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Quantum systems out of equilibrium

•many-body physics with             ultracold atomic gases 
interaction and external potentials can be changed dynamically

•weakly coupled to the environment                coherence for long times 
(also mesoscopic heterostructures, quantum dots, ... )

not only academic

5

|Ψ(t)〉 = e−iHt |Ψ0〉 (36)

[1] In fact, we are ignoring the effect of spontaneously symme-
try breaking in the ordered phase, which eventually con-

tributes increasing the distance.

main theoretical questions: 
•Correlation functions
•Are there emergent phenomena?

non-equilibrium steady states?
•How to evaluate averages?

“macroscopic
description”



1D thousands of oscillations

non-thermal momentum 
distribution (no thermalization?)

3D a few oscillations and then 
thermalization

1D close to integrability

HN = −
N∑

j=1

∂2

∂x2
j

+ 2c
∑

N≥j>k≥1

δ(xj − xk) (87)
(without trap)

basic features (dimensionality, integrability, ...) 
play a central role in non-equilibrium physics

©!2006!Nature Publishing Group!

!

the problem, and there is negligible tunnelling among the tubes. We
can vary the weighted average number of atoms per tube, N tube, and
the axial oscillation period, t. For a given array, t is the same to within
6% for all 1,000–8,000 tubes. The 1D coupling strength is given by
g ¼ j2/a1Dn1Dj, where n1D is the 1D density, ja1Dj < a r

2/2a is the 1D
scattering length, a ¼ 5.3 nm is the three-dimensional (3D) scattering
length, a r ¼ ("/mq r)

1/2 ¼ 41.5 nm is the transverse oscillator width,
and m is the Rb mass18.

To study the 1D Bose gases, we turn off the crossed dipole trap and
allow the atoms to expand in one dimension for 27 ms before taking
an absorption image from the transverse direction. When we inte-
grate the image transverse to the tubes, we get a 1D spatial distri-
bution that corresponds to the momentum distribution after
expansion, f(p ex). Although the individual 1D gases have Thomas–
Fermi or Tonks–Girardeau f(p ex) profiles, we measure gaussian
f(p ex) distributions, as expected when the f(p ex) for many 1D Bose
gases with different N tube are summed.

To create non-equilibrium momentum distributions, we pulse
on a 3.2 THz detuned 1D lattice along the tubes, which acts as a
phase grating for the atoms. Two pulses, with intensity 11 W cm22

and pulse widths of 23 ms separated in time by 33 ms, can deplete the

zero momentum state and transfer atoms to ^2"k peaks19,20 where k
is the wavevector of the 1D lattice light. We wait after the grating
pulses for a variable time, t, before measuring f(p ex). Figure 2 shows a
time series of absorption images spanning a full oscillation in the
crossed dipole trap, when the weighted average of the initial peak g in
each tube, go, is 1.0. The two momentum groups collide with each
other in the centre of the crossed dipole trap twice each full cycle, for
instance at t ¼ 0 and t/2, as illustrated in Fig. 1b. The total collision
energy is 8("k)2/2m ¼ 0.45"q r, less than one-quarter the energy
needed for transverse vibrational excitation21, so the colliding gases
remain 1D.

The first and last images in Fig. 2 differ because the oscillating
atoms dephase. Illustrated conceptually in Fig. 1b, there is dephasing
due to the gaussian crossed dipole trap anharmonicity, which gives an
,8% spread of t across the full-width at half-maximum of each of the
colliding clouds. The top curves in Fig. 3a–c show the time-averaged
f(pex) over the first cycle for different go. Differences in shape among
them reflect the initial energy per particle, which increases with n1D,
and hence go

21. Within 10t to 15t, f(p ex) stops changing noticeably
during an oscillation period. The central observations in this letter
are of the evolution of f(p ex) that are dephased, like the lower curves
of Fig. 3a–c. Comparing only dephased distributions avoids the
complication of how the momentum distribution in the trap evolves
into f(p ex) during expansion, which may slightly depend on the
initial spatial distributions. As atoms have clearly dephased within
each tube, dephasing among tubes is irrelevant.

