

Florence, 22 May 2012

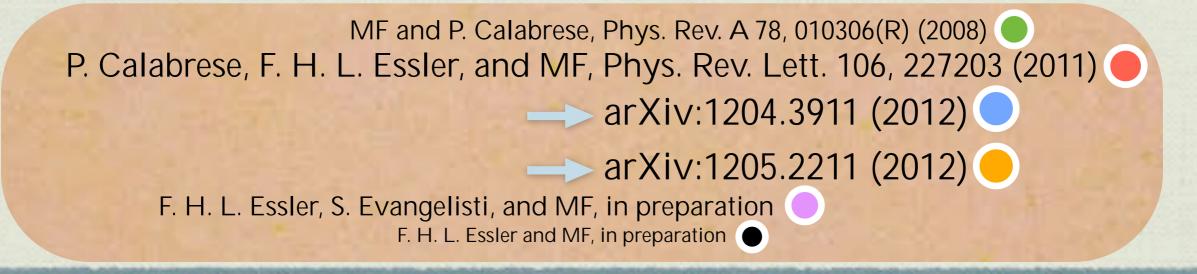
Exact results for quantum quenches in the Ising chain Maurizio Fagotti (Oxford)

Pasquale Calabrese (Pisa)

Fabian Essler (Oxford)

OUTLINE

- Introduction
- Correlation functions after a sudden quench in the TFIC
- Thermalization vs. GGE
- … towards a stationary state
- Dynamics?



Quantum systems out of equilibrium

main theoretical questions:

Correlation functions
Are there emergent phenomena? non-equilibrium steady states?
How to evaluate averages?

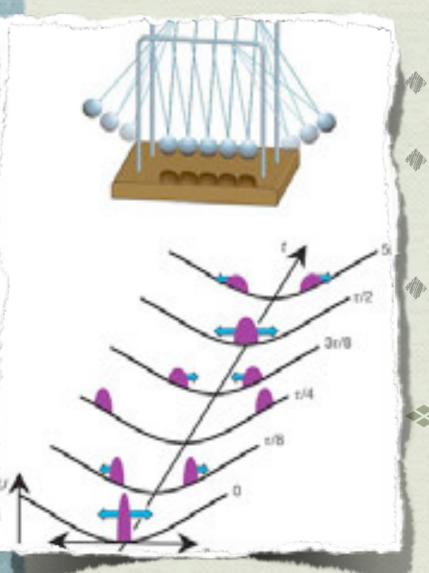
 $|\Psi(t)\rangle = e^{-iHt} |\Psi_0\rangle$

"macroscopic description"

many-body physics with ultracold atomic gases
 interaction and external potentials can be changed dynamically
 weakly coupled to the environment coherence for long times (also mesoscopic heterostructures, quantum dots, ...)

not only academic

Quantum Newton's Cradle Kinoshita, Wenger, and Weiss (2006)



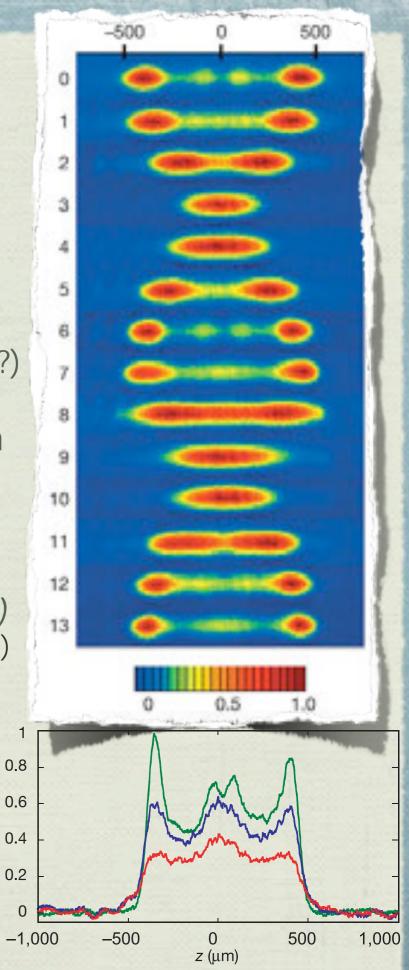
1D thousands of oscillations

non-thermal momentum distribution (no thermalization?)

