“New quantum states of matter in and out of equilibrium”
The Galileo Galilei Institute for Theoretical Physics, Arcetri, Florence, Italy, May 21-25,2012
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® The previously-overlooked collective degree of freedom in the
FQHE is a dynamical internal geometry associated with
incompressibility

® This geometry can be found in the Laughlin state (and other
model states), but was hidden for the last 30 years because of
misinterpretation of the meaning of the “Laughlin wavefunction”

® A revised description of FQHE edges may reconcile theory and
experiment
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® In the “clean limit” of the integer quantum
Hall effect, at energies and temperatures
below the Landau-level spacing, there are no
low-energy electronic excitations

® The electric current on the 2D surface obeys
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e Simple picture of fractional QHE until
recently was similar to integer QHE, except

for fractional quantization o € elementary
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® New feature is similar to FQH ferromagnet,
where electrons couple to a combination of
magnetic flux and Berry curvature of the
ferromagnetic order parameter(Skyrmions)

® The electron density is no longer rigidly tied
to the magnetic flux density, it can deviate
from it at the expense of paying the
correlation energy cost for geometric
distortion.

® Old results of Girvin, Macdonald and
Platzman (O(¢*) “guiding-center structure

factor”) get a simple explanation as zero-
point fluctuations of the geometry



® elementary unit of the FQHE fluid with v= p/qis a
“composite boson” of p electrons that exclude other

electrons from a region with ¢ London (h/e) flux quanta
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Y unimodulart | @ The shape of the “composite boson™ is a
just means dynamical local variable defined by a

det|g] = 1 unimodular 2D spatial metric g,(7,?)

® The orbitals inside the “composite boson” centered at 7
are defined by L(r)| ¥, (7)) = (m + 3)[¥m (7))
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® The metric (shape of the composite boson) has
a preferred shape that minimizes the correlation
energy, but fluctuates around that shape

Vs

® The zero-point fluctuations of the metric are ‘

seen as the O(¢*) behavior of the “guudlng-center‘( N
structure factor” (Girvin et al, (GMP), 1985) 0E o (distortion)®

® The metric has a companion “guiding center spin” that is topologically
quantized in incompressible states. total
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® Origin of FQHE incompressibility is analogous to
origin of Mott-Hubbard gap in lattice systems.

® There is an energy gap for putting an extra particle
in a quantized region that is already occupied

¢ On the lattice the “quantized
region” is an atomic orbital with %g """" y

----

a fixed shape € e
¢ In the FQHE only the area of Maeees®
the “quantized region” is fixed. SNEIEY EAp Pravepts
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minimize the correlation energy. region covered by the

composite boson



® Geometric action electromagnetic
(after Chern-Simons fields are integrated over) gauge potential S
spin connection
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® Action gives gapped spin-2 (graviton-like)
collective mode that coincides at long
wavelengths with the “single-mode

approximation” of Girvin-MacDonald and
Platzman.

® charge fluctuations relative to the back-
ground charge density fixed by the magnetic
flux are given by the Gaussian curvature

J) = — 20209 + 5 gacebac® (8e9*°) (059°%)
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zero-point fluctuations of gaussian curvature
give quantitatively correct O(q*) structure factor

second derivative of metric



fluid is compressed at edges

by creating Gaussian . 0
® near edges:
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® Previous theoretical treatments of FQHE
have missed the fundamental geometrical
degree of freedom associated with
incompressibility

® |ndeed, no viable theoretical explanation of
FQHE incompressibility was previously
found. By focussing on topological quantum
field theory which ASSUMES the
(unexplained) existence of incompressibility,
most theorists have avoided the issue.

® |n fact, the geometric degree of freedom can
already be found in the Laughlin
wavefunction, but deeply hidden during 30
years of its misinterpretation. HOW DID

THIS HAPPEN?



The “Laughlin wavefunction”

® originally proposed as a “lowest-Landau-level

Schrodinger wavefunction” to explain the
/3 FQHE state

Z2i = T+ i I “magnetic
z V2ep e = (]eB|) length”

® physical significance of z : n’th Landau orbit
has (semiclassical) shape | z|2 —n + %




® |andau level raising- and lowering-

operators:
H = : (7r —|—7r2)
om J

® Schrodinger representation:
52+ 0
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® holomorphic lowest Landau-Level
wavefunctions:

a¥(z,2*) = (32 + 0,+) ¥(2,2*) =0
® solution:

U(z,2*) = f(z)e" 2% %  single-particle
\ LLL wavefunction

holomorphic function



® Physicists seem to have been “mesmerized”
by the mathematical beauty of the LLL
wavefunctions.........