Figure 2 | Absorption images in the first oscillation cycle for initial average
peak coupling strength go 5 1. Atoms are always confined to one
dimension, in this case in 3,000 parallel tubes, with a weighted average of
110 atoms per tube. After grating pulses put each atom in a superposition of
^2"k momentum, they are allowed to evolve for a variable time t in the
anharmonic 1D trap (crossed dipole trap), before being released and
photographed 27 ms later. The false colour in each image is rescaled to show
detail. These pictures are used to determine f(p ex). The first image shows
that some atoms remain near pex ¼ 0 at t ¼ 0. How many remain there
depends on n1D, implying that these remnant atoms do not result from an
imperfect pulse sequence, but rather from interactions during the grating
pulses or evolution of the momentum distribution during expansion. The
relative narrowness of the peaks in the last image compared to the first is
indicative of the reduction in spatial density that results from dephasing
(Fig. 1b). The transverse spatial width of each of the 14 image frames is
70 mm. Horizontal in the figure corresponds to vertical in the experiment, a
minor distinction because a magnetic field gradient cancels gravity for the
atoms.

Figure 3 | The expanded momentum distribution, f(pex), for three values
of go. The curves are obtained by transversely integrating absorption
images like those in Fig. 2. The spatial position, z, is approximately
proportional to the expanded momentum, p ex. The vertical scale is
arbitrary, but consistent among the curves. a, go ¼ 4; b, go ¼ 1; and
c, go ¼ 0.62. The highest (green) curve in each set is the average of f(p ex)
from the first cycle, that is, from the images like those in Fig. 2. The lower
curves in each set are f(p ex) taken at single times, t, after the atoms have
dephased: a, t ¼ 34 ms, t ¼ 15t (blue) and 30t (red); b, t ¼ 13 ms, t ¼ 15t
(blue) and 40t (red); and c, t ¼ 13 ms, t ¼ 15t (blue) and 40t (red). The
changes in the distribution with time are attributable to known loss and
heating. (See Supplementary Information for a discussion of the fine spatial
structure in these curves.)
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crossed dipole trap, when the weighted average of the initial peak g in
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each tube, dephasing among tubes is irrelevant.
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110 atoms per tube. After grating pulses put each atom in a superposition of
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Quantum Newton’s Cradle
Kinoshita, Wenger, and Weiss (2006)  



consider a system in the ground state          of a local Hamiltonian depending on 
certain parameters  (magnetic field, interaction)

at a given time the parameters are changed

∣ϕ0⟩ (77)

H0 ∣ϕ0⟩ = EG.S. ∣ϕ0⟩ (78)

11

∣ϕt⟩ = e−iH(h,... )t ∣ϕ0⟩

H(h0, . . . ) ∣ϕ0⟩ = E(h0,... )
G.S. ∣ϕ0⟩

Sudden quench

extensive excess of energy  
[H(h0, . . . ), H(h, . . . )] ≠ 0 (80)global quench

time evolution of (local) correlation functions
time evolution of subsystems S (    )

late-time regime and emergence of stationary behavior 
∃ lim

t→∞Tr[ρS(t)Ô] ? (88)vmaxt! !S , r ∃ lim
t→∞

ρS(t) ? (48)

ρ(t) ≡ e−iH(h,... )t ∣ϕ0⟩ ⟨ϕ0∣ eiH(h,... )t !→ ρS(t) ≡ TrS̄ρ(t)
/////////////////////

∣ϕ0⟩ (77)

H(h0, . . . ) ∣ϕ0⟩ = E(h0,... )
G.S. ∣ϕ0⟩ (78)

∣ϕt⟩ = e−iH(h,... )t ∣ϕ0⟩ (79)

[H(h0, . . . ), H(h, . . . )] ≠ 0 (80)

O(r1, . . . , ri, . . . ) (81)

S (82)

r3 (83)

ρt ≡ e−iH(h,... )t ∣ϕ0⟩ ⟨ϕ0∣ eiH(h,... )t !→ TrS̄ρt (84)

11

(                                   )////////////////////////

∣ϕ0⟩ (77)

H(h0, . . . ) ∣ϕ0⟩ = E(h0,... )
G.S. ∣ϕ0⟩ (78)

∣ϕt⟩ = e−iH(h,... )t ∣ϕ0⟩ (79)

[H(h0, . . . ), H(h, . . . )] ≠ 0 (80)

O(r1, . . . , ri, . . . ) (81)

S (82)

r1 (83)

ρt ≡ e−iH(h,... )t ∣ϕ0⟩ ⟨ϕ0∣ eiH(h,... )t !→ TrS̄ρt (84)

11

∣ϕ0⟩ (77)

H(h0, . . . ) ∣ϕ0⟩ = E(h0,... )
G.S. ∣ϕ0⟩ (78)

