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Classical digital meets quantum analog 



Equilibration

 How does temperature dynamically appear?

Sadler, Stamper-Kurn et al. 

Kinoshita et al. 

Schmiedmayer et al. 

 How do quantum many-body systems come to equilibrium?



 Start in some initial state        with clustering correlations (e.g. product)

 Many-body free unitary time evolution

Quenched dynamics

ρ(0)

ρ(t) = e−iHtρ(0)eiHt

(Compare also Corinna Kollath's, John Cardy's, Ferenc Igloi's, Alexei Tsvelik's, Eugene Demler's,
Allessandro Silva's, Maurizio Fagotti's, Jean-Sebastien Caux's talks) 



 Paradigmatic situation: Quench from deep Mott to superfluid phase in
  Bose-Hubbard model

Cold atoms in optical lattices
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 What happens?

Where does it relax to?

 What can be said analytically?
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Relaxation theorems

 Equilibration (true for all Hamiltonians with non-degenerate energy gaps)

       is a maximum entropy state given all constants of motion

deff =
1∑

k |〈Ek|ψ0〉|4
E(‖ρS(t)− ρG‖1) ≤

1

2

√
d22
deff

,

ρG

Linden, Popescu, Short, Winter, Phys Rev E 79 (2009)
Gogolin, Mueller, Eisert, Phys Rev Lett 106 (2011)

‖ρS(t)− ρG‖1

t
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Relaxation theorems

 Strong equilibration (infinite free bosonic, integrable models): For 
   clustering initial states (not Gaussian),  

       is a maximum entropy state given all constants of motionρG

‖ρS(t)− ρG‖1 < ε, ∀t > trelax

∀ε > 0 ∃trelax

Cramer, Eisert, New J Phys 12 (2010) 
Cramer, Dawson, Eisert, Osborne, Phys Rev Lett 100 (2008) 
Dudnikova, Komech, Spohn, J Math Phys 44 (2003) (classical)

‖ρS(t)− ρG‖1

trelax
ε

H = −J
∑
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b†jbk − µ
∑

k
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t



Light cone dynamics and entanglement growth

Cramer, Eisert, New J Phys 12 (2010) 
Cramer, Dawson, Eisert, Osborne, Phys Rev Lett 100 (2008) 

Calabrese, Cardy, Phys Rev Lett 96 (2006)

 Non-commutative central limit theorems 
   for equilibration

 Light cone dynamics in conformal field theory

 Entanglement growth

S(t) ≤ S(0) + ct

Eisert, Osborne, Phys Rev Lett 97 (2006)
Bravyi, Hastings, Verstraete, Phys Rev Lett 97 (2006)
Schuch, Wolf, Vollbrecht, Cirac, New J Phys 10 (2008)
Barthel, Schollwoeck, Phys Rev Lett 100 (2008)
Laeuchli, Kollath, J Stat Mech (2008) P05018



 Complicated process:

Does it thermalize?

 Equilibration

 Subsystem initial state independence

 Weak "bath" dependence

 Gibbs state

trB(e
−βH/Z)

Goldstein, Lebowitz, Tumulka, Zanghi, Phys Rev Lett 96 (2006)
Reimann, New J Phys 12 (2010) 
Linden, Popescu, Short, Winter, Phys Rev E 79 (2009)
Gogolin, Mueller, Eisert, Phys Rev Lett 106 (2011)



 Steps towards proving thermalization in certain weak-coupling limits
Riera, Gogolin, Eisert, Phys Rev Lett 108 (2012)
In preparation (2012)

Integrable vs. non-integrable models

trB(e
−βH/Z)

 Common belief: "Non-integrable models thermalize"

(A) Exist n (local) conserved commuting linearly independent operators 
(B) Like (A) but with linear replaced by algebraic independence

(C) The system is integrable by the Bethe ansatz or is a free model
(D) The quantum many-body system is exactly solvable

 Notions of integrability:

Beautiful models, Sutherland (World Scientific, Singapore, 2004)
Faribault, Calabrese, Caux, J Stat Mech (2009) 
Exactly solvable models, Korepin, Essler (World Scientific, Singapore, 1994)
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 Not even non-integrable systems necessarily thermalize:

Non-thermalizing non-integrable models

 Non-thermalization: There are weakly non-integrable models,
   

   - translationally invariant
   - nearest-neighbor,
  for which for two initial conditions                                         ,             , 
  two time-averaged states       remain distinguishable,

 
  

ω(i)
i = 1, 2

‖ω(1) − ω(2)‖1 ≥ c

 Infinite memory of initial condition

ψ(i)(0) = ψ(i)
S (0)⊗ ψ(i)

B (0)

Gogolin, Mueller, Eisert, Phys Rev Lett 106 (2011)
Eisert, Friesdorf, in preparation (2012)



 Situation is far from clear

Lots of open questions

 Time scales of equilibration?