® TheVandermonde determinant provides a
natural “precursor” to the Laughlin state

U = [](2i — 2;) [ [ e~ 2% Filled N-particle

i< : LLL droplet
Laughlir? Laughlin’s “little”
wavefunction modification!
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® |n |983,while “mainstream” Condensed
Matter Physicists (like me) were struggling
with fancy second-quantized formalisms
to try to understand the FQHE, Bob P g
Laughlin arrived from on high carrying the \ | =
solution......

® 25 years after BCS theory of
superconductivity, which had
consigned Schrodinger wavefunctions
to the “dustbin of (Condensed Matter =
theory) history”, they were back!

® And they were providing insight
unimaginable in second-
quantization/Feynman-diagram
formulations!




® In retrospect, Laughlin’s solution seemed so
evidently correct and complete that it
appears to have frozen the development of
any understanding of the origin of FQHE
incompressibility for almost 30 years.

® The Laughlin wavefunction for the strongest
(1/3) FQHE state works, but why?

® |n the attempt to “explain”
why the Laughlin
wavefunction works,
theorists have been reduced
to mouthing nice-sounding
(but meaningless) platitudes
such as

‘The holomorphic
wavefunction
cleverly puts its
zeroes on top of the

other particles to
lower the Coulomb
energy”’




Various attempts to explain FQHE incompressibility:

® Ginzburg-Landau superfluidity with a Higgs-like effect due to a Chern-
Simons term

® Filling of “effective Landau levels” by “composite fermions™
® “Hamiltonian theory” of composite fermions

® non-commutative Chern-Simons theory with diffeomorphism invariance

There is no doubt that Chern=-Simons theories as
Topological Quantum Field theories capture the
essential topological features of FQHE liquids, but

TQFT provides NO information about energy
gaps and_incompressibility: because

TQFT has an effective Hamiltonian: H=0!




® None of these essentially “verbal” explanations

has provided a viable quantitative theory of
FQHE incompressibility.

® They attempt in various ways to provide an after-
the-fact explanation of the success of the
Laughlin wavefunction

Why all these attempts fail*, is because they did not
incorporate what turns out to have been the only

fundamental post-Laughlin result on FQHE

incompressibility, the 1985 results on the “guiding-cente
structure factor” of Girvin, MacDonald, and Platzman

*The CF picture due to Jain provides good model wavefunctions and a description of the
compressible Fermi-liquid-like state at v = 1/2 but no non-verbal explanation of incompressibility.



¢ Non-commutative geometry of Landau-orbit
guiding centers

’F displacement of electron from origin
shape of orbit around guiding

—

center is fixed by the R displacement of guiding center from origin
cyclotron effective mass “_ R’ displacement of electron relative to
tensor S
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guiding centers commute with Landau radii [R“, Ri’] =0 (a,b€ {:L‘, y})



® Schrodinger’s picture describes the system
by a wavefunction /(1) in real space

® Heisenberg’s picture describes the system by
a state | y) in Hilbert space

e They are only equivalent if the basis |7) of
states in real-space are orthogonal:

/ this fails
r)=ir i (rlr’) =0 .
Y(r) = (r|Y) |requires b o) *—Igr;:;:‘::ntum




— —
classical electron coordinate ¥ = R+ R,

The one-particle Hilbert-space factorizes
H = Hoc ® He
L

space isomorphic space isomorphic

to phase space in which to phase space in which
the guiding-centers act the Landau orbit radii act
[R®,RY] = —ilp RS, RY] = +ilj

e FQHE physics is *COMPLETELY*
defined in the many-particle
generalization (coproduct) of ;-

Once :%0(; is discarded, the Schrodinger picture is no longer valid!



Q: | When is a “wavefunction”
NOT a wavefunction?

A: When it describes a
‘““‘quantum geometry”

® |n this case space is “fuzzy”(non-commuting components of
the coordinates), and the Schrodinger description in real space
(i.e., in “classical geometry”) fails, though the Heisenberg
description in Hilbert space survives

® The closest description to the classical-geometry Schrodinger
description is in a non-orthogonal overcomplete coherent-
state basis of the quantum geometry.