∣ϕt⟩ = e−iH(h,... )t ∣ϕ0⟩ (79)

[H(h0, . . . ), H(h, . . . )] ≠ 0 (80)

O(r1, . . . , ri, . . . ) (81)

S (82)

r2 (83)

ρt ≡ e−iH(h,... )t ∣ϕ0⟩ ⟨ϕ0∣ eiH(h,... )t !→ TrS̄ρt (84)

11

〈ϕt|Ô(r1, . . . , ri, . . . )|ϕt〉
!S



Transverse Field Ising chain

H = −J
L∑

j=1

[σx
j σx

j+1 + hσz
j ] (49)

0 1 h

central charge c=1/2

〈σx〉 #= 0 (50)〈σx〉 = 0 (51)

order parameter

simplest paradigm of a quantum phase transition

Z2 symmetry: rotation of      around z-axis  π

spontaneously 
broken

Jordan-Wigner transformation
imaginary antisymmetric 

Mapping to free fermions

a2l =
∏

j<l

σz
j σz

l a2l−1 =
∏

j<l

σz
j σy

l

{al, an} = 2δln





H =

1−
∏

l σz
l

2
HR +

1 +
∏

l σz
l

2
HNS

7

∃ lim
t→∞

ρS(t) ? (48)

H = −J
L∑

j=1

[σx
j σx

j+1 + hσz
j ] (49)

〈σx〉 %= 0 (50)

〈σx〉 = 0 (51)

J > 0 (52)

Z2 (53)

π (54)

a2l =
∏

j<l

σz
j σz

l a2l−1 =
∏

j<l

σz
j σy

l

{al, an} = 2δln





H =

1 −
∏

l σz
l

2
HR +

1 +
∏

l σz
l

2
HNS (55)

HR(NS) =
∑

l,n

alH
R(NS)

ln an

4
(56)

[∏

l

σz
l , HR(NS)

]
= 0 (57)

[1] L. Foini, L. F. Cugliandolo, and A. Gambassi, Phys. Rev. B 84, 212404 (2011)
[2] F. Igloi and H. Reiger, Phys. Rev. Lett. 106, 035701 (2011); Phys. Rev. B. 84, 165117 (2011).
[3] M. Fagotti, Notes on the transverse field Ising model.
[4] P. Calabrese, F. Essler and M. Fagotti, Quantum quenches in the transverse field Ising chain, arXiv:1104.0154 (2011)
[5] S. Sadchev, Quantum phase transitions, Cambridge University Press.
[6] R. Kubo, The fluctuation-dissipation theorem.
[7] To be precise we should say that this ensemble properly describes a subsystem A of the total system. Every local observable

with respect to this subset A will then be characterized by ρgG.

[∏

l

σz
l , HR(NS)

]
= 0 (57)two fermionic sectors

Wick theorem



Approach I: Block-Toeplitz determinants:
expectation values of even operators                Pfaffians of structured matrices

                                                   Block-Toeplitz matrix

Approach II: “Form-Factor” Sums:
1. large finite volume L
2. initial state

3. express this in terms of the final Bogoliobov fermions

4. Lehmann representation in terms of the final Bogolioubov fermions

5.           as expansion parameter: low density of excitations

Quench dynamics in the TFIC
H(h0)→ H(h)

0 1 h

disordered phaseordered phase

〈ϕ0|σx
1 (t)σx

!+1(t)|ϕ0〉 ∼
multi-dimensional 
stationary phase 
approximation

K(p) = tan
(θh(p)− θh0(p)

2

)
|0̄〉R(NS) = exp

(
i

∑

0<p∈R(NS)

K(p)α†
pα

†
−p

)
|0〉R(NS)

K(p) (72)

(ordered phase)

(disordered phase) |0̄〉NS

(
|0̄〉R ± |0̄〉NS

)
/
√

2 (67)

known exactly for 
the lattice model

NS〈0̄|σx
1 (t)|0̄〉R =

∑

l,n≥0

1
n!l!

∑

k1,...kn
p1,...,pl

n∏

j=1

K(kj)e2itεkj

l∏

i=1

K(pi)e−2itεpi NS〈{−k, k}n|σx
1 |{p,−p}l〉R

(in the thermodynamic limit)



... to the ordered phase

... to the disordered phase

One-point function:
different from zero only for quenches from the ordered phase
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Figure 2. Expectation value of the order parameter after a quench within the ferromagnetic
phase. Numerical data are compared with the asymptotic predictions from both determinants and
form factors at order O(K2). The right panel shows the accuracy of the determinant result even
very close to the critical point, while the form factor result ceases to be an accurate approximation
because the density of excitations is no longer small. Data are obtained by considering the cluster
decomposition of the two-point function at distance ! = 180.