3D a few oscillations and then thermalization

★ 1D close to integrability $H_N = -\sum_{j=1}^{N} \frac{\partial^2}{\partial x_j^2} + 2c \sum_{N \ge j > k \ge 1}^{N \ge j > k \ge 1} \delta(x_j - x_k)$

basic features (dimensionality, integrability, ...) play a central role in non-equilibrium physics



Sudden quench

consider a system in the ground state $|\varphi_0\rangle$ of a *local* Hamiltonian depending on certain parameters (magnetic field, interaction)

$$H(h_0,\ldots)|\varphi_0\rangle = E_{G.S.}^{(h_0,\ldots)}|\varphi_0\rangle$$

at a given time the parameters are changed

$$|\varphi_t\rangle = e^{-iH(h,\dots)t}|\varphi_0\rangle$$

extensive excess of energy $[H(h_0,...), H(h,...)] \neq 0$

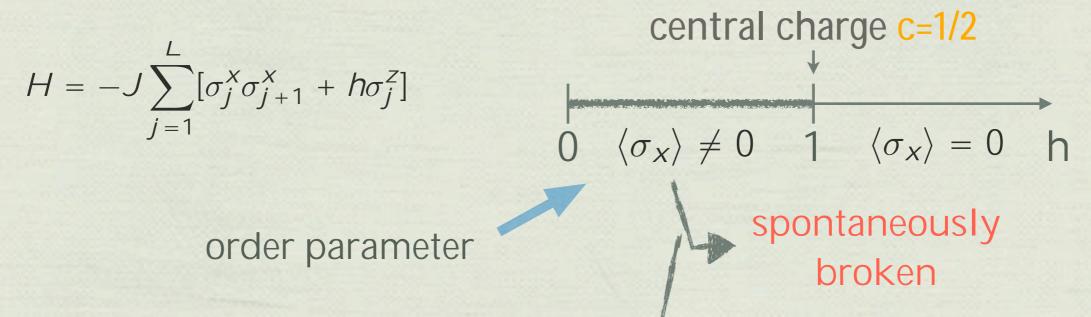
global quench

time evolution of (local) correlation functions $\langle \varphi_t | \hat{O}(r_1, \dots, r_i, \dots) | \varphi_t \rangle$ time evolution of subsystems $S(\ell_S)$ $(f_1, \dots, r_i, \dots) | \varphi_t \rangle$ $\rho(t) \equiv e^{-iH(h,\dots)t} | \varphi_0 \rangle \langle \varphi_0 | e^{iH(h,\dots)t} \longrightarrow \rho_S(t) \equiv \operatorname{Tr}_{\bar{S}}\rho(t)$

Iate-time regime and emergence of stationary behavior $V_{max} t \gg \ell_S, I$ $\exists \lim_{t \to \infty} \text{Tr}[\rho_S(t)\hat{O}]$ $\exists \lim_{t \to \infty} \rho_S(t)$

Transverse Field Ising chain

simplest paradigm of a quantum phase transition



 Z_2 symmetry: rotation of π around z-axis

Mapping to free fermions

$$a_{2l} = \prod_{j < l} \sigma_j^z \sigma_l^z \qquad a_{2l-1} = \prod_{j < l} \sigma_j^z \sigma_l^y$$
$$\{a_l, a_n\} = 2\delta_{ln}$$

Jordan-Wigner transformation

wo fermionic sectors
$$\left[\prod_{l} \sigma_{l}^{Z}, H_{R(NS)}\right] = 0$$

$$H = \frac{1 - \prod_{l} \sigma_{l}^{Z}}{2} H_{R} + \frac{1 + \prod_{l} \sigma_{l}^{Z}}{2} H_{NS}$$

