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Much ado about topological order

Systems with topological order in 2+1 dimensions typically have
anyonic/fractionalized/spin-charge separated excitations.

These quasiparticles can even have non-abelian statistics, i.e.
when “braided” around each other, the system can change state.

Local perturbations don’t affect statistics, so this gives promise for
topologically protected quantum computing.



What is topological order?

* Conceptually useful definition: the number of ground states
depends on topological properties (e.g. genus) of space.

« Common characteristic: gapless edge modes



Free fermion cases are now well understood

For example, topological insulators and superconductors made
from free fermions in arbitrary dimensions have been classified

via K theory: Kitaev; via edge theories: Ryu, Schnyder, Furusaki, Ludwig

A well-known example is the integer quantum Hall effect.

This, however, is not the simplest example...



The quantum Ising chain

Yes, the one Onsager solved in the ‘40s ...
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The partition function of a two-dimensional ‘“ferro-
magnetic”’ with scalar “‘spins’’ (Ising model) is computed
rigorously for the case of vanishing field. The eigenwert
problem involved in the corresponding computation for a
long strip crystal of finite width (# atoms), joined straight
to itself around a cylinder, is solved by direct product
decomposition; in the special case #=« an integral
replaces a sum. The choice of different interaction energies
(£J, &£J') in the (01) and (10) directions does not
complicate the problem. The two-way infinite crystal has
an order-disorder transition at a temperature T'=1T given
by the condition

sinh (2J/&T.) sinh(2J"/kT o) =1.

57 years later, Kitaev made a trivial-but-profound observation:

The energy is a continuous function of T; but the specific
heat becomes infinite as —log |T—T,|. For strips of
finite width, the maximum of the specific heat increases
linearly with log #. The order-converting dual transfor-
mation invented by Kramers and Wannier effects a simple
automorphism of the basis of the quaternion algebra which
is natural to the problem in hand. In addition to the
thermodynamic properties of the massive crystal, the free
energy of a (0 1) boundary between areas of opposite order
is computed; on this basis the mean ordered length of a
strip crystal is

(exp (2J/kT) tanh(2J'/kT))~.



Fermions exist in nature

The easiest way to solve the 2d Ising model is to follow
Kaufmann and map it on to free fermions. In the 1d quantum
chain limit, this amounts to a Jordan-Wigner transformation.

If your physical system is comprised of spins, then this is a
mathematical trick.

But if your physical system is comprised of fermions...
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Abstract

Certain one-dimensional Fermi systems have an energy gap in the
bulk spectrum while boundary states are described by one Majorana
operator per boundary point. A finite system of length L possesses two
ground states with an energy difference proportional to exp(—L/lp)
and different fermionic parities. Such systems can be used as qubits
since they are intrinsically immune to decoherence. The property of a
system to have boundary Majorana fermions is expressed as a condi-
tion on the bulk electron spectrum. The condition is satisfied in the
presence of an arbitrary small energy gap induced by proximity of a
3-dimensional p-wave superconductor, provided that the normal spec-
trum has an odd number of Fermi points in each half of the Brillouin
zone (each spin component counts separately).



In terms of fermions, the quantum Ising chain includes a
Cooper-pairing interaction ¥/ l// + Y Y, so fermion number

is only conserved mod 2.

As a consequence, the fermions are Majorana: they have a single
fermi point. In old-folks language, there is no fermion doubling.

Open boundary conditions in the Ising ordered phase yield
edge zero modes in the fermion picture.

Ising order corresponds to topological order!



Even more remarkably, these correspondences can be extended
to 2d quantum models.

The Kitaev honeycomb model is a spin model with nearest-
neighbor interactions. By exploiting a non-obvious gauge
symmetry, it can be mapped on to free fermions with a
background gauge field.

Breaking time-reversal symmetry results in topological order!



Majoranas are not the end of the story

Interacting systems such as the fractional quantum Hall effect
exhibit still more interesting behavior: charge fractionalization,
universal topological guantum computation...

Understanding the physics here is much more difficult.

A basic thing to do is to add local fermion interactions. In 1d, this
results in a classification very similar to that of free-fermi systems.

Fidkowski and Kitaev



A different approach to topological order
for interacting systems

e 1d spin” systems with Zn symmetry can be mapped onto
parafermions. These in general are not perturbations of free
fermions, and are strongly interacting.

* Nonetheless, in 1d they can have edge zero modes, just like
Majorana/lsing.

 Moreover, there are 2d spin models a |la Kitaev that map onto
parafermions plus background Z gauge field.



Outline

Edge/zero modes in the Ising/Majorana chain

Edge/zero modes in the 3-state (chiral) Potts chain using
parafermions
an unusual form of integrability

Coupling chains to make 2d Zn gauge theories
generalizing the Kitaev honeycomb model



How to fermionize the quantum Ising chain

H = Z ffg —|—J0'3f0']_|_1}

flip term interaction

Critical point is when J = f, ordered phase is J > .