This result is obtained by applying the cluster decomposition principle to the two-point function
(19). The form factor approach gives

〈σx
i (t)〉 # (1 − h2)

1
8 exp

[
−t

∫ π

0

dk

π
ε′

h(k) 2K2(k)
]

. (15)

We note that

ln |cos ∆k| = ln
[

1 − K2(k)
1 + K2(k)

]
= −2K2(k) − 2

3
K6(k) + . . . ,

(Cx
FF)

1
2 # (1 − h2)

1
8 +

(h − h0)4

64(1 − h2) 31
8

+ . . . , (16)

so that (15) is indeed the “low-density” approximation to (13).
Fig. 2 shows the comparison of the asymptotic result against exact numerical computation

(obtained from cluster decomposition of the two-point function). It is evident that the asymptotic
results become accurate already for small values of t. Eqn (13) is asymptotically valid also for
quenches to the critical point as is shown in the left panel of Fig. 2.

For a quench from the ferromagnetic h0 < 1 to the paramagnetic h > 1 phase, we conjecture
that the expectation value of the order parameter at late times t is given by

〈σx
i (t)〉 = (Cx

FP)
1
2 [1 + cos(2εh(k0)t + α) + . . .]

1
2 exp

[
t

∫ π

0

dk

π
ε′

h(k) ln |cos ∆k|
]

, (17)

where k0 is a solution of the equation cos ∆k0 = 0, α(h, h0) is an unknown constant, and

Cx
FP =

[
h
√

1 − h2
0

h + h0

] 1
2

. (18)

The dots in eqn (17) indicate subleading contributions. The conjecture (17) is compared to the
numerically calculated one-point function in Fig. 3. The agreement is clearly excellent. From a

0 1 h

8

HNS (64)

aH(h0) → H(h)b (65)

〈ϕ0|σx
1 (t)σx

!+1(t)|ϕ0〉 ∼ (66)

(
|0̄〉R ± |0̄〉NS

)
/
√

2 (67)

|0̄〉NS (68)

|0̄〉R(NS) = exp
(

i
∑

0<p∈R(NS)

K(p)α†
pα

†
−p

)
|0〉R(NS) (69)

K(p) = tan
(θh(p)− θh0(p)

2

)
(70)

NS〈0|σz
1 |0〉R =

∑

l,n≥0

1
n!l!

∑

k1,...kn
p1,...,pl

n∏

j=1

K(kj)
l∏

i=1

K(pi)NS〈{−k, k}n|σx
1 (t)|{p,−p}l〉R (71)

K(p) (72)

∆k = θh(k)− θh0(k) (73)

[1] L. Foini, L. F. Cugliandolo, and A. Gambassi, Phys. Rev. B 84, 212404 (2011)
[2] F. Igloi and H. Reiger, Phys. Rev. Lett. 106, 035701 (2011); Phys. Rev. B. 84, 165117 (2011).
[3] M. Fagotti, Notes on the transverse field Ising model.
[4] P. Calabrese, F. Essler and M. Fagotti, Quantum quenches in the transverse field Ising chain, arXiv:1104.0154 (2011)
[5] S. Sadchev, Quantum phase transitions, Cambridge University Press.
[6] R. Kubo, The fluctuation-dissipation theorem.
[7] To be precise we should say that this ensemble properly describes a subsystem A of the total system. Every local observable

with respect to this subset A will then be characterized by ρgG.

〈σx
i (t)〉 # (Cx

FF)
1
2 exp

[
t

∫ π

0

dk

π
ε′

h(k) ln |cos ∆k|
]

0 1 h
〈σx

i (t)〉 = (Cx
FP)

1
2 [1 + cos(2εh(k0)t + α) + . . .]