 Algebraic vs exponential decay?

 When does it thermalize?

 Role of conserved quantities/integrability?

 Need for simulation
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Digital vs. "quantum simulation"

Classical simulation
(t-DMRG)

 Classical simulation

Efficient

  v

Postprocessing

 "Quantum simulation"

Quantum 
simulation

Efficient Efficient
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Key issues with quantum simulation

1. Hardness problem: 
  One has to solve a quantum problem that presumably is 
  "hard" classically

2. Certification problem:

   How does one certify correctness of quantum simulation? 

 Realize some feasible device (not universal) outperforming classical ones?



compression of information

compression of information necessary and desirable

diverging number of degrees of freedom

emergent macroscopic quantities: temperature, pressure, ...

classical spins

thermodynamic limit:                       degrees of freedom (linear)

quantum spins

superposition of states

thermodynamic limit:                      degrees of freedom (exponential)

N → ∞

N → ∞ 2
N

2N



classical simulation of quantum systems

compression of exponentially diverging Hilbert spaces

what can we do with classical computers?

exact diagonalizations 
limited to small lattice sizes: 40 (spins), 20 (electrons)

stochastic sampling of state space
quantum Monte Carlo techniques

negative sign problem for fermionic systems

physically driven selection of subspace: decimation
variational methods 

renormalization group methods

how do we find the good selection? 



matrix product states

identify each site with a set of matrices depending on local state

total system wave functions

matrix product state (MPS):

AL[σL]AL−1[σL−1]

|ψ〉 =
∑

σ1...σL

(A1[σ1] . . . AL[σL]) |σ1...σL〉
scalar coefficient:
~ matrix product

LL − 11 2

control parameter: matrix dimension M

A-matrices determined by decimation prescription



arbitrary bipartition

        AAAAAAAA AAAAAAAAAAAAAAA

reduced density matrix and bipartite entanglement

bipartite entanglement in MPS

S = −

∑

α

wα log2 wα
ρ̂S =

∑

α

wα|αS〉〈αS |

|ψ〉 =

M∑

α

√
wα|αS〉|αE〉

≤ log2 M

codable maximum

Schmidt decomposition

measuring bipartite entanglement S: reduced density matrix

|ψ〉 =

∑
ψij |i〉|j〉 ρ̂ = |ψ〉〈ψ| → ρ̂S = TrE ρ̂

S = −Tr[ρ̂S log2 ρ̂S ] = −

∑
wα log2 wα

system |i>

environment

universe

|j>



entanglement grows with system surface: area law

for ground states!

entanglement scaling: gapped systems

S(L) ∼ L S(L) ∼ L
2S(L) ∼ cst.gapped

states M > 2
cst.

M > 2
L

M > 2
L

2

S ≤ log2 M ⇒ M ≥ 2S

black
hole

Latorre, Rico,  Vidal, Kitaev (03)

Bekenstein `73
Callan, Wilczek `94

Eisert, Cramer, Plenio, RMP  (10)



TEBD/t-DMRG/t-MPS: time evolution of MPS (Trotter-based) 

linear entanglement growth after global quenches

consequences for simulation: 

up to exponential growth in M !

steady states / thermal states dynamically inaccessible 

entanglement & matrix scaling

M ∝ cvt

Vidal PRL `04; Daley, Kollath, US, Vidal, J. Stat. Mech (2004) P04005; 
White, Feiguin PRL ’04;  Verstraete, Garcia-Ripoll, Cirac PRL `04; 
US, RMP 77, 259 (2005); US, Ann. Phys. 326, 96 (2011)



a dynamical 
quantum simulator:
certification 
vs. prediction

Cramer, Flesch, McCulloch, US, Eisert, PRL 101, 063001 (2008)
Flesch, Cramer, McCulloch, US, Eisert, PRA 78, 033608 (2008)
Trotzky, Chen, Flesch, McCulloch, US, Eisert, Bloch, Nat. Phys. 8, 325(2012)



preparation and local observation
ultracold atoms provide coherent out of equilibrium dynamics

controlled preparation of initial state? local measurements?