ZQ symmetry operator is flipping all spins:

Hj U;'j



Jordan-Wigner transformation
in terms of Majorana fermions

. R T Y X
VY = 0; Hfﬂ;, Xi = 9; HUz‘
i<j\ /,z’<j

string

Wi i} =AXi, X5} = 26i,  {¥i, x51 =0

ZQ symmetry measures even or odd number of fermions:

(—1)" =1L o7 = TL(ivbix ;)



The Hamiltonian in terms of fermions

* with free boundary conditions:

N_— /\/\/\/\ /\/\/\/\/\/\ N\
@O @O @O @O

ZfZ%XJ ‘|‘7“]Z X5 P41

71=1
e with periodic boundary conditions on the fermions:
/\/\ /\/\/\/\ /\/\/\/\/\/\/\
@O @O @O @O @O @O @O

[—— ——

N
=i ) _[fvixs + Ixivse]
j=1

A catch: when written in terms of spins, this is twisted by —(—1)*



Extreme limits:
« J =0 (disordered in spin language):
N\ N\ N\ N\ N\ N\ N\ N\
@O @O @O @O @O @O @O @O

* f=0(orderedin spin language):

~ N7 N7 N7 N NN N
@O @O @O @O @O @O @O @O

The fermions on the edges, ¥, and ¥, ,do not appear in H
when f =0. They commute with H!



Gapless edge modes == topological order

* When f =0, the operators X; and ¥, map one ground state
to the other — they form an exact zero mode.

* The gapless edge modes persist for all f < J : the series
2
S f

commutes with H.

* When f< J thisisis localized near the edge.



How does one characterize topological order
with periodic boundary conditions?

F
Simple way for 1d: can show it depends on (—1) of ground state.

Even fancier way: compute sign of Pfaffian.

For the experts: this is the 1d analog of the 2d Chern number.



On to the Z case:

Fradkin and Kadanoff showed long ago that 2d spin models
with Z, symmetry can be written in terms of parafermions.

Fateev and Zamolodchikov found integrable critical self-dual
lattice spin models with Zn symmetry. Later they found an
elegant CFT description of the continuum limit.

Read and Rezayi constructed fractional quantum Hall
wavefunctions using the CFT parafermion correlators.



The 3-state (chiral) Potts model

The quantum chain version of the 3-state Potts model:

H=— Z {f(ij—l— Tj) + J(U;r.ajﬂ ;—h.e.)}

flip term potential

0 1 0 10 0
=100 1], o=1[0 7?0
1 O O 0 0 8—27T7j/3




Define parafermions just like fermions:

In a 2d classical theory, they’re the product of order and
disorder operators. In the quantum chain,

wj:ffj”%;, Xj:TjUan

i< 1<
WP=xt=1, ¢? =y’ x?=y

Instead of anticommutators, fort <jand y =y or y:

27i/3

Y.v,=¢ VY



The Hamiltonian in terms of parafermions:

/\/\ /\/\/\/\ /\/\/\/\/\/\ N\
@O @O @O @O @O @O

@O
A=Wl + xde) T~ = JWL G Xie)
flip term potential

These parafermions are not perturbations of free fermions — they
cube to 1. The model isn’t even integrable unless J = f.

However, when f =0, there are edge zero modes!

~ N7 N7 N7 NN NN
@O @O @O @O @O @O @O @O



Does the zero mode remainfor J > f >0 ?

We can’t cheat like in the Ising chain and just solve the model.

First study an easier problem, and take periodic boundary
conditions. Can we find an analogous " zero” mode?

A parafermion zero” mode shifts the energy uniformly between
7., sectors, i.e.

|H,Y]=(AE)Y

There is a " zero” mode only if the couplings obey an
interesting constraint!



Generalize to the chiral Potts model:
A=+ e )~ =T X+ e X i)
Look for a “"zero” mode linear in the parafermions:

U= lajb + 6!
j

Then there is an exact zero” mode if the couplings obey:

fcos(3¢) = J cos(30)



fcos(3¢) = J cos(30)

This calculation is the world’s easiest way of finding the
couplings of the integrable chiral Potts chain.

Howes, Kadanoff and den Nijs; von Gehlen and Rittenberg; Albertini, McCoy, Perk
and Tang; Baxter; Bazhanov and Stroganov

The integrable chiral Potts model is quite peculiar. The
Boltzmann weights of the 2d classical analog are
parameterized by higher genus Riemann surfaces instead of
theta functions. They satisfy a generalized Yang-Baxter
equation with no difference property. They are also 2d
reductions of solvable 3d classical models.



The “superintegrable” line @ = (b = 7t / 6 is very special.
Here the “zero” mode occurs for all values of f and J.

This is halfway between ferro and antiferromagnet, because

/6 —im/6
e’ + e =\/§

in/6 f —iml6 _ ir/6 _—i2m/3 —ir/6 2im3 __
o,e™ +0/ e = & ™ +e e =0
ein/6ei27r/3 4+ e—m/6 —2ir3 _ _ /

and so the spectrum is invariant under H — —H .