1
2 exp

[
t

∫ π

0

dk

π
ε′

h(k) ln |cos ∆k|
]
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Figure 3. Expectation value of the order parameter after a quench from the ferromagnetic to
the paramagnetic phase (inset) and its absolute value (main plot) in logarithmic scale to show the
exponential decay of the correlation. Numerical data from h0 = 1/2 to h = 5/3 and h = 1.05 are
compared with the asymptotic conjecture in Eq. (17) which is reported as a continuous line. The
asymptotic formula is valid all the way up to the critical point. Data are obtained by considering
the cluster decomposition of the two-point function at distance ! = 180.

mathematical point of view the oscillating factor is a correction to the asymptotic behaviour, as
is most clearly seen by considering log |〈σx

i (t)|〉. However, by virtue of its oscillatory nature, its
presence obscures the leading behaviour and needs to be included in order to have a good description
of the quench dynamics. In the limit h → 1, k0 goes to 0 and ε1(k0) = 0, signaling that the crossover
between (13) and (17) is smooth. In particular, when approaching the critical point, the oscillation
frequency decreases as shown in Fig. 3.

2.2. Equal time two-point correlation function

2.2.1. Quench within the ferromagnetic phase. For a quench within the ordered phase, the
determinant approach leads to the following result for the two-point function in the space-time
scaling limit (t, # →∞ with vmaxt/# fixed)

ρxx
F F (#, t) % Cx

FF exp
[
#

∫ π

0

dk

π
ln |cos ∆k| θH

(
2ε′

h(k)t− #
)]

× exp
[
2t

∫ π

0

dk

π
ε′

h(k) ln |cos ∆k| θH

(
#− 2ε′

h(k)t
)]

. (19)

Here θH(x) is the Heaviside step function

θH(x) =

{
1 if x > 0,
0 else .

(20)

The constant Cx
FF (14) is fixed by matching (19) to the corresponding result at infinite time t = ∞,

which is derived in paper II [81].
In the limit # → ∞ (19) gives the square of the result (13) for the one-point function. For

times smaller than the Fermi time

tF =
#

2vmax
, (21)

is a solution of the equation cos ∆k0 = 0,



... within the ordered phase

... within the disordered phase

Two-point function:

0 1 h
ρxx

F F (", t) ! Cx
FF exp

[
"

∫ π

0

dk

π
ln |cos ∆k| θH

(
2ε′

h(k)t− "
)]

× exp
[
2t

∫ π

0

dk

π
ε′

h(k) ln |cos ∆k| θH

(
"− 2ε′

h(k)t
)]
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Figure 4. Numerical data for a quench within the ferromagnetic phase from h0 = 1/3 to
h = 2/3. Left: The two-point function against the asymptotic prediction Eq. (19) for ! = 30 (up
to a multiplicative factor) showing excellent agreement in the scaling regime. Inset: Ratio between
the numerical data and asymptotic prediction (68). The leading correction is time independent,
but subleading contributions oscillate. Right: The connected correlation function for the same
parameters as on the left. For t < tF , ρxx

c (!, t) vanishes identically in the scaling regime.

the first exponential factor in (19) equals 1. Thus, in the space-time scaling limit, connected
correlations vanish identically for times t < tF and begin to form only after the Fermi time. This
is a general feature of quantum quenches [9, 22] and has been recently observed in experiments on
one dimensional cold-atomic gases [4]. We stress that this by no means implies that the connected
correlations are exactly zero for t < tF : in any model, both on the lattice or in the continuum
there are exponentially suppressed terms (in !) which vanish in the scaling limit. The form factor
approach gives the following result for large t and !

ρxx
F F (!, t) ! (1− h2)

1
4 exp

[
− 2!

∫ π

0

dk

π
K2(k)θH

(
2ε′

h(k)t− !
)]

× exp
[
− 4t

∫ π

0

dk

π
ε′

h(k)K2(k)θH

(
!− 2ε′

h(k)t
)]

. (22)

As expected, it gives the low density approximation to the full result (19).
A comparison (for a typical quench from h0 = 1/3 to h = 2/3) between the asymptotic results

(19) (22) and numerical results for the correlation function at a finite but large distance (! = 30) is
shown in Fig. 4. The numerical results are obtained by expressing the two-point correlator in the
thermodynamic limit as the determinant of an !× ! matrix (see section 3) and then evaluating the
determinant for different times. As we are concerned with equal time correlators only we do not
need to extract the two-point function from a cluster decomposition of the 4-point function [61].
The agreement is clearly excellent. The ratio between the exact numerics and the analytic result
(19) in the space-time scaling limit is shown in the inset of Fig. 4 for two values of κ = vmaxt/!.
We see the ratio approaches a constant for large !. The corrections to this constant are seen to
be oscillating. The right panel of Fig. 4 shows results for the connected two-point function for the
same quench (h0 = 1/3 → h = 2/3). We see that the numerical data are fit very well by both (19)
and the form factor result (22). The connected correlator is exponentially small for t < tF and
correlations start forming at tF .