period-2 superlattice
- double-well formation
- staggered potential bias

pattern-loading and odd-even resolved local measurement

- bias superlattice
- unload to higher band
- time-of-flight measurement:
  mapping to different 
  Brillouin zones

(Fölling et al., Nature 448, 1029 (2007))



experimental proposal

prepare |ψ〉 = |1, 0, 1, 0, 1, 0, . . .〉

switch off superlattice

observe Bose-Hubbard dynamics

Ĥ = −J
∑

i

(b̂†i b̂i+1 + h.c.) +
U

2

∑

i

n̂i(n̂i − 1)−
∑

i

µin̂i



limiting cases

U=0: non-interacting bosons: relax due to incommensurate mixing

U=∞: hardcore bosons: relax due to hardcore collisions
map to non-interacting spinless fermions

0<U<∞: interacting bosons: time-dependent DMRG

Ĥ = −J
∑

i

(b̂†i b̂i+1 + h.c.)

Ĥ = −J
∑

i

(ĉ†i ĉi+1 + h.c.)

exactly solvable by Fourier transformation for PBC

exactly solvable by FT and Jordan-Wigner trafo for PBC

〈b̂†i (t)b̂j(t)〉 =
1
2

(
δij + (−i)i−j(−1)j+1Jj−i(4Jt)

)

asymptotics

〈n̂i(t)〉 =
1
2

(
1 − (−1)iJ0(4Jt)

) some expressions agree with U=0, 
e.g. local density, NN correlators

t−1/2

Daley, Kollath, US, Vidal, J. Stat. Mech (2004) P04005; White, Feiguin PRL ’04 
US, Ann. Phys. 326, 96 (2011)



densities I

45,000 atoms, U=5.2
momentum distribution

relaxation of local occupation numbers:
fit to theory needs averaging over weighted
set of chain lengths (multitube in trap)

classical tube dephasing minimal



densities II

fully controlled relaxation in closed quantum 
system!

no free fit
parameters!

validation of dynamical quantum simulator

time range of experiment > 10 x time range of theory
real „analog computer“ that goes beyond theory



nearest-neighbour correlators
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correlator current



currents

current decay as power law?

measurement: split in double wells, measure well oscillations

phase and amplitude

sloshing; 
no c.m. motion



nearest neighbour correlations
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interaction strength

theory

experiment

visibility proportional to nearest neighbour correlations

momentum 
distribution

general trend, 1/U correct!

build-up of quantum coherence



nearest neighbour correlations

correlations grow over time; very good fit

trap allows particle migration to the „edges“
energy gained in kinetic energy:

measurement at „long time“

theory prediction 
theory prediction in trap

o: measured in trap

Ekin = −J〈b†i bi+1 + b†i+1bi〉 external potential

liquid

a closer look: 
effect stronger in experiment?



"Certify simulator for short times"

Time to which time-evolution can 
be simulated with MPS and   D = 5000

〈b†i bi〉

4Jt/h



Long times

?

 Quantum dynamics runs on...

   ... ask physical questions about decay of correlations
   ... not explainable by mean field/Markovian evolution
   ... and is presumably a hard problem

ρ̇ = L(ρ)

〈b†i bi〉

4Jt/h



Simulating cold atoms is classically hard

n1 n2 n3

H = −
∑

〈j,k〉

b†jbk − µ
∑

k

b†kbk

Translationally invariant, fixed natural dynamics 
(free limit of Bose-Hubbard model)

|ψ(t)〉 = e−iHt|ψ(0)〉 ,

nN ′

 Initially prepare product of atom numbers

 Sample from output distribution

  "Boson sampling problem"
   for arbitrary linear optical
   circuits

 Collapse of the polynomial
   hierarchy to the third level if
   classically efficiently sampled 
   accurately

Polynomial reduction

Kliesch, Eisert, in preparation (2012) 
Aaronson, Arkhipov, arXiv:1011.3245



Simulating cold atoms is classically hard

Kliesch, Eisert, in preparation (2012) 
Aaronson, Arkhipov, arXiv:1011.3245
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 Hardness of simulating cold atoms: For arbitrary boson distributions,
   but translationally invariant natural Bose-Hubbard dynamics, the
   classical simulation is presumably hard for long times
 
  



Summary

Quantum dynamical simulator for relaxation physics:
 Closed quantum system with coherent dynamics
 Non-trivial range of interactions
 Certified by parameter-free theory
 Prediction beyond theoretical time-range, classically hard problem
 Currents and correlators

 Non-trivial interaction dependencies, power laws?
 Much theory remains to be done ...

Correlators: thermal?
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Chilling? No thank you!


