The Galileo Galilei Institute for Theoretical Physics Arcetri, Florence, May 2012

Workshop: "New states of matter in and out of equilibrium"

Tensor network states that go beyond the boundary law for entanglement entropy

Guifre Vidal, Perimeter Institute

collaboration with Glen Evenbly, Caltech

Evenbly, Vidal, arxiv1205.0639 Evenbly, Vidal, arxiv120x.yyyy

MOTIVATION:

At low energies, "a many-body system may decouple into two (or several) sets of independent degrees of freedom"

Examples:

• 1D system: spin-charge separation

- 2D systems with 1D Fermi surface (or 1D Bose surface)
 - Fermi liquids
 - spin Bose metal

Haldane, Shankar, Swingle, Fisher,

•••

MOTIVATION:

Boundary law for entanglement entropy:

$$S_L \approx L^{D-1}$$

 $\overbrace{L}{}$

Systems with a Fermi/Bose surface are among the most entangled phases of quantum matter:

- Logarithmic violation: $S_L \approx L^{D-1} \log(L)$
- Beyond reach of tensor network states in D>1 dimensions:

 $S_L \approx L^{D-1}$

Outline

Glen Evenbly

• Introduction

Quantum circuits, simulatability and entanglement

MPS and TTN

• MERA

• branching MERA

branching MERA

• Introduction

Quantum circuits, simulatability and entanglement

• MPS and TTN

• MERA

• branching MERA

Quantum Circuit

Quantum Circuit

Can be used to *efficiently* encode many-body states:

time

Quantum Circuit as a many-body variational ansatz

Questions:

- 1) Cost of computing a local reduced density matrix
- 2) Entropy of a block of contiguous sites

time

Example I:

 $w \approx 2aN$

inefficient

Example II:

$w \approx 2a \log(N)$

efficient

• Entanglement entropy of a block of contiguous sites

 $\left| 0 \right\rangle \left| 0 \right\rangle \left|$

• Entanglement entropy of a block of contiguous sites

 $\left| 0 \right\rangle \left| 0 \right\rangle \left|$

• Entanglement entropy of a block of contiguous sites

• Entanglement entropy of a block of contiguous sites

Example II:

Summary: Quantum Circuit as a many-body variational ansatz

Questions:

time

- Cost of computing a local reduced density matrix
- Entropy of a block of contiguous sites

• Introduction

Quantum circuits, simulatability and entanglement

• MPS and TTN

• MERA

• branching MERA

matrix product state MPS

tree tensor network

MPS: computational cost

scaling of entropy:

 $S(A) \approx const$

TTN: computational cost

 $c \approx N$ $S(A) \approx const$

 $c \approx \log(N)$ $S(A) \approx const$

cost

• Introduction

Quantum circuits, simulatability and entanglement

• MPS and TTN

• MERA

• branching MERA

MERA (multi-scale entanglement renormalization ansatz)

MERA (multi-scale entanglement renormalization ansatz)

MERA (multi-scale entanglement renormalization ansatz)

MERA: entanglement entropy

 $n(A) \approx \log(L)$

scaling of entropy:

$$S(A) \approx \log(L)$$

cost

• Introduction

Quantum circuits, simulatability and entanglement

• MPS and TTN

• MERA

• branching MERA

MERA

branching MERA

branching MERA: computational cost past causal cone width: w' = 2w

MERA: entanglement entropy

 $n(A) \approx \log(L)$

scaling of entropy:

$$S(A) \approx \log(L)$$

ranching MERA: entanglement entropy

 $n(A) \approx 2\log(L)$

scaling of entropy:

$$S(A) \approx 2\log(L)$$

branching MERA

branching MERA

branching MERA: computational cost past causal cone width: w' = qw

cost of computing ho(A) :

 $c \approx q \exp(w)$

 $c \approx O(N)$

branching MERA: entanglement entropy

$$n(A) \approx O(L)$$

scaling of entropy:

$$S(A) \approx L$$

Conclusions

Conclusions

 quantum circuits can be used to encode many-body states

let us add translation (+scale) invariance

Glen Evenbly

Conclusions

 quantum circuits can be used to encode many-body states

let us add translation (+scale) invariance

Glen Evenbly