$$H_{R(NS)} = \sum_{l,n} \frac{a_{l} H_{ln}^{R(NS)} a_{n}}{4}$$

Wick theorem imaginary antisymmetric

Quench dynamics in the TFIC ordered phase disordered phase $H(h_0) \rightarrow H(h)$ Approach I: Block-Toeplitz determinants: (in the thermodynamic limit) expectation values of even operators — Pfaffians of structured matrices multi-dimensional $\langle \varphi_0 | \sigma_1^x(t) \sigma_{\ell+1}^x(t) | \varphi_0 \rangle \sim \text{Block-Toeplitz matrix}$ stationary phase approximation Approach II: "Form-Factor" Sums: large finite volume L initial state (ordered phase) $(\bar{0}_R \pm \bar{0}_{NS})/\sqrt{2}$ (disordered phase) 0_{NS} 2. 3. express this in terms of the final Bogoliobov fermions $\bar{\langle 0 \rangle}_{R(NS)} = \exp\left(i \sum_{n \in N} K(p) \alpha_p^{\dagger} \alpha_{-p}^{\dagger}\right) \langle 0 \rangle_{R(NS)} \qquad K(p) = \tan\left(\frac{\theta_h(p) - \theta_{h_0}(p)}{2}\right)$ $\hat{0}$ Lehmann representation in terms of the final Bogolioubov fermions 4. 5. the lattice model

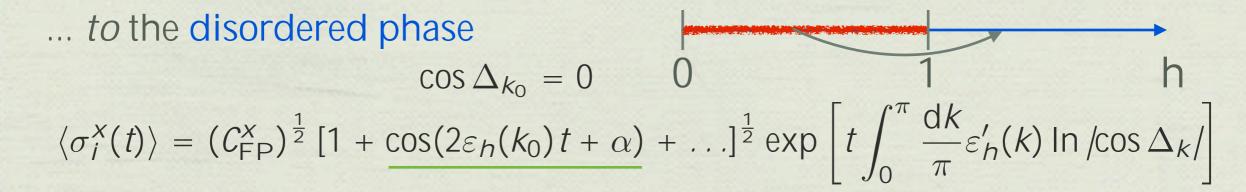
One-point function: different from zero only for quenches from the ordered phase

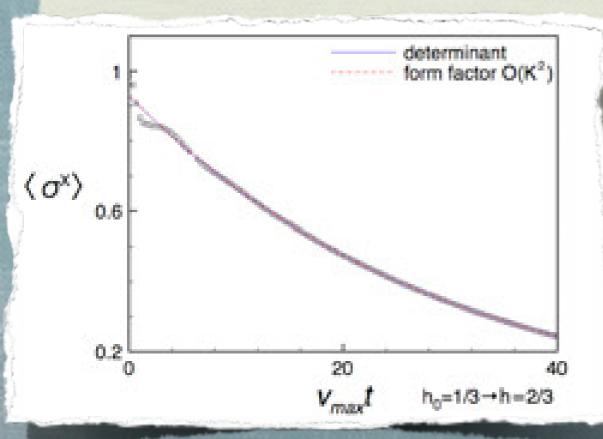
$$\Delta_k = \theta_h(k) - \theta_{h_0}(k)$$

