{F}_{1\downarrow}, \quad \hat{F}_{S_{-}}\hat{F}_{A_{-}}^{\dagger} = \hat{F}_{2\downarrow}^{\dagger}\hat{F}_{2\uparrow}, \hat{F}_{S_{-}}^{\dagger}\hat{F}_{A_{+}}^{\dagger} = \hat{F}_{1\uparrow}^{\dagger}\hat{F}_{2\downarrow}, \quad \hat{F}_{S_{+}}^{\dagger}\hat{F}_{A_{-}}^{\dagger} = \hat{F}_{1\uparrow}^{\dagger}\hat{F}_{2\downarrow}^{\dagger}.$$

The refermionized Hamiltonian has a free electron form

$$\hat{H} = -i\hbar \sum_{\alpha} v_{\alpha} \int \hat{\Psi}_{\alpha}^{\dagger} \partial_x \hat{\Psi}_{\alpha} dx - [t_{\text{QPC}} \ \hat{\Psi}_{A_+}^{\dagger}(0) \hat{\Psi}_{A_-}(0) + \text{h.c.}]$$

also $\hat{F}_{1\uparrow}^{\dagger}\hat{F}_{1\downarrow}^{\dagger}=\hat{F}_{A_{+}}^{\dagger}\hat{F}_{S_{+}}^{\dagger}$ and $\hat{F}_{2\downarrow}^{\dagger}\hat{F}_{2\uparrow}^{\dagger}=\hat{F}_{A_{+}}\hat{F}_{S_{+}}^{\dagger}$, bias voltage

Results

Exact expression for the correlator

$$G_s(d,\tau) = G_0(\tau) \langle e^{-i\pi [\mathcal{N}_{A+}(d,\tau) \pm \mathcal{N}_{A-}(d,\tau)]} \rangle_{\text{norm}}$$

where we introduce electron counting operator

$$\hat{\mathcal{N}}_{lpha}(d, au) = \int_{d}^{d+v_{\pm} au} \hat{\Psi}^{\dagger}_{lpha}(y) \hat{\Psi}_{lpha}(y) dy$$

and
$$G_0(\tau) = \frac{i}{2\beta\hbar(v_+v_-)^{\frac{1}{2}}} \frac{1}{\sinh^{\frac{1}{2}}[\frac{\pi}{\beta\hbar v_+}(-v_+\tau+ia)]} \frac{1}{\sinh^{\frac{1}{2}}[\frac{\pi}{\beta\hbar v_-}(-v_-\tau+ia)]}$$

Long-distance behavior of the GF

$$\langle e^{-i\pi[\mathcal{N}_{A+}(d,\tau)\pm\mathcal{N}_{A-}(d,\tau)]} \rangle_{\text{norm}} = \chi_{-}(\mp\pi,\tau)\chi_{+}(-\pi,\tau)$$

with $\chi_{\pm}(\delta,\tau) = \langle e^{i\delta\hat{\mathcal{N}}_{\pm}(d,\tau)} \rangle_{\text{norm}}$

For asympt. at long times, see Mirlin et.al.

Numerical evaluation of the correlators

Approach by Mirlin et.al.: only for equilibrium states write χ as a determinant

$$\langle e^{i\delta\hat{\mathcal{N}}_{\pm}(d,\tau)} \rangle = \det\{[1 - \hat{P}(e^{-i\delta} - 1)\hat{n}_{\pm}(\varepsilon)\hat{P}]\}$$

can be represented as $\langle e^{i\delta\hat{N}_{\pm}(\tau)} \rangle = \det[f(t_i - t_j)]$ $\tilde{f}(\varepsilon) = [1 - n_{\pm}(\varepsilon)(e^{-i\delta} - 1)]e^{-i\frac{\delta}{2}\frac{\varepsilon}{\Lambda}}$

for different values of δ

for different values of βeV

Intermediate distances from QPC

Levitov's FCS formula. Use scattering states.

$$\begin{aligned} \langle [\hat{S}^{I}(\infty)]^{\dagger} e^{-i\pi [\mathcal{N}_{A+}(d,\tau)\pm \mathcal{N}_{A-}(d,\tau)]} \hat{S}^{I}(\infty) \rangle_{0} \\ &= \det[1-n(\varepsilon)[[\hat{S}(\infty)]^{\dagger} e^{-i\pi [\pm \hat{\mathcal{N}}_{A-}(d,\tau)+\hat{\mathcal{N}}_{A+}(d,\tau)]} \hat{S}^{I}(\infty)-1] \end{aligned}$$

The scattering matrices can be calculated from a noninteracting Hamiltonian with two Fermi-velocities

$$[\hat{S}^{I}(\infty)]^{\dagger}\hat{\Psi}_{A+}(x)\hat{S}^{I}(\infty) = \\ \cos\theta\,\hat{\Psi}_{A+}(x) - i\sin\theta\,\left[v_{-}/v_{+}\right]^{1/2}\hat{\Psi}_{A-}^{\dagger}(v_{-}x/v_{+})$$

$$[\hat{S}^{I}(\infty)]^{\dagger} \hat{\Psi}_{A-}(x) \hat{S}^{I}(\infty) = \cos\theta \,\hat{\Psi}_{A-}(x) - i \sin\theta \, \left[v_{+}/v_{-} \right]^{1/2} \hat{\Psi}_{A_{+}}^{\dagger}(v_{+}x/v_{-})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Normalized Green functions

As a function of voltage at T = 0 for different distances from QPC, with initial GF corresponding to a double-step

(日)、(四)、(E)、(E)、(E)

At large distances from QPC the GFs in the inner and outer channels converge to the same function (in the strong coupling limit)

Comparison with the experimental data

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Single fitting parameter, interaction strength $v_f = (v_f^2 + g^2)/2g = 6.5 \times 10^4 \text{m/s}$

D. L. Kovrizhin and J. T. Chalker, arXiv:1111.3914

Summary

Quantum quench approach on isolated edge is useful toy model of experiment with two edges coupled at QPC

- Interactions bring system into non-thermal steady state
- At $\nu = 1$ steady state is independent of interactions
- Full problem with QPC is solvable at $\nu=2$
 - Asymptotic steady state is same as for quench, and is non-thermal
 - Calculated evolution of tunneling density of state with distance matches experiment well

Exact approach can be used to describe electronic Mach-Zehnder interferometers at $\nu=2$