These are very good signs for the existence of an edge zero
mode. An even better sign:



Label the sums of the flip and interaction terms as

_ ir/6 —im/6 7
AO—Z(e o, +te 0;)

J
A1 =2(€W6T T 4e —in/6 Jr

j+l1 j+1)

Taking commutators of the these, one finds remarkable
simplifications. They satisfy the Onsager algebra.

The identical algebra Onsager used to solve the Ising model
originally also occurs in the chiral Potts models!

This allows the explicit construction of an infinite series of
guantities commuting with the Hamiltonian

von Gehlen and Rittenberg



Onsager’s original paper:

By (57) we have also

(61)

[Am Amin]=0. which is also valid 1n mn=0. It

If we exclude these trivial cases, the congruences 1is easily shown from (60) and (61) that the
commutators Gy, ---, G,—1 commute with each

a=b; atk=b+m other. We have generally

[Gmy [Ar, Ao 11=[[Gn, Ak ], Ao 1+ [4k, [Gm, 4o ]].

will not be satisfied simultaneously when we
compute

[Akr Am:|= Z I:Pa. atk Pb,b-{—m]

a,b=1

[Gm’ Gk] = [(ZA k+m ™ 24 k—m), AOJ
+[Ax, 24An—24_) ]

= Z [Pa:c, P:c, c+m—lc:|+z [Pazy Pa—m+k, :c]

h ¢ = 8G/H-m - 8Gk——m
w nce
© [A ) A m] = 4Gk-—-—m; (60) + 8Gk_—m - 8Glc+m = O.

All follows from the Jacobi identity and the two commutators

[AoaAO 9[AO ’Al]]] — [AO ’Al]
[Al ) :A1 9[A1 9Ao]]] — [A1 aAo]

Dolan and Grady; Davies




He didn’t know this, but in the Ising case, the Onsager algebra is
simply that of (zero-momentum) fermion bilinears!

Thus a miracle of the superintegrable chiral Potts model is that
despite its not being a free-fermion theory, the algebra generated

by the two parts of the Hamiltonian is identical to that of fermion
bilinears.

Maybe there is a Pfaffian-ish formula to detect
topological order ?!? The Read-Rezayian?!?



The open superintegrable chain

The energy levels for f = J/2 for 4 sites:

Z3 charge )

-1

. & |l

The levels in three sectors get exponentially close as the number
of sites is increased. There is an edge zero mode!



Unfortunately, finding the edge zero mode explicitly does not
seem to be as easy as for Ising. Perturbatively:

J
2]

where @m=¢

V=0 +=—W, -0y + 1, +0W ) —0x X — OV X))+ ...

2mi/3

| have computed up to third order in f/.J, and also found the
“leading”’ piece at all orders.

Lots of interesting formal things going on: can look for the
zero mode by deriving a (parity-invariant) "Hamiltonian”
acting on the space of parafermions, and looking for its zero-
energy state.

But | still need a boundary Onsager algebra...



Topological order in 2d

The Ising/Majorana chain has an elegant generalization to 2d via
the Kitaev honeycomb model.

This is a spin model that can be mapped to free fermions
coupled to a background gauge field.

I’ll describe the analog for parafermions.



View the 2d model as coupled 1d chains

The quantum YZ chain

~ N7 N7 N N NN N
@O @O @O @O @O @O @O @O

= Lot = Ilioisn

is comprised of two commuting Hamiltonians:

~~ N ~~ N ~~ N ~~ N
@ e e e e e e oo

~ N ~~ N ~ N
+ @O @O @O @O @O @O @O @O



Consider one of these Hamiltonians:

~ N ~ N ~ N ~ N
@ e e e e e e

H — Z (05 _105; + 05,05, 1] = ZZ X2 125 + VX 2 41]

J J

Just like the edge modes, none of the fermions X, or
sz appear!

(1)

They commute with each individual term in H'"/.



Now couple chains together into a honeycomb lattice:
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H = ZWXX + ZW + wa
H = Zaxaw + Zayay + ZO‘ o~



Each fermion biIinearﬂ commutes with each term in H.

The ZQ gauge flux is the product ﬂ ﬂ — Yo% cY 5"
around a hexagon.



The flux through each plaguette can be chosen individually, and
is not dynamical.

Thus the Kitaev honeycomb model is simply free fermions
coupled to a background 7, gauge field.

A magnetic field destroys the solvability, but causes non-abelian
topological order.

On the Fisher lattice, non-abelian topological order occurs
without the magnetic field; time-reversal symmetry is
spontaneously broken.

Yao and Kivelson



So what about parafermions?

The same trick yields a “YZ” Hamiltonian that
doesn’t involve half the parafermions:

~ N ~ N ~ N ~ N
e« @O e e e e e oo

— N = (Ti)TTi+1 + h.c.

— (TZ'O'i)TTi—H oi+1 + h.c.
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Questions

The handwaving arguments for topological order work for
parafermions. Presumably non-abelian?

Is there a formula for the parafermions generalizing the
Pfaffian/Chern number for fermions?

Is there a connection to 2+1d integrable models?
Should work for all Zn, what about U(1)?

What’s with the Onsager algebra?