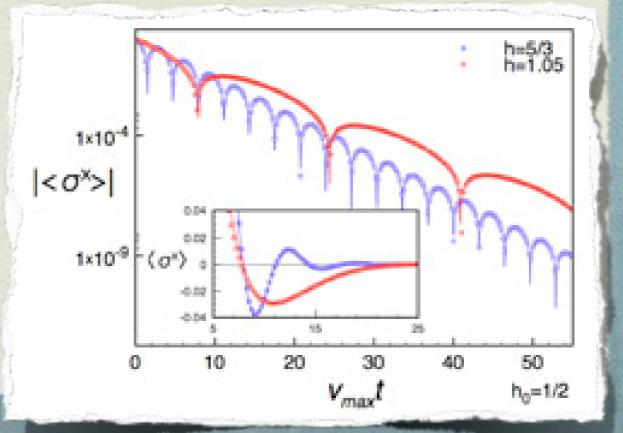
h

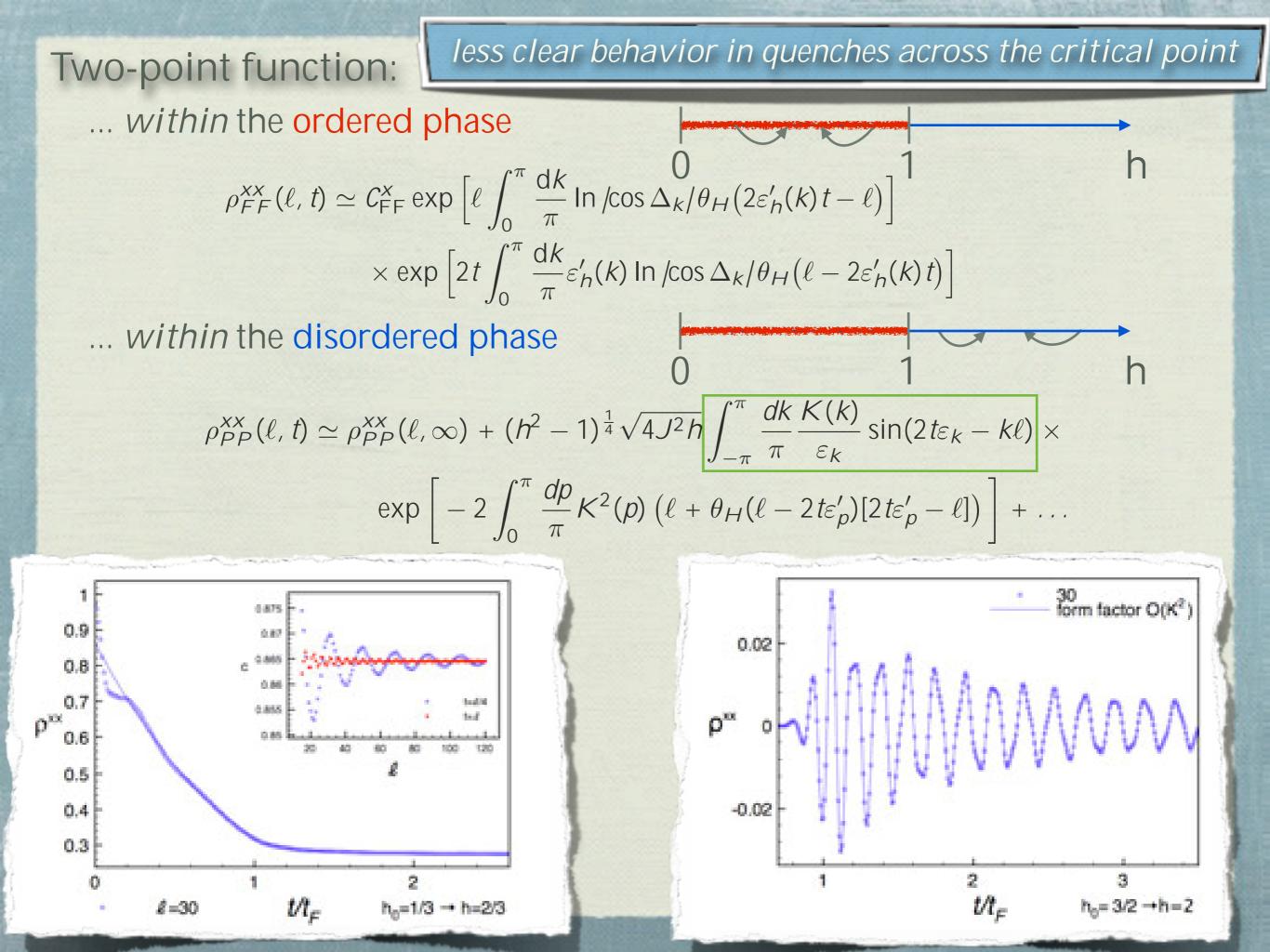
... to the ordered phase

$$\langle \sigma_i^X(t) \rangle \simeq (\mathcal{C}_{FF}^X)^{\frac{1}{2}} \exp\left[t \int_0^\pi \frac{\mathrm{d}k}{\pi} \varepsilon_h'(k) \ln/\cos \Delta_k/\right]$$









 $\begin{array}{l} \text{Stationary state} \\ \text{Stationary state} \\ \rho(t) = e^{-iH(h,\ldots)t} |\varphi_0\rangle \langle \varphi_0/e^{iH(h,\ldots)t} & \longrightarrow & \rho_S(t) = \text{Tr}_{\bar{S}}\rho(t) \end{array}$

- at large times after a quench correlations display stationary behavior
- entanglement entropies of subsystems become independent of time

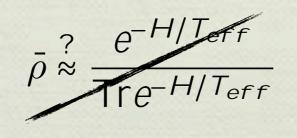
effective density matrix?