ρxx
P P (", t) ! ρxx

P P (",∞) + (h2 − 1)
1
4
√

4J2h

∫ π

−π

dk

π

K(k)
εk

sin(2tεk − k")×

exp
[
− 2

∫ π

0

dp

π
K2(p)

(
" + θH("− 2tε′p)[2tε′p − "]

) ]
+ . . .

0 1 h
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Figure 7. Time evolution of order parameter correlators for quenches within the paramagnetic
phase. Left: ρxx

P P (" = 30, t) for a quench from h0 = 3
2 to h = 2. Right: ρxx

P P (" = 30, t) for a quench
from h0 = ∞ to h = 5. The two-point function is seen to exhibit oscillatory power-law decay
at late times. The form factor result (solid lines) is seen to give a very good description of the
numerical data (points). The short time regime is not shown as the correlators are exponentially
small by virtue of the horizion effect.

× exp
[
− 2

∫ π

0

dp

π
K2(p)

(
" + θH("− 2tε′p)[2tε′p − "]

) ]
+ . . . (33)

The regime of validity of (33) is sufficiently large values of " and t and “small” quenches in the sense
discussed in the beginning of section 2. We have not attempted to calculate the infinite time limit
ρxx

P P (",∞) within the framework of the form factor approach, because its exact large-" asymptotics
is known from the determinant approach to be [71, 81]

ρxx
P P (",∞) $ Cx

PP(")e−"/ξ , (34)

where Cx
PP(") is determined in paper II [81] and

ξ−1 = ln (min[h0, h1])− ln
[
h1

h + h0

2hh0

]
, h1 =

1 + hh0 +
√

(h2 − 1)(h2
0 − 1)

h + h0
. (35)

As discussed in our previous letter [71], (34) is described by a general Gibbs ensemble. Based on
the form factor result (33) one may speculate that the full answer may have the structure

ρxx(", t) $
[
Cx

PP(") + (h2 − 1)
1
4
√

4J2h

∫ π

−π

dk

π

K(k)
εk

sin(2tεk − k") + . . .

]

× exp
[
−

∫ π

0

dp

π
ln

[
1 + K2(p)
1−K2(p)

] (
" + θH("− 2tε′p)[2tε′p − "]

) ]
+ . . . . (36)

In Fig. 7 we compare the analytic result (33) to numerical results obtained for two different
quenches within the paramagnetic phase. The agreement is seen to be excellent.

For strong quenches the form factor result is not expected to be quantitatively accurate. This
can be seen in Fig. 8. In all cases, the two-point function is seen to display slowly decaying oscillatory
behaviour on the time scales shown. At sufficiently large t the decay is proportional to t−3/2. This
is in marked contrast to quenches within the ordered phase. The origin of this difference lies in the
nature of the relaxational processes that drive the time evolution. The oscillatory behaviour seen
in the paramagnetic phase arises from processes involving the annihilation of spin-flip excitations,

less clear behavior in quenches across the critical point



• at large times after a quench correlations display 
stationary behavior

• entanglement entropies of subsystems become 
independent of time 

Stationary state

integrable systems: 
conserved quantities! 
(more parameters)

non-integrable systems?

M. C. Escher (1961) 

/////////////////////////////////////////////
ρ(t) = e−iH(h,... )t |ϕ0〉 〈ϕ0| eiH(h,... )t −→ ρS(t) = TrS̄ρ(t)

S(                                   )

effective density matrix?
∃ lim

t→∞Tr[ρS(t)Ô] ? (88)

intuitive argument: in an infinite system 
the rest of the system could act as a bath

∣ϕ0⟩ (77)

H(h0, . . . ) ∣ϕ0⟩ = E(h0,... )
G.S. ∣ϕ0⟩ (78)

∣ϕt⟩ = e−iH(h,... )t ∣ϕ0⟩ (79)

[H(h0, . . . ), H(h, . . . )] ≠ 0 (80)

Ô(r1, . . . , ri, . . . ) (81)

S (82)

r3 (83)

ρ(t) ≡ e−iH(h,... )t ∣ϕ0⟩ ⟨ϕ0∣ eiH(h,... )t !→ ρS(t) ≡ TrS̄ρ(t) (84)

ρS(t) (85)

t≫ ∣S∣≫ 1 (86)

ρ̄
?≈ e−H/Teff

Tre−H/Teff
(87)

