Disorder physics with Bose-Einstein condensates

Giovanni Modugno

LENS and Dipartimento di Fisica, Università di Firenze

New quantum states of matter in and out of equilibrium GGI , May 2012

Disorder and quantum gases

Disorder is everywhere, but it is hardly controllable.

Superconductors

Graphene

Photonic media

Biological systems

Ultracold quantum gases can help answering to open questions.

VOLUME 91, NUMBER 8 PHYSICAL REVIEW LETTERS week ending 22 AUGUST 2003

Atomic Bose and Anderson Glasses in Optical Lattices

B. Damski,^{1,2} J. Zakrzewski,¹ L. Santos,² P. Zoller,^{2,3} and M. Lewenstein²

An ultracold atomic Bose gas in an optical lattice is shown to provide an ideal system for the controlled analysis of *disordered* Bose lattice gases. This goal may be easily achieved under the current experimental conditions by introducing a pseudorandom potential created by a second additional lattice or, alternatively, by placing a speckle pattern on the main lattice. We show that, for a noncommensurable

Current experimental studies

Anderson localization in 1D-3D (Palaiseau, Florence, Urbana)

Transport in disordered potentials (Rice, Florence)

Aspect, Inguscio, Phys. Today 62, 30 (2009); Sanchez-Palencia, Lewenstein, Nat. Phys. 6, 87 (2010) Modugno, Rep. Progr. Phys. 73, 102401 (2010)

Current experimental studies

BKT physics and disorder in 2D (Palaiseau, NIST-Maryland)

Strongly correlated lattice phases (Firenze, Urbana, Stony Brook)

Current studies in Florence

Bosons in 1D lattices with tunable **disorder** and **interactions** (and **noise**).

The phase diagram of disordered lattice bosons

The phase diagram of disordered lattice bosons

 Theory:
 Giamarchi and Schultz , PRB 37 325 (1988)

 Fisher et al PRB 40, 546 (1989).

 Experiment:
 Fallani et al., PRL 98, 130404 (2007);

 Pasienski et al., Nat. Phys. 6, 677 (2010).

A quasi-periodic lattice

Harper or Aubry-Andrè model:

$$\hat{H} = -J\sum_{\langle i,j \rangle} \hat{b}_i^{\dagger} \hat{b}_j + \Delta \sum_i \cos(2\pi\beta i) \hat{n}_i \qquad \beta = \frac{k_2}{k_1}$$

Metal-insulator transition at $\Delta = 2J$

S. Aubry and G. André, Ann. Israel Phys. Soc. 3, 133 (1980); Fallani et al., PRL 98, 130404 (2007); M. Modugno, New J. Phys. 11, 033023 (2009)

A quasi-periodic lattice

 $U = \frac{2\pi\hbar^2}{m} a \int |\varphi(x)|^4 d^3x$

Quasi-periodic Bose-Hubbard model:

$$\hat{H} = -J\sum_{\langle i,j \rangle} \hat{b}_i^{\dagger} \hat{b}_j + \Delta \sum_i \cos(2\pi\beta i) \hat{n}_i + U(a)\sum_i \hat{n}_i (\hat{n}_i - 1)$$

G. Roati, et al. Phys. Rev. Lett. 99, 010403 (2007).

Weak interaction regime

Weak radial trapping (v_r =50Hz): a 3D system with 1D disorder

Strong interaction regime

Strong 2D lattices (v_r =50 kHz): many quasi-1D systems with 1D disorder

Momentum distribution

G. Roati et al., Nature 453, 895 (2008); B. Deissler et al, Nat. Phys. 6, 354 (2010).

Weak interactions: momentum distribution

G. Roati et al., Nature 453, 895 (2008); B. Deissler et al, Nat. Phys. 6, 354 (2010).

Phase diagram from momentum distribution

5

Phase diagram from momentum distribution

Weak interaction cartoon

Fermi golden rule
$$\langle i | H_{int} | f \rangle^2 g(E) \approx \frac{U}{\delta E} \int \varphi_1^2 \varphi_2^2 dx > 1$$

Aleiner, Altshuler, Shlyapnikov, Nat. Phys. 6, 900 (2010).

Phase diagram from momentum distribution

Correlation function

B. Deissler et al. New J. Phys. 13, 023020 (2011)

Global and local lengths

B. Deissler et al. New J. Phys. 13, 023020 (2011)

Phase diagram from momentum distribution

D'Errico et al, in preparation. Theory by T. Giamarchi, M. Modugno.