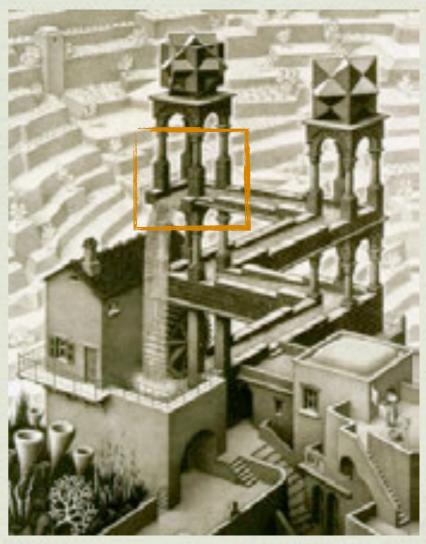
 $\exists \lim_{t \to \infty} \operatorname{Tr}[\rho_{S}(t)\hat{O}] ? \qquad \lim_{t \to \infty} \operatorname{Tr}_{\bar{S}}\rho(t) \to \bar{\rho}_{\bar{S}}$

Eigenstate Thermalization? Deutsch (1991), Srednicki (1994)

intuitive argument: in an infinite system the rest of the system could act as a bath

integrable systems: conserved quantities! (more parameters)





M. C. Escher (1961)

non-integrable systems?

Quenches to integrable systems

operators commuting with the final Hamiltonian are stationary: expectation values are conserved $[H, I] = 0 \Rightarrow \langle \varphi_t | I | \varphi_t \rangle = \langle \varphi_0 | I | \varphi_0 \rangle$

charge with local density

conservation law also for the reduced system

, persistent oscillations

at late times

stationary behavior: each local charge gives a constraint $\rho_{\infty} = \rho_{\infty}(I_1, I_2, ...)$

M. C. Escher (1956)

conjecture (GGE):
$$\bar{\rho}_S \xrightarrow{|S| \to \infty} \frac{e^{-\sum_m \beta_m I_m}}{\text{Tr}[e^{-\sum_m \beta_m I_m}]}$$

Rigol, Dunjko, Yurovsky, and Olshanii (2007)

Infinite time after a quench in the TFIC ordered phase $H(h_0) \rightarrow H(h)$ (in the thermodynamic limit) $0 \qquad h$

- equal-time correlations are stationary (almost all excitations have nonzero velocity (no localized excitations); counterexample: quench to $H = \sum \sigma_1^2$)
- exponential decay with distance (possibly "dressed" with power-law and oscillatory factors)

$$\rho^{xx}(\ell \gg 1, t = \infty) = C^{x}(\ell)e^{-\ell/\xi}$$

$$D_{C^{X}(\ell)} \sim \cos(\kappa \ell)^{1} C^{X}(\ell) \sim \ell^{-3/2} h$$

$$\rho_c^{ZZ}(\ell \gg 1, t = \infty) \simeq C^Z \ell^{-\alpha^2} e^{-\ell/\xi_2} \qquad \alpha^Z = \frac{1 + \theta_H(\log h/ - \log h_0)}{2}$$

Iocal properties described exactly by a GGE (equal-time fermionic two-point functions have thermal structure corresponding to an Hamiltonian that commutes with the final one) "Pair Ensemble" vs GGE: the role of locality

$$|\bar{0}\rangle_{R(NS)} = \exp\left(i\sum_{0$$

off-diagonal elements do not contribute $n_{k} = \alpha_{k}^{\dagger} \alpha_{k}$ $\langle n_{k} n_{-k} O \rangle_{t} = \langle n_{k} O \rangle_{t}$ \downarrow

factorization in pair of quasiparticles

different from GGE ! (GGE in the Ising model is Gaussian)

→ Pair Ensemble

Pair Ensemble and GGE are locally indistinguishable

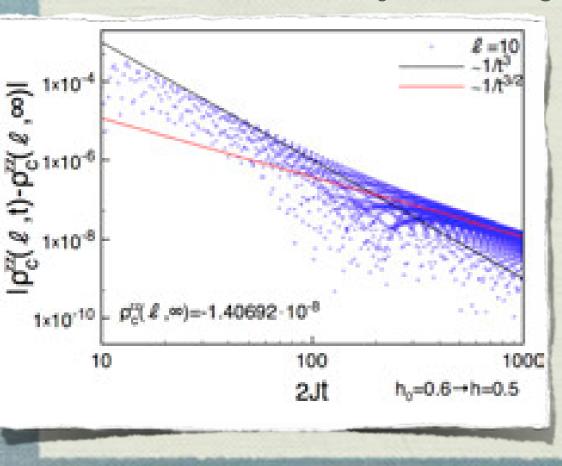
my feeling (when GGE works): we CAN construct the effective density matrix considering only *local charges*

... towards the stationary state: "practical meaning" of the infinite time limit

fundamental question: how long we need to wait to "see" the observables converging to their stationary values

finite systems: GGE - *time* must be

- smaller (enough) than the system's size (in units of the maximal velocity)
- much larger (how much?) than the typical length (distance in 2-point functions, subsystem's length, ...)