Previous hints that the Laughlin “wavefunction” should
not be interpreted as a wavefunction:

® |aughlin states also occur in the second
Landau level, and in graphene, and more
recently in simulations of “flat-band” Chern
insulators

These don't fit into the original
paradigm of the Galileian-invariant

Landau level




® First, translate Laughlin to the Heisenberg picture:
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® Heisenberg form of Laughlin state (not
“wavefunction”)

Qi \If()> =
1 & ) -
v/?) = | [[(al -a})7| o)
1<J
€ Hac = H
Guiding-center Landau-orbit
factor (keep) factor (discard)

® At this point we discard the Landau-orbit
Hilbert space.

® The only “memory” of the shape of the
Landau orbits is “hidden” in the definition of a




The “purified” Laughlin state

] 3 - _ e
v,/) =] (@l - a})%)  ail¥o) =0
1<J
® This is now defined in the many-particle
guiding-center Hilbert space, without
reference to any Landau-level structure

® What defines C_Z,}L 4 It is the raising

L(g), C_LI (9)] = al c?‘pet.'a?:or for the
guiding-center

spin” L(g)

of particle i

dob is a 2x2 positive-definite unimodular (det = 1)
2D spatial metric tensor



® The Laughlin state has suddenly revealed its
well-kept secret- a hidden geometric degree
of freedom! It is parameterized by a
unimodular metric gqp!

v/%(9)) = [[ (@l (9) - a}(9))71%o(9))

® |n the naive LLL wavefunction picture, the
unimodular metric g, is fixed to be proportional

to the cyclotron effective mass tensor m™ .

® |n the reinterpretation it is a free parameter.




® As a variational parameter of the Laughlin
state, g,» must be chosen to minimize the

correlation energy.

® Unless there is rotational symmetry around
the normal to the 2D “Hall surface”, it will

not be congruent to the cyclotron effective
mass tensor,and  _
Tk g

(#)=(# &)(%)

o a— B =1 A Bogoliubov
transformation



e |f we reconstruct a wavefunction in the full
Hilbert space, the naive statement about the
zeroes of the wavefunction (as a function of
any one particle coordinate) coinciding with
the positions of the other particles is only

true if

z=2"



e guiding-center Coherent states (single particle)

a(9)|¥y(0)) =0
0, (2)) = e @200 |, (0)

® This is a non-orthogonal overcomplete basis
§(z,2') = (¥y(2)[¥y(2'))

® non-zero eigenvalues of the positive
Hermitian overlap function are holomorphic!
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® The “wavefunction” reappears as a guiding-

center coherent-state representation of the
Laughlin state!

WL ( g))*I—[/;;zzz ( [{G-z)]]e

NI'—*
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same as “Laughlin / ‘

5 Many-particle coherent
wavefunction ’*bUt state, parametrized b
with 2; — Z; » P Y g
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® The “wavefunction” has reappeared, but is
not a wavefunction! This will apply in general

to model states (Moore-Read, etc,obtained as
CFT correlators)



Quantum Geometry

® A much more powerful result follows from
the realization that the metric g, is not just

a “‘variational parameter of the Laughlin

state” but the fundamental dynamical degree
of freedom of the FQHE.

® Once the connection to quantum geometry
is made many things follow.



’

“Bohm-Aharonov becomes Berry

® How does a “fuzzy electron” experience a
Bohm-Aharonov phase?

_______ = ‘ ST e
k- %
h ---- 66 3 SRR
-------------- fuzzy charged partlcle is

point particle going transported as a guiding-
around a loop picks center coherent state with a
up the Bohm- center that traces out a
Aharonov phase closed path

Berry phase = BA phase of path



® The state that is transported doesn’t have to
be the central coherent state of the basis

L(g)|¥g,m(0)) = 8m|¥g,m(0))

sm:m—i-%, =012 ...

“« Provided the coherent-state metric

-------
P R T e

X‘“ "3 . ga does not change during the
TN +  adiabatic transportation process, the
.‘ .~ Berry phase equals the BA phase of
e ' the path, independent of m

If the metric does vary, the Berry phase turns out to be
= Sm X (geodesic curvature of metric g,; around path)

Which leads directly to the guiding-center spin coupling to
Gaussian curvature!



SUMMARY

® New collective geometric degree of freedom
leads to a description of the origin of
incompressibility in FQHE in a continuum
“geometric field theory”

® many new relations: guiding-center spin
characterizes coupling to Gaussian curvature
of intrinsic metric, stress in fluid, guiding-
center structure-factors, etc.

http://wwwphy.princeton.edu/~haldane

Can be also be accessed through Princeton University Physics Dept home page
(look for Research:condensed matter theory)

also see arXiv (search for author=haldane)