∃ lim
t→∞Tr[ρS(t)Ô] ? (88)

lim
t→∞

2
t ∫

t

t
2

Tr[ρS(t)Ô] ?= Tr[ρ̄SÔ] (89)

11

lim
t→∞

TrS̄ρ(t)→ ρ̄S

Eigenstate Thermalization? 
Deutsch (1991), Srednicki (1994)  



at late times
persistent oscillations

stationary behavior: 
each local charge 
gives a constraint

ρ∞ = ρ∞(I1, I2, . . . ) (43)

Quenches to integrable systems
operators commuting with the final Hamiltonian are stationary:
expectation values are conserved [H, I] = 0 ⇒ 〈ϕt|I|ϕt〉 = 〈ϕ0|I|ϕ0〉

M. C. Escher (1956) 

charge with 
local density

conservation law also 
for the reduced system

conjecture (GGE): ρ̄S
∣S∣→∞!!!→ e−∑m βmIm

Tr[e−∑m βmIm]
Rigol, Dunjko, Yurovsky, and Olshanii (2007)



equal-time correlations are stationary (almost all excitations have nonzero 
velocity (no localized excitations); counterexample: quench to                    )

exponential decay with distance (possibly “dressed” with power-law and 
oscillatory factors)

local properties described exactly by a GGE (equal-time fermionic two-point 
functions have thermal structure corresponding to an Hamiltonian that commutes 
with the final one) 

Infinite time after a quench  in the TFIC
H(h0)→ H(h)

0 1 h

disordered phaseordered phase

(in the thermodynamic limit)

H =
∑

l

σz
l

ρxx("! 1, t =∞) = Cx(")e−!/ξ

ρzz
c ("! 1, t =∞) # Cz"−αz

e−"/ξz

0 1 h

8

HNS (64)

aH(h0) → H(h)b (65)

〈ϕ0|σx
1 (t)σx

!+1(t)|ϕ0〉 ∼ (66)

(
|0̄〉R ± |0̄〉NS

)
/
√

2 (67)

|0̄〉NS (68)

|0̄〉R(NS) = exp
(

i
∑

0<p∈R(NS)

K(p)α†
pα

†
−p

)
|0〉R(NS) (69)

K(p) = tan
(θh(p)− θh0(p)

2

)
(70)

NS〈0|σx
1 (t)|0〉R =

∑

l,n≥0

1
n!l!

∑

k1,...kn
p1,...,pl

n∏

j=1

K(kj)
l∏

i=1

K(pi)NS〈{−k, k}n|σx
1 (t)|{p,−p}l〉R (71)

K(p) (72)

∆k = θh(k)− θh0(k) (73)

ρxx
P P (&, t) ' ρxx

P P (&,∞) + (h2 − 1)
1
4
√

4J2h

∫ π

−π

dk

π

K(k)
εk

sin(2tεk − k&)× (74)

exp
[
− 2

∫ π

0

dp

π
K2(p)

(
& + θH(&− 2tε′p)[2tε′p − &]

) ]
+ . . . (75)

a ρ(t) = e−iH(h,... )t |ϕ0〉 〈ϕ0| eiH(h,... )t −→ ρS(t) = TrS̄ρ(t)z (76)

lim
t→∞

TrS̄ρ(t) → ρ̄S (77)

H =
∑

l

σz
l (78)

Cx(&) ∼ cos(κ&) (79)

Cx(&) ∼ &−3/2 (80)

[] L. Foini, L. F. Cugliandolo, and A. Gambassi, Phys. Rev. B 84, 212404 (2011)
[] F. Igloi and H. Reiger, Phys. Rev. Lett. 106, 035701 (2011); Phys. Rev. B. 84, 165117 (2011).
[] M. Fagotti, Notes on the transverse field Ising model.
[] P. Calabrese, F. Essler and M. Fagotti, Quantum quenches in the transverse field Ising chain, arXiv:1104.0154 (2011)
[] S. Sadchev, Quantum phase transitions, Cambridge University Press.
[] R. Kubo, The fluctuation-dissipation theorem.
[] To be precise we should say that this ensemble properly describes a subsystem A of the total system. Every local observable

with respect to this subset A will then be characterized by ρgG.
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αz =
1 + θH(| log h|−| log h0|)

2



“Pair Ensemble” vs GGE: the role of locality 

different from GGE !
(GGE in the Ising model is Gaussian)

Pair Ensemble and GGE are locally indistinguishable 

off-diagonal elements 
do not contribute Pair Ensemble factorization in 

pair of quasiparticles

〈nkn−kO〉t = 〈nkO〉t

|0̄〉R(NS) = exp
(

i
∑

0<p∈R(NS)