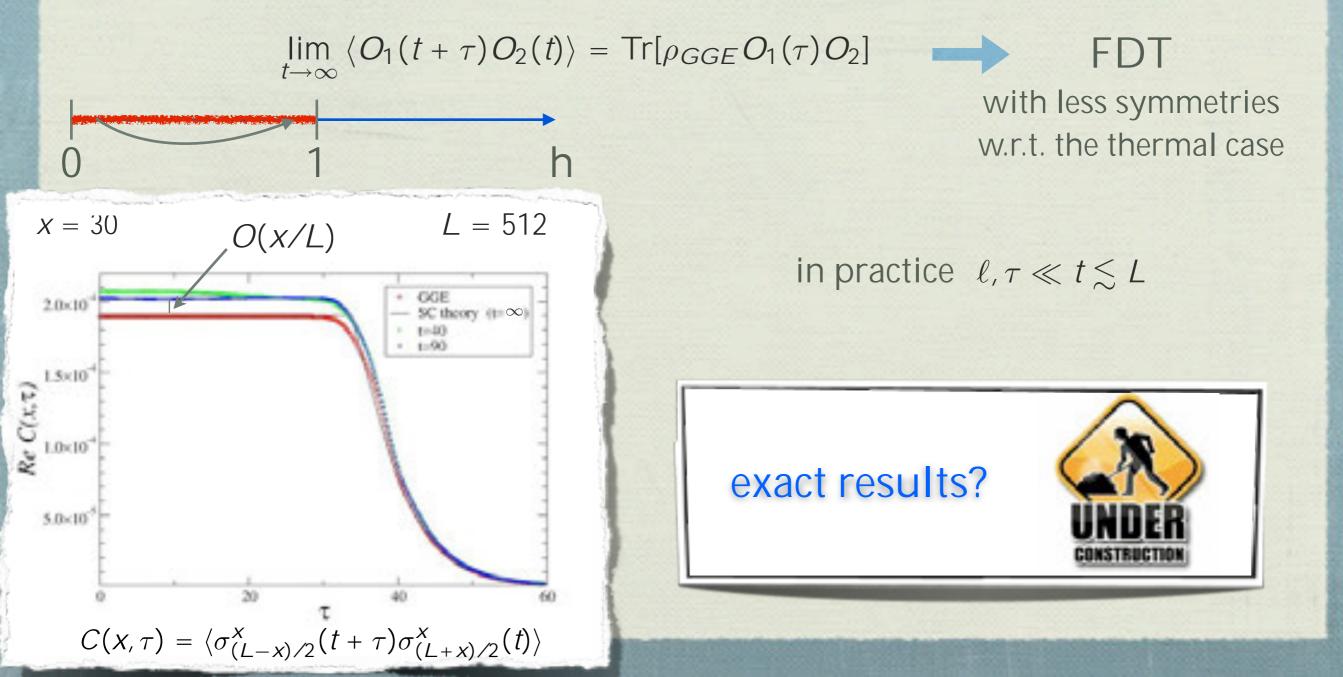


strong limits to the lengths of subsystems that relax! $\rho_c^{ZZ}(\ell, t) \sim \rho_c^{ZZ}(\ell, \infty) + \frac{E^{Z}(t)\ell e^{-\ell/\tilde{\xi}_{Z}}}{t^{3/2}} + \frac{D^{Z}(t)\ell^{2}}{v_{max}^{2}t^{3}} + \dots$ $generally \quad Jt \gg (\ell/a)^{\alpha} e^{\kappa \ell/a}$ at fixed distance, exponentially large times

the behavior depends on the observable

Dynamical correlations at infinite times after the quench

numerical analysis + general physical arguments



Conclusions

- Quantum quenches display a rich phenomenology
- Many open problems:
 - ... thermalization (non-integrable systems)
 - ... GGE (integrable systems)
- Importance to have analytic results
- More general initial states?
- … and when subsystems do not relax?

Thank you for your attention