Strong interaction cartoon

Phase diagram from momentum distribution

D'Errico et al, in preparation. Theory by T. Giamarchi, M. Modugno.

Strong interaction cartoon

Strongly interacting Bose glass: insulating but gapless

Diagnostics:

- momentum distribution/correlation function
- impulsive transport
- excitation spectrum

Impulsive transport

A. Polkovnikov et al. Phys. Rev. A 71, 063613 (2005); applied on Bose gases by DeMarco, Naegerl, Schneble

Excitation spectrum

Outlook

DMRG data, Roux et al., PRA 78, 023628 (2008)

Comparison with theory, several issues: finite temperature, trap, averaging

Anomalous transport in disorder

An open problem since decades, little data with nonlinearities:

J-P. Bouchaud and A .Georges, Phys. Rep. 195, 127 (1990) D. L. Shepelyansky, Phys. Rev. Lett. 70, 1787 (1993) S. Flach, et al, Phys. Rev. Lett. 102, 024101 (2009) Klages, Radons, Sokolv, Anomalous transport (Wiley, 2010)

Expansion measurements

Interaction-assisted transport

Lucioni et al. Phys. Rev. Lett. 106, 230403 (2011)

Diffusion as hopping between localized states

Instantaneous diffusion

$$\frac{\partial \sigma^2}{\partial t} = D \approx \xi^2 \Gamma$$

$$\Gamma \approx \frac{\langle i | H_{int} | f \rangle^2}{\delta E} \propto \frac{1}{\sigma^2} \quad \sigma^2 \propto \sqrt{t}$$

Several experts in theory: Shepeliansky, Fishman, Flach, Pikovsky, M.Modugno ... Intuitive description of the coupling: Aleiner, Altshuler, Shlyapnikov, Nat. Phys. 6, 900 (2010).

Subdiffusion exponent

Various regimes of sub-diffusion, depending on the interaction energy: very weak interaction, self-trapping.

Spatial profiles

space-dependent diffusion constant

Noise-assisted transport

$$V_{dis} = \Delta \cos(2\pi\beta x) \ (1 + A\cos(\omega_i t))$$

Frequencies are picked randomly from a given interval, with time step T_d

Non stationary situation: no fluctuation-dissipation relation holds

Noise-assisted transport

Also observed in atomic ionization (Walther), kicked rotor (Raizen) and photonic lattices (Segev&Fishman)

M. Arndt et al, Phys. Rev. Lett. 67, 2435 (1991); D. A. Steck, et al, Phys. Rev. E 62, 3461 (2000).

Diffusion as hopping between localized states

 $\frac{\partial \sigma^2}{\partial t} = D \approx \xi^2 \Gamma$

Interaction:

Noise:

Sub-diffusion

 $\sigma^2 = Dt$

Normal diffusion

Theory: Ovchinnikov, Ott, Shepeliansky, Bouchaud&Georges, ... and many others.

An extended perturbative model

C. D'Errico et al., arXiv:1204.1313

E. Ott, T. M. Antonsen and J. D. Hanson, Phys. Rev. Lett. 53, 2187 (1984); J.P. Bouchaud, D. Toutati and D. Sornette, Phys. Rev. Lett. 68, 1787 (1992).

Noise and interaction

Anomalies: self-trapping and super-diffusion

Outlook

Towards improved spatial resolution, noise-induced heating, stationary noise (another atomic species):

Noise-assisted trasport in natural disordered media

Many-body localization transition in disorderd Bose and Fermi systems

Out-of-equilibrium quantum phase transitions

Future directions in Florence

- Impurity and other disorder types: effect of disorder correlations and distributions
- Strongly interacting1D bosons with weak disorder
- Interactions and Anderson localization in higher dimensions
- Strongly correlated phases and frustration in higher dimensions
- Fermi gases; dipolar systems; …

Bragg spectr.

The team

Experiment:

Chiara D'Errico Luca Tanzi Benjamin Deissler G.M. Eleonora Lucioni Lorenzo Gori

Massimo Inguscio

Theory:

Filippo Caruso (Ulm-LENS) Marco Moratti Marco Larcher (Trento) Martin Plenio (Ulm) Michele Modugno (Bilbao) Franco Dalfovo (Trento)

acknowledgments:

B. Altshuler, S. Flach, T. Giamarchi, G. Shlyapnikov, M. Mueller, ... C. Fort, L. Fallani, M. Fattori, F. Minardi, G. Roati, A. Smerzi, ...