K(p)α†
pα

†
−p

)
|0〉R(NS)

9

a lim
L→∞

〈 2n∏

r=1

abr
jr

〉

P E
= lim

L→∞

〈 2n∏

r=1

abr
jr

〉

GGE
z (82)

〈nkn−kO〉t = 〈nkO〉t (83)

〈ϕ0|al(t)an(t)|ϕ0〉 (84)

Jt # ("/a)αeκ#/a (85)

t = t2 − t1 t1 = ∞ x = 30 L = 512 (86)

HN = −
N∑

j=1

∂2

∂x2
j

+ 2c
∑

N≥j>k≥1

δ(xj − xk) (87)

lim
t→∞

〈O1(t + τ)O2(t)〉 = Tr[ρGGEO1(τ)O2] (88)

", τ & t ! L (89)

O(x/L) (90)

C(x, τ) = 〈σx
(L−x)/2(t + τ)σx

(L+x)/2(t)〉 (91)

ρzz
c (", t) ∼ ρzz

c (",∞) +
Ez(t)"e−#/ξ̃z

t3/2
+

Dz(t)"2

v2
maxt3

+ . . . (92)

nk = α†
kαk (93)
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my feeling (when GGE works): we CAN construct the effective density
                                                       matrix considering only local charges



... towards the stationary state:
“practical meaning” of the infinite time limit

fundamental question: how long we need to wait to “see” the observables 
converging to their stationary values

finite systems: GGE         time must be 
• smaller (enough) than the system’s size (in units of the maximal velocity)
• much larger (how much?) than the typical length (distance in 2-point 

functions, subsystem’s length, ...)

strong limits to the lengths 
of subsystems that relax!
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Figure 2. Absolute value of the connected transverse correlator ρzz
c (", t) − ρzz

c (", t = ∞) as
function of time at fixed " = 10. Initial and final magnetic fields h0 = 0.6 → h = 0.5 are chosen
such that a crossover between a t−3 and the asymptotic t−3/2 regime occurs at accessible times.

and late-time regimes by the requirement that the leading asymptotics in the space-time scaling limit
(∝ !2/t3) becomes comparable to the neglected exponentially small terms O(e−!/ξz , e−!/ξ̃z /t3/2).
This gives

Jt∗1 ∼ e2!/3ξ̃z . (35)

This estimate suggests that the result obtained in the space-time scaling limit will give a good
description of ρzz

c (!, t) for fixed separation ! up to times of order t∗1. When | log h0| < | log h|, the
two time scales are comparable t∗1 ∼ t∗2. This means that in practice the space-time scaling limit
provides a good approximation for ρzz

c (!, t) all the way up to the stationary regime (see Fig. 2). On
the other hand, when | log h0| > | log h| there is a large time window t∗2 > t > t∗1 in which a t−3/2

power-law decay can be observed.
The implications of these considerations for experiments or numerical calculations on finite-size

systems are as follows:

• In a finite system of size L, boundary effects (such as reflection from the boundaries or
completing a full system traverse in the periodic case) will become important at a timescale

tfs ∼ L/vmax. (36)

In order to observe stationary behaviour, i.e. the GGE, this timescale should be larger than
the cross-over scale t∗2

tfs > t∗2. (37)

In practice this requires extremely large system sizes. Just to quote some numbers: if we could
simulate chains of length L = 10000 (which is at least one order of magnitude larger than

generally Jt! (!/a)αeκ#/a

at fixed distance, 
exponentially large times

the behavior depends on the observable

ρzz
c (", t) ∼ ρzz

c (",∞) +
Ez(t)"e−!/ξ̃z

t3/2
+

Dz(t)"2

v2
maxt3

+ . . .



FDT
with less symmetries 
w.r.t. the thermal case

Dynamical correlations
at infinite times after the quench

numerical analysis + general physical arguments

0 1 h

lim
t→∞

〈O1(t + τ)O2(t)〉 = Tr[ρGGEO1(τ)O2] (88)

in practice !, τ ! t ! L

exact results?  

L = 512 (86)x = 30

→∞

O(x/L) (90)
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Conclusions
Quantum quenches display a rich phenomenology 

Many open problems: 

... thermalization (non-integrable systems)

... GGE (integrable systems)

Importance to have analytic results

More general initial states? 

... and when subsystems do not relax?

Thank you 
for your attention


